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Abstract

The worldwide effort 1in fusion is now approximately 2
billion dollars per year and over 12 billion dollars has been
invested since 1951 in developing this energy source for the
21st century. A vital component of the past efforts in fusion
research has been the conceptual design activities performed by
scientists and engineers around the world. Almost 80 such
designs have been published and this article discusses how
recent conceptual designs have affected our perception of future

fusion reactor performance.



I. 1Introduction

Many scientists now believe that fusion research is in the
process of transition from a basic research phase into an
engineering phase. Presumably, this engineering phase will
transcend into a commercialization phase sometime in the early
21st century. In preparation for the commercialization phase,
many Tlaboratories around the world have conducted conceptual
reactor design studies 1in order to obtain a preview of the
important features associated with a fusion economy. Such
reactor studies have been important in outlining the potential
economic, environmental, and safety issues that will have to be
faced as well as what new technologies have to be developed by
industry.

The object of this paper is to briefly address what impact
such studies have had in the past few years and, based on our
knowledge today (1983), what are the issues that will shape our

move from the engineering to the commercialization phase.

II. Current Status of Worldwide Fusion Effort

At the present time, fusion research programs around the
world fall into three general classes. The first contains the
major fusion programs from the US, USSR, Japan and Europe which
employ more than 500 scientists each. The second category

includes countries where 50-500 scientists are employed such as



in Canada, People's Republic of China, Poland, and Australia.
The third category includes programs where less than 50
scientists each are employed. Significant information on the

three categories is shown in Table 1.

Table 1 Summary of Worldwide Fusion Research Effort

Approx. Annual Total Expended
Number of Expend.  Since Program $/Capita
Category Scientists FY 82, M$§ Beginning, M$ FY 82
I. US > 2,000 688 4,579 3.1
USSR > 1,600 ~ 660 ~ 4,500 ~ 2.5
Japan ~ 800 ~300(@) . 1,300 ~ 2.6
EC ~ 1,000 287 1,960 1.1
II. Peo.Rep.China -~ 500 ~ 20(b) ? ~ 0.02(b)
Canada ~ 50 ~ 4 ? ~ 0.15
Australia 57 ? ? ?
Poland 92 ? ? ?
ITI. (¢) ~ 250 ~ 30 ? ~ 0.03
> 6,400 ~ 2,000 > 12,500 ~ 0.50

including est. salaries

1980

Austria, Czechoslovakia, Finland, Hungary, Portugal, Romania,
Spain, India, Iran, Israel, Sudan, South Africa, Turkey,
Korea, Malaysia, New Zealand, Argentina, and Brazil.

—
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The current estimate of professional scientists in the
world fusion program is at least 6,400. It is also of note that
approximately 2 billion dollars was spent on fusion research in
FY 82. Approximately 2/3 of that was spent in the United States
and Soviet Union and roughly 15% each in Japan and the European

Community. Since the fusion program officially began in 1951,



some 12.5 billion dollars has been spent worldwide, again,
mainly in the four countries of category I.

The last column in Table 1 1illustrates the approximate
expenditure per capita in FY 82. The investment ranges from
~ 1% per capita in Europe to ~ 3$/capita in the US. Worldwide
the investment in fusion research is ~ $0.50 per capita.

Finally, a perspective on the accelerated pace of the
fusion program can be gained from Figure 1 where the estimated
yearly expenditures for 1977-82 are given. It is worthwhile
noting that investments in fusion research have doubled from
1 B$/year in 1977 to 2 B$/year in 1982. In fact, approximately
70% of the total expenditure on fusion to date has been made in

the last five years!

I1I. Background for Fusion Reactor Studies

Research into the fundamental nature of the fusion process
has been conducted for more than 35 years. Magnetic fusion
concepts were the first to be studied but in the early 1960's,
the first inertially confined fusion concepts were also
investigated. Although L. Spitzer and his colleagues carried
out the first "reactor" design in 1954 (NY0-6047); there were
essentially no self-consistent studies ranging from plasma
physics to materials, power cycles, economics and the environ-

ment until the early 1970's. From those studies, one can now
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conclude that the 1leading contenders for the first commercial
fusion power plants in the magnetic confinement area are the
tokamak and the tandem mirror concept. Similarly, the leading
contenders in the ICF area are the laser and ion beam approach.
Other concepts such as stellarators, compact tori, impact
fusion, etc. may eventually replace these four concepts, but
based on the physics knowledge of 1983, the four previously
mentioned approaches are clearly far ahead. Therefore, we will
only concentrate on tokamak, mirror, Tlaser and ion beam
approaches for this paper.

Tables 2 and 3 1list the studies that have been published
since 1967 using the major magnetic and inertial confinment
concepts. Only “pure" fusion designs (i.e., not including
fission-fusion hybrids, synthetic fuels production, etc.) are
included here. Certainly if one were to add work on hybrids,
pinch devices, compact toroids, etc., the number of studies
would be somewhat larger.

These studies are broken up into two categories which are
defined below. A Scoping Study is defined as:

"A limited study with particular emphasis on a
field of interest such as plasma physics, neu-
tronics, materials, power balance, etc., performed

by a few individuals and reported in short (less
than 10 to 20 pages) papers or reports.”
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In contrast to a scoping study, a full Conceptual Design Study
is defined for this paper as:

"A wide ranging study performed by a large
number of multi-disciplinary scientists which
includes a detailed analysis in most of the
following areas: plasma physics, driver (or magnet)
design, heating and fuel exhaust, neutronics,
blanket design and thermal hydraulics, materials,
tritium, power cycles and heat rejection,
environment and safety, and cost estimates."

Furthermore, full Conceptual Studies are contained in a single
well documented report which covers all aspects of the design in
a self-consistent manner.

The reason to separate Scoping Studies from full Conceptual
Design activities is because it is difficult to obtain a com-
plete picture of a design from a 10 to 20 page report which
lists parameters but does not document their origin. It is only
by extensive documentation that one can assure self-consistency
between various aspects of the reactor.

Analysis of these two tables with respect to "pure" fusion
and the major confinement approaches reveals the following
points:

1. In the past 16 years there have been at least 78
reactor studies with 46 of them aimed at
commercial electricity producing plants and 32
engineering test or experimental power
facilities.

2. With respect to major concepts, the studies can
be divided into the following categories.



Concept Conceptual Scoping Total

Tokamak 23 18 41
Mirror 10 7 17
Laser 5 7 12
Ton 2 6 8

10 38 78

3. In contrast to the high level of commercial
tokamak design activity in the 1970's, there has
not been a major commercial tokamak study
performed since 1980.

4. Whereas the early design activities in the ICF
design activities in the ICF area were dominated
by the US, four out of last six designs studies
performed since 1979 have been done by groups
outside the US.

5. Over the last 10 years more than 75% of the
design activity with respect to engineering test
facilities has been conducted in the tokamak
area. However, engineering test reactor design
in the tandem mirror area has increased
dramatically in the last four years as small
(< 100 MW) neutron production facilities appear
to be feasible.

6. Very 1little effort has been devoted to the
design of engineering test facilities in the ICF
area.

In summary, there have been at least 78 conceptual and
scoping studies for commercial power plants and engineering test
facilities, and over 50% of the worldwide effort has been
devoted to tokamaks. In recent years, the majority of tokamak
design work has been in the area of near term experimental test
facilities whereas the work in the ICF area has been mainly
devoted to commercial reactor studies. It is estimated that in
the past 10 years alone, over 1,000 man years of effort has been

applied to such design activities.

-9 -



IV. Recent Examples of Commercial Reactor Studies

It is not the purpose of this report to describe the
details of fusion reactor designs conducted in the past. That
can be obtained from the references listed in Tables 2 and 3.
However, we have included in Table 4 a general summary of the
most recent, major reactor design in the area of Tokamaks
(STARFIRE [34]), Tandem Mirrors (MARS [66]), Lasers (Hylife
[29]) and lon Beams (HIBALL [39]). Schematics of the reactors
are shown in Figures 2-5. They all have been published since
1980 and they all are designed to produce more than 1000 MW of
net electricity. The neutron wall loadings have increased from
the 1-2 MW/m2 of the early 1970's to 2-7 MW/m2 in the most
recent designs. A1l the reactors except MARS have utilized
first wall or component protection schemes. Some of the unique
features which bear on commercialization will be reviewed in the

next section.

- 10 -



Table 4

Summary of Most Recent Major Commercial

Tokamak Mirror
STARFIRE MARS
Year Pub. (Ref.) 1980 [34] 1983 [66]
Net Elec. Output 1200 1200
- MWe
DT Fusion Power 3500 2570
- MW
Volume of Regction 950 237(b)
Chamber - m
Pulse Length Cont. Cont.
n Wall boading 3.6 4.3
- MW/m
Coolant/Breeder H20/So1id Pb83Lil7
Structure St. Steel HT-9
Maximum 320 500
Coolant Temp. °C
Key Confinement -S/C Mag. *Hybrid
Technologies (11.1 T) Mag. (24 T)
«Lower Hyb. <ECRF
RF (90 MW) (84 MW)
Unique Design «Current Drift
Features Drive Orbit
«Pumped Pumping
Limiter «Gridless
Direct
Convertor

(a)
(b)
(c)

Fusion Reactor Designs

4 chambers per driver
including end plugs but not direct convertor
at first wall without 1iquid metal protection

- 11 -

Laser Ion Beam
Hylife HIBALL
1978-83[33] 1981 E3?]

1004 942x4 '3
2700 2000x4 ()
634 793x4(a)

1.5 Hz 5 Hz(a)

6.9(C) 2.3(C)

Li Pb83L117

2 1/4 Cr- HT-9/ SiC

1 Mo

500 500

KrF +10 Gev Bj

(4.5 MJ) (4.8 MJ)

oLi Jets «SiC
tubes
filled
with
liquid
Pb-L1
alloy
Multiple
cavities



FIGURE 2
STARFIRE REFERENCE DESIGN
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OMEGA
BELLOWS

BLANKET
SUPPORT

Figure 3b. Schematic of MARS Central Cell. Lead-1ithium alloy enters

from the bottom of the blanket and flows out the top to a double wall
steam generator,
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Figure 4. Schematic of Hylife Reaction Chamber. Two beams of laser
1ight converge on a target in the center of the chamber. The target
debris and energetic neutrons are captured by the jets of 1iquid Li
injected into the chamber.
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V. Implications of Recent Designs to Commercialization of

Fusion

A brief examination of the four designs in Table 4 (as well
as those studies leading up to the most recent designs) reveals
dozens of features which will have a major impact on the safety,
economic, and environmental aspects of fusion. However, for
this paper the 1ist will be narrowed to four items which will be
briefly discussed here. This 1list includes:

* A major trend towards using RF power for both heating and
confinement of fusion fuel.

+ The possibility of very long (if not continuous) burn times
in tokamaks.

+ The use of Pb-Li breeder/coolant materials.

« Use of liquid metal protection schemes for ICF cavities.

In the early 1970's essentially all magentic confinement
designs used neutral beams to heat, and sometimes fuel the
plasmas. As more and more detailed designs were developed, it
was discovered that the neutral beam injection (NBI) schemes
were 1) very large and hence used up valuable real estate
outside the reactor; 2) very costly at the energies required
(> 150 keV), and 3) major leakage paths for neutrons which
reduced the tritium breeding ratio and caused very high
radiation environments outside the reactor. About the same time

as the difficulties with NBI technologies appeared, experimental

- 17 -



success was being achieved with ICRF and ECRF heating of
plasmas. These systems represented small and compact units
which could be powered by power sources placed well away from
the reactor itself. The leads for the RF antenna or the
waveguides themselves occupied relatively small sections of the
blankets and could be bent so as to reduce neutron leakage.
Later success in the use of RF to aid confinement through the
establishment of thermal barriers in tandem mirrors [79] and for
current drive in tokamaks [34] made the move toward RF even more
desirable. The situation today is that RF heating and confine-
ment schemes should make fusion devices smaller, more compact,
easier to shield and maintain. Unfortunately, the cost of RF
power coupled into the plasma is still about the same as for NBI
schemes and progress in that area is required.

For at least 10 years after the tokamak was studied as a
reactor, it was thought that it would be an inherently pulsed
device. Pulse lengths were as short as 30 seconds or as long as
1-2 hours and were determined by the amount of stored magnetic
energy that could be economically achieved. The idea of current
drive, i.e., induction of a plasma current by electromagnetic
waves opened up the possibility of very long or even continuous
burn pulses in tokamaks. The achievement of this goal would
greatly alleviate the fatigue problems identified in the tokamak

studies of the 1970's and would allow much more confidence in

- 18 -



safe, economical blanket and first wall designs. The implica-
tions of long burn times are now being investigated at the same
time as experimental measurements of current drive are being
made.

The first breeder coolant proposed for fusion was Tithium
metal. It appeared to be an efficient way to produce the
necessary tritium while at the same time removing the heat
generated in the blankets. Unfortunatley, Li suffers from two
major disadvantages: it is very reactive and readily burns in
contact with water, concrete, etc. It also tends to retain
tritium at a relatively high concentration.

Solid breeders such as Li,0 or LiAlI0, were proposed to
alleviate the reactivity problem but the To inventory in
realistic solid breeder blanket designs at times exceeded 10's
of kgs. In 1979, the use of the alloy PbgiLiy7 was proposed
[80]. This alloy 1is 1liquid above 235°C and is relatively
inactive even when dropped into water when the metal is at
500°C. This Pb-Li eutectic also has a very low solubility for
hydrogen and tritium blanket inventories of 0.01 to 0.1 kg per
1000 MWe plant may be achievable [35]. It is also an efficient
heat transfer medium. The use of PbgslLi;; in commercial reactor
designs has become quite common since the late 1970's with the
result that the safety and environmental aspects of fusion now

appear much more favorable than they did before.

- 19 -



When inertial confinement fusion (ICF) devices were first
designed, a major problem was the protection of the first wall
from the intense heat flux and blast wave. The first approaches
to alleviate this problem were to cover the walls with a thin
coating of liquid metal but there was a difficulty in insuring
100% coverage between shots. The resultant shock wave generated
by the inverse rocket action of the expanding vapor also
presented severe fatigue problems for first wall designs. In
addition, the thin coatings of metal did not do anything to
moderate the effects of neutrons.

This problem was solved by using jets [29] or tubes [39] of
liquid metals inside the reaction chamber to intercept the X-ray
and target debris while at the same time moderating the effects
of neutrons [81]. The first designs used jets of lithium but
later work (taking advantage of the Pb-Li alloy properties just
described) reduced the vapor pressure in the cavity and
increased the allowable shot rate by enclosing the liquid metal
inside of flexible, porous tubes of SiC [82]. Not only did this
scheme enhance the safety of the reactor but it allowed the
tritium to be extracted inside the cavity. The allowable shot
rate could be raised from 1 Hz for free flowing jets to
approximately 5 Hz for the tubes. Solid metallic components
could also be protected from the neutron damage by moderating
and absorbing the neutrons. This should allow most of the

metallic components to last the lifetime of the reactor.

- 20 -




The commercial implications of these T1liquid metal
protection schemes include a considerable development effort on
circulating and extracting heat from large volumes of T1iquid
metal. The collection of vradioactive pellet debris is
accomplished naturally by the flowing metal schemes and methods
for extracting and disposing of the radioactive debris need to
be developed. When the advantages and disadvantages of the
1iquid metal schemes are considered, it is concluded that they
should reduce the total amount of radioactive components that
will have to be nreplaced and therefore have significant

environmental and economic impacts.

VI. Conclusion

The use of reactor designs to understand and enhance the
potential of fusion has been very successful over the past 10-15
years. As we pass from the fundamental research phase into the
engineering phase where the financial commitment of nations to
fusion exceeds 2 billion dollars a year, the effort in fusion
reactor design will definitely have to accelerate. From the
nearly 80 reactor designs that have already been conducted, the
community has a reasonably good picture of how a fusion economy
might impact the environment and quality of 1ife around the
world. As each new generation of fusion reactor is designed,
scientists and engineers are finding ways to make the energy

source of the 21st century even more attractive.
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