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Abstract

We study the low mode number macroscopic stability of plasmas in the
Phaedrus tandem mirror. Our stability analysis includes finite Larmor radius
effects and takes into account the nonaxisymmetric nature of the equilibrium.
A variational principle is formulated which is solved for the normal modes of
the system by a Rayleigh-Ritz method. Despite the full 3-D representation of
the modes and nonaxisymmetry of the equilibrium it is found that for values of
pi/Rp > 0.05 the most unstable modes are to a large extent composed of a
single poloidal Fourier (m) component. For Phaedrus the most unstable mode is

anm =1 rigid displacement.

(a) present address: Grumman Aerospace Corporation, 105 College Road East,
Princeton, NJ 08540.



I. Introduction

Most present day tandem mirror experiments rely on quadrupole end plugs
to provide average minimum-B stability. The quadrupole end plugs make the
overall geometry of a tandem mirror nonaxisymmetric. In this paper we address
the effect this nonaxisymmetric nature of a tandem mirror has on the stability
of low poloidal mode number MHD modes. Experimental evidence indicates that
the MHD stability of tandem mirrors is determined by Tow mode number pertur-
bations. Low mode number modes are usually global in nature and thus the non-
axisymmetric nature of the equilibrium becomes more important. Also, in a
nonaxisymmetric geometry poloidal and radial mode components can couple and
thus a full 3-D representation of the mode is needed.

For large m-number modes the nonaxisymmetry of a quadrupole tandem mirror
is not a problem. Utilizing an eikonal approximation the problem of MHD sta-
bility of large m-number modes can be reduced to solving a single ordinary
differential equation on each field line.l This type of large-m approximation
has also been used for studying the effect of finite Larmor radius on balloon-
ing modes in nonaxisymmetric tandem mirrors.2=% In one of these calculations®
the finite Larmor radius effects stabilized all large m modes down to the
limit of validity of the eikonal approximation for typical tandem mirror para-
meters. The largest value of pi/Rp for an originally stable mode was found to
be an order of magnitude smaller than present day experiments.

Because of the large stabilizing effect that finite Larmor radius cor-
rections have on large m modes, it has been hypothesized that perhaps the most
unstable MHD mode is the m = 1 "rigid" perturbation.5 A rigid mode is charac-
terized by a perturbation, E, that is a function only of the distance along

the magnetic field. Finite Larmor radius corrections have no effect on the



MHD stability of a rigid perturbation since the perpendicular E field is con-
stant and ions and electrons see the same perturbation irrespective of their
orbits. It was found® that the rigid perturbation gave more pessimistic sta-
bility criteria than the simple interchange mode but better than infinite-m
MHD. With a rigid mode the vacuum contribution to the perturbed potential
energy becomes important. In the 1imit where a boundary of the conducting
wall coincides with the plasma boundary the rigid mode becomes flute-like and
the beta limit is the same as the interchange beta limit.

We consider the Tow mode number MHD stability, with finite Larmor radius
corrections, of a plasma in a simple tandem mirror. By low mode number we
mean in the range of 1 to 12. Our calculations pertain primarily to the
Phaedrus tandem mirror experiment. Our stability analysis is based on a
formalism developed by Newcomb®8 which considers the equilibrium and sta-
bility of collisionless systems in the paraxial or long, thin 1imit. Included
are rotational effects due to an ambipolar potential and finite Larmor radius
effects.

Here, we consider linear modes. A variational principle is constructed
using the linearized equations of motion derived from Newcomb's Lagrangian.
This variational principle is solved by expanding the normal modes in terms of
a 3-D set of basic functions and solving for the coefficients by a Rayleigh-
Ritz method. Using this method the effect of the quadrupole nature of the
equilibrium on the normal modes is represented and the possibility of poloidal
and radial mode components coupling due to the non-axisymmetric geometry is

taken into account.



I1. Equilibrium

We will use the magnetic flux coordinates (y,6,2) where B = ¥y x V0.
Here, ¢ is the flux coordinate, 6 is an angle-like coordinate and % is the
distance along a field line. The pressure components are assumed independent
of 6 so that at a particular axial location the constant y surfaces are also
constant pressure surfaces.

The equilibrium is assumed to satisfy the tensor pressure magnetostatic

equationsg’10

jxB=v.F, (la)
T

ng—po\], (1b)

v.eB=0, (1c)

where P = plf + (p" - pl)BB. Here, 5 is a unit vector in the direction of the
magnetic field B and P, and p, are the pressure components perpendicular and
parallel to §, respectively.

To avoid complexity we will assume very low beta so that the equilibrium
magnetic field can be taken to be the vacuum magnetic field. This is consist-
ent with beta values attainable in Phaedrus (< 5%). Also, assuming a large-

aspect-ratio system, 1 = Ll/L" << 1, to lowest order in 3% we have
d2 = dz (1 + 0(¥®)) , (2a)

B.z=|8], (2b)



where B is the magnitude of the magnetic field. Using the long, thin approxi-

mation the coordinates y,6 are given by

= % B(z) [e-ZC(Z) X2 + eZC(Z) y2] , (3a)
6 = tan”! E% e2c(z)] . (3b)

B(z) is the magnitude of the magnetic field on axis and e2¢(2) s tne ellip-
ticity of a magnetic flux surface. The metric tensor elements for this

coordinate system are,

(pr)2 = 2yB(z) [cosh 2c(z) - sinh 2c(z) cos 2¢] , (4a)
(ve)? =-%E B(z) [cosh 2c(z) + sinh 2c(z) cos 26] , (4b)
Ve « Yy = B(z) sinh 2c(z) sin 26 . (4c)

Also V& » V2 = 1 and the remaining metric tensor elements are zero. Note that
V9 and Ve are not orthogonal. We will adopt pressure profiles based on
experimental observations. The partial pressures will each be assumed sepa-
rable

2 P * i) . Py
v 2 5

g;(2) , (5)

where the function g;(%) depends only on the axial location and B} = E}(w), is

a function of y only.



The components of the curvature to lowest order in the 1long, thin

approximation are given by

o= x"x +y'y (6)

where the prime indicates the derivative with respect to z. The covariant

components of the curvature in the (v,0,%) coordinate system can be written as

<y = %o + Ky COs 26 , (7a)
kg = -2yx; sin 26 , (7b)
where K = 1 (00" + ") Ky = 1 (oo" - ")
0 2 * 1 2 ?

with O'(Z) = /—B—(—Z—T eC(Z) R T(Z) = /me-C(Z)

In a quadrupole tandem mirror there is also a parallel current due to the non-
axisymmetric nature of the equilibrium. Using Eqs. (1) and assuming the

current vanishes at each end of the device the parallel current is given by

Iy PL =Py, 2 Ko 3
g 1+ ———) = fz dz g= 35 (P + 1y - (8)

B 0
The low beta, long, thin equilibrium used for the stability analysis presented
below is described by the functions B(z), C(z), the axial pressure distri-
butions, g;(2), ga(2) and the radial pressure distributions B}(w), Bé(w). The

functions B(z) and C(z) for the Phaedrus tandem mirror are shown in Figs. la
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and 1b, respectively. These functions were calculated using field line data
from the EFFl codell using the Phaedrus coil set as input. The model axial
pressure distribution, g;(2), used here is shown in Fig. 2. The radial

pressure distribution used is

p; () = pycos® (3 /$:)

e

where p, is the pressure on axis and Ve is the flux surface on the edge of the
plasma.

ITI. Stability

The stability analysis we use is based on the Lagrangian analysis de-
veloped by Newcomb5'8 for equilibrium and stability of collisionless systems
including finite Larmor orbit corrections in the paraxial limit. We apply
this analysis to the problem of linear stability in a long, thin quadrupole
tandem mirror. In the derivation of Newcomb's equations two expansion para-
meters were used, the ratio of gyroradius to radial scale length and the ratio
of radial to axial scale length A.

The Lagrangian density is
> »>2 +>2
* Xq = RXy - sz) , (9)

where ;(w,e,z,t) is a two component vector (x,y) giving the position of a mag-

netic field line. The subscripts indicate partial derivatives. Also,

Q=8+p -p,, (10)
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s = 28, - %-%-(MBZ)lp , (11)

21 ey 1
R p®¢ t oy (MB )¢°W E'Kwa . (12)
_ n? dvde
M--SHBZe—ffv g’ (13)
3
K = 2nB° 1% f12 d;d" , (14)
e

where p is the mass density, & is the equilibrium ambipolar potential and f is
the distribution function and is a function of y, v, . Here, v is the mag-
netic moment per unit mass, ¢ is the energy per unit mass and q is the paral-
lel velocity. Al1 equilibrium quantities are functions only of y and z.

The equations of motion are obtained from Hamilton's principle,

dydedz
B

(wae - Xeyw) = 1/B, to yield

§ [L = 0 together with the incompressibility constraint condition

> > > >
F = PXey - B(QxZ/B)Z t SXgp = RXgo = 0. (15)

;(o)

Linearizing the variable i, in the form X = + E we obtain the following

linearized equations of motion

z (o) , »(0) _

% A Xy o =0, (16a)

£ * #lo) s §g°) .t =0, (16b)
where glo) _ —B(%';§O))z - R;ég)



and 6F is the same as Eq. (15) except with £ substituted for x. Writing £ in

terms of contravariant components E = X?w + Yie where X = E « Vy and

Y=%2. Ve, the linearized incompressibility condition is given by

—<

X 0 _
To obtain a variational principle we multiply Eq. (16a) by X* and integrate
over volume, multiply Eq. (16b) by Y* and integrate over volume, and then sum

the two to obtain

dq;dedz »* 5 »* * * >(0)
2'f lpl » By * S8 = Egp - RE - Bgp - R(XE, » Xgq
(18)
*
FYE K wEh =0,
2 a1 d¢dedz Q . vay? s vl *
where  WE LE) =5 ] {—3—2— [ve « vex - vo « Vy(X,Y, + X, ¥ ]
(19)
2 3,
+ Ve VY] - (p, # p") K x +Q — " (x Y, + XY )} .

The function W(E*,E) is Newcomb's ideal MHD energy integral in the paraxial
appr‘oximation.8

We will defer treatment of rotational modes to a future paper and here
will take R = 0. Equation (17) suggests X and Y can be written in terms of a

stream function. Since B'le is 0(»%), X and Y can be given to 0(12) by

11



X = ¢g (20a)

Y = -¢w . (20b)

'16x[¢eve + ¢wvw] exp(iwt) into

It is assumed £ « exp(iwt). Substituting £ = B
Eq. (18) and dropping terms with R gives the following variational princple

expressed in terms of ¢,

WPK(D ) + WF(o 10) + W(o ,4) = 0, (21)
where K(¢*,¢) = - %.f EEQ%QE p[ve¢e + V¢¢w]2 R (22a)
B
* 1 * *

Flo »0) =5 d"’;gdz S[06, + Vv, ] - 35 [Voo, + Vo ], (22b)

*

Mo ,9) = 5 [ ud0dz {%2— [Vedg, + V00, 1

(22c)

2 Wy o« *
- (pl + p")q)K\P¢6 = E'T' (¢G¢ZIJ) + ¢e¢zw)} .

Equation (21) with Eqs. (22) will be used for calculating the normal modes of
the system.

IV. Numerical Method of Solution

Equation (21) is solved for the normal modes of the system by a Rayleigh-
Ritz method. The stream function ¢ is expanded in terms of a finite set of

basis functions,

~ } img _
m=0 m#0

(23)

12



where ¢pnn = Ulz) Vp(y) e For U(z) we use a Fourier series and for
V() we use Bessel functions of order 2. In Phaedrus to adequately represent
the modes 40 (20 odd and 20 even) U_(z) functions were needed and 10 V(v
functions. The number 40 for the number of axial basis functions was arrived
at by comparing two different techniques for solving the infinite n ballooning
mode equation. The first technique was a shooting method and the second tech-
nique involved expanding the solution in terms of axial basis functions. It
was found that 40 axial basis functions gave very good agreement between the
two methods.

The boundary conditions on the function ¢ are that ¢ must go to zero at
the surface of the conducting wall surrounding the plasma in order to have
[ ﬁ = 0, where ﬁ is the normal to the conducting surface. Also, ¢ must go
to zero at r = 0 for £ to be finite. The problem of finding the normal modes

is thus reduced to finding the solution of the matrix problem
> 2o >
Wa = -wKa - wFa , (24)

where the vectors a are composed of elements a, . and the matrix W is composed

* -
K'n'm' enm - w(¢k'n'm"¢nnm)’ etc. The matrix elements are real

and W, K and F are symmetric matrices.

of elements W

Since the quadrupole nature of the magnetic field has been included, each
m component of ¢ will couple to the m + 2 components. Also, if the m compo-
nent is symmetric with respect to reflection about z = 0, then it couples to
the antisymmetric parts of the m £ 2 components. Hence, one can solve sepa-

rately for even and odd m modes and there will be two types of even modes:

13



one when the m = 2 component has even symmetry with respect to reflection
about z = 0 and another where the m = 2 component is antisymmetric.

Equation (24) is solved on the computer using a mathematical subroutine
which solves the general problem Ax = ABX for the eigenvectors x and eigen-
values A where A and B are real square matrices. Equation (24) can be put
into this form by defining another vector, 3, such that v = wa. Equation (24)

can then be written as

=
o
[<1A 4
1
™
1
ka4

>
( )= ) (25)
o K v K 0 v
In this equation the matrices are also symmetric but the right-hand matrix is
not positive definite and hence the eigenvalues, w, can be complex.

Qutside the main plasma column we allow for an exterior region containing
pressureless plasma. In the 1limit where the density in this region goes to
zero one obtains the same answer for the most unstable mode as one would get
if this region were filled with a vacuum.®  When the exterior region is
allowed to have a small amount of density there is a stabilizing effect due to
the extra inertia provided by the plasma in this region. This has the effect
of reducing the growth rate somewhat over what one would get if this region
were filled with vacuum. For ideal MHD the marginally stable point is still
the same. However, when FLR effects are included, the region of stability is
increased.

V. Results

In Fig. 3 the MHD beta limits with no finite Larmor radius effects are

given for the Phaedrus configuration. Instability occurs when the bad curva-

ture weighting central cell pressure, here measured by Bce = central cell per-

14
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Fig. 3. 1Ideal MHD beta Timits for the Phaedrus tandem mirror. The values
of m indicate the dominant poloidal mode component.
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pendicular plasma pressure/magnetic field pressure, becomes too large relative

to the good curvature weighting end plug pressure indicated by g which is

plug’

measured at the plug midplane. The abscissa B /Bcc s a measure of the

plug
average radial magnetic well depth in the tandem mirror. Figure 3 illustrates
the tendency in pure MHD for higher m modes to be more unstable than lower m
modes. Also, for the ideal MHD case there is a large amount of coupling be-
tween the different m modes, particulariy as m is increased. The modes were
composed mainly of components with even symmetry and were for the most part
interchange-1ike with some ballooning in the bad curvature region at higher
values of B.

When finite Larmor radius effects are included the most unstable modes
tended to become more and more composed of a single low m number as pi/Rp was
increased. This is illustrated in Fig. 4 for the case of marginally stable

even modes at fixed BCC/B For pi/Rp = 0 the mode was composed of almost

plug®
equal parts m = 2 and m = 6 with some m = 10. When pi/Rp > 0.02 in the plug,
the m = 2 component comprises 94% of the mode. When finite Larmor radius
effects are included the m = 2 is the most unstable even mode, but even it is
stabilized for pi/Rp > 0.05.

The large stabilizing effect of finite Larmor radius corrections is
further demonstrated in Fig. 5. Here, the growth rate of various odd modes is
plotted for increasing p1-/Rp in the plug. The beta ratio Bcc/3p1ug exceeds
the interchange 1imit. Here, the ratio of control cell to plug beta was kept
fixed while the ion gyroradius was varied. For pi/Rp = 0 the growth rates

were higher for higher m number modes. However, as pi/Rp increases the higher

m modes quickly stabilize and for p1-/Rp > 0.04 only the m = 1 mode is un-

16
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Fig. 4. Spectral components of marginally stable even poloidal mode number

modes, for Bcc/6p1ug = 1,28. The ratio Bcc/6p1ug is fixed and B is

changed to keep the mode marginally stable as pi/Rp is increased.
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Fig. 5. Growth rate of odd poloidal mode number modes in Phaedrus for fixed

Bcc/8p1ug = 1.60, varying Oy
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stable. In Phaedrus pi/Rp ~ 0.02 so one would expect to see only the m = 1
mode based on these results.

Figures 6a and 6b show the change in the mode structure of the m = 1 mode
as pj/R, increases. The m = 1 mode becomes a rigid displacement when p;/Rj,
increases because this type of perturbation minimizes the effect of the finite
Larmor radius terms. The next most unstable mode would be expected to be the
m = 2 mode. The m = 2 mode is stable for Phaedrus parameters but for small
pi/Rp the stream function inside the plasma is proportional to r as in the
case of the m = 1 perturbation. This type of perturbation seems to minimize
the stabilizing effect of FLR even for m # 1.

In summary, we have studied the full 3-D MHD with finite Larmor radius
effects stability in the Phaedrus tandem mirror. The most unstable mode was
found to be an m = 1 rigid perturbation which, because of the low beta, was
essentially interchange-l1ike. A mode satisfying this description has been
observed in Phaedrus.!?

In our calculations the m = 1 mode was "pure" with almost no coupling to
adjacent m components for Phaedrus parameters. However, the coupling between
the m components is proportional to the amount of axial variation of the mode.
Hence, the "pure" nature of the mode may be a consequence of the low beta.

In a longer, higher beta tandem mirror where the rigid mode has more
axial variation the coupling of the various m components due to the nonaxisym-

metric geometry may be larger. This is currently being investigated.
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