Collisional Boundary Layer Effect on the Thermal
Barrier Ion Trapping Rate in a Tandem Mirror

R. Carrera and J.D. Callen

June 1983

UWFDM-528

Submitted to Nuclear Fusion.

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.




Collisonal Boundary Layer Effect on the
Thermal Barrier lon Trapping Ratein a
Tandem Mirror

R. Carrera and J.D. Cdlen

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

June 1983

UWFDM-528

Submitted to Nuclear Fusion.


http://fti.neep.wisc.edu/

COLLISIONAL BOUNDARY LAYER EFFECTS ON THE THERMAL BARRIER
ION TRAPPING RATE IN A TANDEM MIRROR

Rodol1fo Carrera

James D. Callen

Fusion Engineering Program
Nuclear Engineering Department
University of Wisconsin-Madison

Madison, Wisconsin 53706

June 1983

UWFDM-528



ABSTRACT

In a classical analysis of the particle distribution function in a
thermal barrier tandem mirror the expression for the ion trapping rate in the
thermal barrier grows unboundedly in the limit of strong pumping. This
singularity is removed by considering a boundary layer problem around the
boundary contours in velocity space. The problem is converted into a Wiener-
Hopf functional equation in the complex plane along a boundary 1ine in phase
space whose solution yields the desired barrier distribution function. Then,
an expression for the thermal barrier ion trapping rate valid for fairly

strong pumping rates (trapped density << passing density) is obtained.



1. INTRODUCTION

The thermal barrier(l) in a tandem mirror is a region of depressed mag-
netic field and particle density in which a dip in the ambipolar electrostatic
potential is maintained by removing those jons that become trapped in the mag-
netic and electrostatic we11(1’2) and creating a population of hot electrons
which are magnetically and electrostatically trapped in the barrier re-

(1,3) The thermal barrier isolates central cell electrons from plug

gion.
electrons and then allows tandem mirror operation with plugs which are less
dense than the central cell while having plug electrons of higher temperature
than central cell electrons.(1’4) A sketch of the variation of magnetic field
and electrostatic potential along field lines in a tandem mirror is given in
Fig. 1. In our model thermal barrier the ion pumping is obtained by charge
exchange with neutral beams. In the thermal barrier there are two ion
species: ions that are trapped in the magnetic and electrostatic well which
are referred to as trapped; and ions which originate in the central cell, pass
over the barrier and are reflected back into the central cell by the plug,
which are called passing. The pumping mechanism replaces a trapped ion by a
passing ion.

In a classical ana1ysis(2) of the ion distribution function in a tandem
mirror the kinetic equation is solved in the various phase space regions by an
expansion in powers of A = v./wy (collision frequency/bounce frequency) and
this procedure is applied to each of the relevant ion species, namely, ions
magnetically trapped in the central cell, central cell ions passing over the
barrier and ions magnetically and electrostatically trapped in the barrier.

As a result of this analysis the following expression for the ion trapping

rate is obtained(Z)
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2 1/2
_ 2anb(Tp/®b)
t Tnb'rip)g(g -1)

h| (1)
where jt is the ion trapping rate (number of ions being trapped into the
thermal barrier per second); ny = barrier density (cm™3); Rp = Bmaxb/Bbs

Tp = passing ion temperature (keV); ¢, = barrier potential dip (keV);

NpTip = Ml/zTg/z/»’Z'ne4 Tn A, M = ion mass, 1n A = Coulomb logarithm; and

g = "b/"bp is the filling ratio with Nbp = passing ion density in the

-3y,

barrier(cm The filling ratio, g, is given by

1/2

g=1+[ ] /2 (2)

("bTip)vcx

1y, Equation (1) is singular

where v., = charge-exchange pumping rate (sec”
when g > 1, i.e. the ion trapping rate increases unboundedly as the pumping
rate is increased. This is because for fairly strong pumping, the gradient of
the distribution function of barrier ions close to the boundary contour in
velocity space becomes very sharp. This singular behavior is a consequence of
the assumption A << 1 since then any passing particle in the barrier requires
essentially no time to reach the central cell. This in turn causes a dis-
continuity in the derivative of the distribution function to be obtained at
the boundary separating trapped from passing particles in velocity space.

The expansion procedure utilized in a classical analysis fails in regions
of velocity space where there exist large derivatives of the distribution
function.(s) Therefore, a boundary layer is necessary around the boundary

contours in velocity space in order for the trapped and passing particle

distribution functions to join smoothly. A boundary layer analysis should



match onto the bulk analysis results that are valid far away from the velocity
space boundaries. The effects due to this boundary layer are expected to
modify significantly the barrier distribution function for filling ratios

g < 2.(2) 1p order for the ion trapping rate to remain finite as the pumping
rate is increased the derivative of the barrier distribution function must be
continuous. In a boundary layer analysis small angle collisions will smooth
out any discontinuity of the distribution function at the boundaries and thus
it will remove the singularity in the ion trapping rate when g > 1.

We consider a thermaj barrier model in which Ny is assumed to be known by
quasineutrality, ¢, is determined by electron flux conservation in velocity
space(3’4) and Ry, Tp and v., are given quantities. The central cell particles
have temperature T;. (= Tp) and density n.. We wish to find the ion distri-
bution function modifications due to boundary layer effects and from them ob-
tain an expression for the ion trapping rate valid for fairly strong pumping
rates in the thermal barrier (g ~ 1).

In the following sections we will use the quantities: n = number of
particles in the barrier region/number of particles in the central cell
(typically n << 1, i.e., "large" central cell), and v = v ,/uw, = charge
exchange frequency/bounce frequency in barrier. Typically, in a bulk analysis
(1ike that of Ref. 2) y = O whereas in our boundary layer analysis 0 < y < 1.
In Section 2 of this work we introduce the general boundary layer analysis.
The thermal barrier distribution function is obtained in Section 3 and then
from it the ion trapping rate is calculated in Section 4. The conclusions are

given in Section 5.



2. BOUNDARY LAYER ANALYSIS

The particle distribution function f for a plasma confined in a mirror
trap is the solution of a kinetic equation of the form df/dt = C(f) + S where
d/dt represents the total derivative along particle trajectories, C(f) is the
Fokker-Planck collision operator and S is any source or sink intervening in
the problem. For a steady state situation with azimuthal symmetry we can
write f = f(v,z,s) where v = particle speed, ¢ = v o B/V, b = unit vector in
the direction of the magnetic field, s = axial variable along field 1ines and
where a parametric field line dependence in f has been omitted. This equation
can be simplified by using the midplane (s = 0) variables v,,z, in velocity
space which are related to the local variables v,z through the adiabatic

relations

2 _ 2, 2[e(0) - o(s)]

v = vo M ?
(3)
v - %) =%‘T§}v§ (1 - cﬁ) ,

where ¢(s) is the ambipolar electrostatic potential and B(s) the magnetic

field. Then, the kinetic equation reduces to

of

VII SS_= C(f) + S s (4)

where v, T Ve and both sides of the equation are expressed in terms of the

velocity space variables at the midplane of the mirror cell (this is a point

such that all particles pass through it during a bounce). For simplicity we



consider that the square-well approximation is always applicable in our
problem so that v = v, and ¢ = ¢,.

We are interested in the distribution function behavior in a region close
to the boundary contours in velocity space where the nature of the particles
as trapped or passing is indistinguishable due to the small angle Coulomb
collisions and therefore, even in the square-well approximation we retain the
s dependence of the distribution function. We note that in a boundary layer
analysis the distribution function, when expressed as a function of the con-
stants of motion, is not constant along field lines. In the region of veloci-
ty space under consideration the higher order angular derivatives of the
distribution function are dominant in the expression for the collision oper-

ator(5) so that Eq. (4) takes the form

2
v"g_gz;%.g_g.u-;bi_;, (5)
where T = 4ne? 1n a/M2, g(V) = [ d°v' f(V')|V - V'] is the Rosenbluth po-
tential, and ¢z = gx(v) represents the boundary contour in velocity space sepa-
rating trapped from passing particles. Particle sources do not appear in Eq.
(5) since they act on a much slower time scale. In circumstances of interest
to our problem (n << 1, <I>b/Tp > 1, Ry > 1),(2) we can approximately write
ag/ov = n[(1 - vi/sz) x erf(v/vy) + 1/vw (vt/v) exp(-vz/v%)] in the central
cell (vt = (2T1C/M)1/2) and 3g/av = n in the thermal barrier. Then, we obtain

the following boundary layer equations



2

v"~%§ = E{g-%% (1 - CE) gzg ;
(6)
of _ nr 2, 3°f
V) 55 © E;g-(l - ) ;EE-- VeyF

for the central cell and thermal barrier, respectively. In the central cell
and in the barrier particles diffuse around the boundary contour while stream-
ing along field lines but in the thermal barrier region an additional alter-
ation of the distribution function occurs because of the strong pumping. The
pumping mechanism eliminates particles from the trapped and boundary layer
region in the thermal barrier and places them into the bulk of the passing
region where they leak to the central cell in a bounce time. We assume that
Vex 1s constant over the barrier phase space. A sketch of the distribution
function for ions in the central cell and barrier is given in Fig. 2. Indi-
cated are the type of distortions expected because of boundary layer effects.
The boundary layer width is Az ~ AL/2 (x = vs/wb). In the central cell we ne-
glect the influence of the plug loss-boundary. In the thermal barrier veloci-
ty space we assume a separable boundary contour i = g, = constant(z) and we
neglect that part of the trapping not due to pitch-angle scattering which

occurs through a small boundary layer in v The boundary contours in veloci-

e
ty space at the central cell and barrier are then defined by zx = Le and

Tk = Tp, V 3 [Zéb/M]l/z, respectively, where 1 - ci = Rgl = Bo/Bpaxp and
2 _ -1 -1 (2)
1 - Zp = Ry (1 + ¢b/Tp) .
Next, we define the boundary layer variables x = (z - %) /(D172 and
z = s/L where D = 1/n, 3g/3v [(1 - cf)/Z], n, = density at the cell midplane,

A= velwpy, vg = nor/v3, wp = Vg, /L and L = cell Tength. Thus we may write Egs.
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(6) in the form

2
central cell: %;-= 3—% ,
X
thermal barrier: KL azf - ~f
. 97 3_)(2- Y ’

(7)

(8)

where y = “cx/“b' Since A << 1 we consider the boundaries in x to be effec-

tively at t=; z varies from O to 1 in each of the traps. It is assumed that

A2 ¢ 1 - g, in the barrier region. The sub-boundary layers of width Az ~ A

due to the lower order angular derivatives of the distribution function are

negligible since they extend over a much smaller region in velocity space than

the boundary layers considered here.

In principle, for our tandem mirror model the boundary layers due to the

trapped central cell particles (with distribution function f = t, + fj, ¢ > 0;

f =1t +fy, ¢ <0), passing central cell particles (f = p, + f,, ¢ > 0;

f=p_+ f,, £ <0), particles in the right-side thermal barrier (f = r,

o’

t>0; f=2, £ <0) and particles in the left-side thermal barrier (f = r

t>0; f=2", ¢z <0) need to be considered (see Fig. 3). The isotropic

component of the distribution function in the central cell is

- 372 3
fo = (nc/n / Vi

these boundary layer problems are decoupled and then we need only solve the

following system of equations,

) exp(-vz/vi). Because of the symmetry of the device, half of
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—— = 32t+ (9)
z 52

2
3p+_ ap+
T ’
9z axz
ar _ oy
Z 72"
ax
2
%:_9_.2&+ Y'Q'
X

This system of partial differential equations is coupled through the boundary
conditions, which will be given shortly. The effects of trapped and passing
particles can be superposed due to the Tinearity of the problem; as an
example, the boundary layer solution in the central cell is f = t, + p, + f,,
for ¢z > 0.

There are three types of boundary conditions which apply to Eqs. (9):
» continuity of the solution at the barrier peaks (B = Bpaxp)s
« reflection of particles at the plug end of the barrier region and the

barrier peaks,

- symmetry of the central cell and the entire device.
As indicated above the symmetry conditions decouple the various boundary layer
problems so that only the four problems given in Eqs. (9) are independent,
namely, the central cell trapped and passing boundary layers and the vy 2 0
boundary layer problems in the right-side barrier cell (Fig. 3). Thus, the

following boundary conditions can be written,

11



t+(X’0) = t+(X,l) ] X < 0 (10)
t,(x,0) =0, x>0
P+(x,0) = py(x,1) , x <0
p+(x,0) = 2(x,0) - f, , x>0
r(x,0) = 2(x,0) , X <0
r(x,0) = ty(x,1) + py(x,1) + f; , x>0
rix,1) = &(x,1) . x <0
Moreover, the solutions should have the following asymptotic behavior,
t (x) — 0, (11)

+

t+(x) — g X+ C, ,

o X t
X) — X+c._ ,

p+( ) x++: op D

p (X) — O s

- Krm o

r(x) — o x + Cp s
X+oo

r(x) — 0,
X>+=c0

— +
2(x) — o X+ C,,
X >0

2(x) — 0
X¥*=0c0

where the o and c constants are determined by the results of the bulk analy-
sis.(Z) The linear asymptotic 1imits derive from the z independence of the
distribution function far from the boundary layer in the central cell and from
the condition of a large central cell (n << 1). The effect of the particles

pumped into the passing region of the device is an 0(n) effect which is ne-

12



glected. The system of equations (9) together with the conditions (10) and
(11) form a mixed boundary value problem which can be reduced to a system of
functional equations in the complex plane of the Wiener-Hopf type.(G) The so-
Tution to the problem must have a continuous derivative at the boundary
contours in the velocity spaces of the central cell and barrier regions.

Now we introduce the Fourier transforms

T(k,z) = f_m exp(ikx) t (r,z) dx , (12)
P(k,z) = fjw exp(ikx) p (x,z) dx ,
R(k,z) = ffw exp(ikx) r(x,z) dx ,
L(k,z) = foo exp(ikx) &(x,z) dx ,

-0

where k = o + it. The transformed system of equations (9) is then

%;-= -sz(k,z) , (13)
%;-= -kzP(k,z) ,

R -t®+ v Rk,

L+ Lk

whose solutions are

13



T(k,2) = T(k,0) exp(-k%z) , (14)
P(k,2) = P(k,0) exp(-k®2) ,

R(k,z) = R(k,0) expl-(k? + V)z] ,

L(k,2) = L(k,1) expl(k® + y)(z - 1)] .

Before applying the boundary conditions given in Eqs. (10) we need to define
the one-sided Fourier transforms

=<}

J exp(ikx) g{x,z) dx ,
0

G+(k,z)

(15)
0

G (k,z) = exp(ikx) g(x,z) dx ,

|
—

- 00

for the functions g = t,, p,, r, 2 where G = T, P, R, L. According to the
asymptotic limits of Eqs. (11) T(k,z), P (k,z), R™(k,z) and L (k,z) are
entire functions; T (k,z) is an analytic function for t < 0; and P¥(k,z),
R¥(k,z) and L*(k,z) are analytic functions for t > O. Then, substituting the
transformed boundary conditions from Eqs. (10) into the system of equations

(14) we obtain

T = W, (16)
PY - (L7 - F) exp(-k2) = -WP™

LY - (1t + Pt 4 F;) expl-2(kZ + y)] = -UL™

RE - T - PP - Fp = R+ L7,

14



where W(k) = 1 - exp(-kz) is an entire function with a denumerable infinity of

zeros along the diagonals of the complex k-plane and a double zero at the

origin; F;(k) ifo/k is an analytic function for t > 0; and U(k) =
1 - exp[-2(kZ + y)] is an entire function with a denumerable infinity of
simple zeros. The unknown functions in Eqs. (16) are Tt = T¥(k,1),
Pt = pi(k,1), Rt = RE(k,0) and Lt = L¥(k,0). We note that the first equation
is defined in the lower-half complex k-plane whereas the remaining equations
of the system are defined in the upper-half plane. The boundary layer
problem, therefore, has been converted into a system of coupled Wiener-Hopf
equations along a boundary line in phase space whose solution yields the
desired distribution function. The first equation of the system of equations
(16), which corresponds to the boundary layer for the central cell trapped
particles, was solved by Baldwin, Cordey and Watson(s) within the boundary
layer analysis for a simple mirror.

In a tandem mirror with a "large" central cell (n << 1) the system of
equations (16) may be expanded in terms of the small quantity n and to lowest
order we find

-uL

L - F; exp[-2(k2 + v)]
(17)

which are defined for T > 0.

3. THERMAL BARRIER DISTRIBUTION FUNCTION

The thermal barrier particles are reflected by the plug whereupon they

reverse their direction of motion. Therefore, we can consider the barrier

15



region as a cell of length 2L, with a source of particles entering from the

central cell.

This source is isotropic to lowest order in n (n << 1). One

expects that for the deeply trapped particles the distribution function will

remain constant along field lines, i.e. 8f/3z (x+-=) > 0 whereas for the

passing particles the distribution function will remain isotropic, i.e.

2£/ax2 (xrtw) > 0, away from the boundary tayer. Thus the asymptotic behavior

in the boundary layer analysis matches the bulk analysis resu]ts.(Z) Hence,

the boundary layer problem for the thermal barrier of a tandem mirror (see

Fig. 4) with a large central cell can be formulated as

_ ¢
o

Wl Q
N|-H

XE(_oo’oo)

1

f(x,0)

f(x,0)

- yf(x,z) ,
. ze[0,1] ,
f(x,1) , x <0,
f x>0,
0

Yy X

f(x,1) — e R
X+=oo

f(x,1) — constant ,
X+

with the boundary layer variables x = (z - cb)/(DA)l/2 and z
D= (1-120)/2, &= vg/up, vg = /v,
(assumed symmetry-plane of the cell), w, =

full bounce and Ly = barrier length.

(18)

= s/2Lb where

n, = density of the barrier midplane
]

vz;b/ZLb = frequency for one barrier

The statement of the problem given in

Eqs. (18) deals with both barrier boundary layers (v" > 0) at once.

16
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This mixed boundary value problem can be reduced to a Wiener-Hopf

equation (equivalent to Eqs. (17)) of the form

FHk) - YH(K) = -V(K)F (k) , (19)

which is defined on the strip te(0,vy ), oe(-»,») of the complex k-plane; the

function

if
Yk = 2 expl-(k% + 1, (20)
is analytic for v > 0; and
VK) = 1 - expl-(kZ + )T , (21)

is an entire function with a denumerable infinity of simple zeros at

t 2 2 2.1/4 .

kon = [y~ + 47°n"] / exp [ (t %-+ ¢mn)1] , (22)
where ¢ . = ((-1)"/2) arctan (2mn/vy), m = 0, 1, and ne[0,«]. The locus of
these zeros in the complex k-plane is indicated in Fig. 5 for v > 0. We can

write

t _ + _
ImK = T +/y Py (23)
2 2 _ 22,2 .
where (an -1)" =1+ 4+"n"/Y". MWe note that the change in the argument of

the function V(k) when passing along some horizontal path in the k-plane is

18
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Fig. 5. Sketch of the complex k-plane (k =g+ iT) rgpresent1nq

the Tocus of the zeros

of V(k) = 1 - exp[-(k¢ + v)]} with

T > 0. Indicated are also the strip of definition of Eq.
(19), te(0,/4 ), oe(-=,») and the contours of integration
for the functions wi(k) given in Eq. (31) of the text.
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o+ T
AngH' = 321(n + 1) , | (24)

-+ g7
when Te(Ti,T:+1) with nefo,=] and

o+ i1
A arg V(K) | -0, (25)

-+ T

when 0 < |t| < |1,]. However, when y » 0, we obtain

lim = +/m , (26)

y+0
and Eq. (24) applies for the whole k-plane. Therefore when y > 0, Eq. (25) is
never satisfied. Then, the function V(k) is analytic and non-zero in the
strip 7e(0,/y ) and V(k) » +1 as o » t= in the strip. In conclusion, Eq. (21)
defines a function such that it is possible to select a branch of 1n V(k)
which does not vary along the strip te(0,7/y ). The nature of V(k) as well as
the fact that the periodicity conditions (x < 0) are imposed on the decaying
part of the boundary layer distribution function are the main differences of
this problem from that of the boundary layer analysis in a simple mirror(5) or
equivalent situations.(7’8)

The functions

F*' = F(k,1) = [ exp(ikx) f(x,1) dx ,
0
(27)
L 0
F” =F (k,1) = [ exp(ikx) f(x,1) dx ,

20



are analytic for v > 0 and © < Yy , respectively. In the strip 1¢(0,v7)

-]

F(k) = FT (k) + F (k) = [ exp(ikx) f(x) dx .

- 00

(28)

Now, we need to find V'(k) analytic and non-zero for t > 0 and V™ (k)

analytic and non-zero for t < vy, such that V(k) = V-{k)/V*(k)(9:10) and for

that we consider the branch of

p(k) = 1n {1 - exp[—(k2 + )1},

(29)
which is analytic and satisfies
_k2
(k) — ole ™ ) , (30)
g3t
in the strip te(0,vy ). Then, the function y(k) can be separated into the
difference form
+
o+
W0 = T - ) =t M2l dz
..oo+0+
(31)
_ 1 fw+/7 v(iz) dz
1 oz - k °
_oo+/«7
where 0% = +e (e = positive infinitesimal) and /¥ ~ = v¥ - €. From the con-

vergence of the integrals for v (k) and y™(k) it follows that both are bounded
for large k in their respective regions of analyticity. Hence, using Egs.
(29) and (31) we obtain

21



vE(K) = exp[-vE(K)T , (32)

so that Eq. (19) takes the form

vt - vhy = ovEr (33)

Next, we define a function J(k) in the strip te(o0,/y ) as

J(k) = vH(Ft - vY)y = .y, (34)

where the second part of the equation is defined and is analytic for t > 0 and
the third part is defined and is analytic for t < ¥y. Therefore, by analytic
continuation we can define J(k) over the whole k-plane and J(k) will be an
entire function whose order may be determined by the asymptotic form of Eq.
(34). We can show by integration by parts that F7(k) ~o(k~l) as |k| + =,

T < 0 and also

o 2
- 1 Y g {1 - exp[-(z° + y)]} .
‘P(k)—mf _ Z_k dZ |k|+°°
-otvyY <0
(35)
3
o[exp(-v), >
- 2] i+ 0(k'3) ,
2V k
(11,12)

with ¢(z,s) = zz(s,1,z) where z{(s,a,z) is the Lerch zeta function.
Since [VT(k)] ~ |k|® as |k] » «in v < /¥, and VT(K)F (k) + O for |k| » =

Liouville's theorem gives J(k) = 0.

22



Using the infinite product representation of the entire function
V(k)(13:14) e see that V*(K) has no zeros in the upper-half plane whereas

V7= (k) has a denumerable infinity of zeros at k = k;n (Eq. 22). Then, we obtain

Frik) = YH(k) ,

(36)

F- (k) sk - kI,
mg:n Amn mn

where F7(k) can be different from zero only at the simple zeros k = k;n. The

arbitrary constants {A;,} might be determined by continuity of the solution
(and its derivatives) at the origin of the boundary layer. The solution to
the problem is obtained by doing the Fourier inversion of the results given in

Eq. (36)

if whit . 2
f(x) = 7 dk eXP[-('Ika+ k™ + v)] , x>0,
T etir
(37)
A ot
flx) = § o0 | dk exp(-ikx) 6(k - k7 ), x<o0,
n 27 —eobiT mn

where te(0,/y ). The expression given for the solution in the range x < 0 is
purely formal and it joins the x > 0 result with the tail of the bulk distri-
bution function as x » -,

In the origin of the boundary layer we find
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(0] if exp(-v) fw+1T exp(-kz)
" ~otiT k ’
(38)
f exp(-y) it
of _ 0 2
Xlx=0 = — 7 f—w+ir dk exp(-k®) ,
where te(0,/y ). Integrating Eqs. (38) we obtain
foexp(—y)
f(x=0) = ——2———‘ s
(39)
of i foexp(-y)
ax | x=0 ZVITT
Using Eqs. (39) and integrating Eq. (37) for x > 0 we obtain
1 X
f(x) = f exp(-v)[Ll - 3 erfc ()], x>0. (40)

We can recover the z dependence from the solution to the Fourier transform of

Eq. (18):
F(k,z) = F(k,1) exp[-(kZ + ) (z - 1)] . (41)
Hence, we obtain
(42)
1 oot + _ »
f(x>0,z) = —;-f dk[F (k) + F (k) Jexp{-[ikx + (k" + Y)(z - 1) ]},
-otiT

where 1e(0,/y ). The right side of Eq. (42) can be evaluated by deforming the
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integration path in the lower-half of the complex k-plane. There is no
contribution from F~(k) which is analytic in the lower-half plane. Therefore,

at x =0

if) exp(-yz) otit N exp(-zkz)

f(x=0,z) =

2w —eobit k ’
(43)
f_ exp(-yz) otit
-Efggizl =0 = —51—3ﬁ;————— / dk exp(-zkz) ,
-otiT
with te(0,vy ); and integrating we obtain,
fy exp(-vz)
f(x=0,z) =,
(44)
af(x,2) fy expl-vz)
X x=0 ZJE
Hence, after integration of Eq. (42) and using Eqs. (44) we obtain
f(x,z) = f exp(-yz) [1 --% erfc ()], x>0 . (45)

2Vz

This solution satisfies the equation and conditions given in Eqs. (18). Near
the origin the solution (45) behaves 1ike

fs exp(-yz)

f(x,z) — (x + /7z) . (46)

x>0 2Vnz

A sketch of how the distribution function evolves along field lines is

given in Fig. 6. Small angle collisions smooth out the distribution function
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TRAPPED BOUNDARY PASSING

LAYER (L)
z=0 f,

f

{ ].~ y fo
| z=1

l‘

|

{

i

g gb i

I___xilz_.l

.Fig. 6. Sketch of the variation of the barrier distribution
function along field Tines for strong pumping (g ~ 1).
z = 0 corresponds to the barrier peak for particles enter-
ing the barrier from the central cell and z = 1 corre-
sponds to the barrier peak for particles leaving the
barrier to the central cell. The variation in the iso-
tropic level, Afo/fo ~ v, is indicated. (y = ch/wb

and x = vs/wb).
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near the boundary contour in velocity space. In a bulk analysis the assumed
boundary condition is f(x=0,z) = f, and this maintains a higher distribution
function Tevel at the passing region of the thermal barrier than there should
be. As a result of the boundary layer analysis the distribution function at
the boundary contour is lower than f, and the asymptotic level of the passing
distribution function is lowered because of the proper matching at the bound-
ary layer. We note that this effect is different from what happens in a
simple mirror where a higher asymptotic level is obtained as a consequence of
boundary layer effects.(5’7’8)

4. ION TRAPPING RATE

The time rate of change of the barrier particle density due to the net

flow across the boundary contour in velocity space is

[ dy [ 8 & e

i, = , (47)
t [dy S8

where dy is the differential magnetic flux; ds is the field line differential
length; [ dy [ ds/B = barrier cell volume enclosed by the last flux surface
containing plasma; and the velocity space integration extends from x = 0 to «
and v > v, = (2¢b/M)1/2. Assuming that the conditions are sufficiently uni-
form over the cross-section and length of the barrier so that we can refer the

calculation to the cell as a whole, we have

1
§p= - dz [dvclftv,, D1, (48)
0

where d3v = 2mv8 dvdz. Since z passes over a full bounce of the barrier, for

each z-point in real space the velocity space integral extends over v, ? 0 for
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ze[0,1/2] and v, < 0 for ze[1/2,1]. Then, substituting the collision operator

from Eq. (18) into Eq. (48) we obtain

1 o -
jp=-f dz | 2wl dv w. /% 2fv.x,2) . .
t b X _
° Yo x=0

Before proceeding with the integration we will express the isotropic part
of the passing distribution function

exp(-vz/v%)
fo * Ne 3/2 3 ’

w Vt

(50)

(where the central cell potential is taken as zero and Vg = (ZTiC/M)l/Z) in
terms of the barrier density at the midplane. By the continuity of the pass-
ing distribution function for particles with v, > 0 between the central cell

midplane and the barrier at the barrier peak we can write

-v2/vi
~npn &

fo = MM =3m—s (51)
k] Vt

where n = density of particles at the barrier peak moving with v, > 0 into the

barrier and

® ®
b (“_Tg_)l/z exp (s=—) . (52)
ic

A = 2R

14

Tic
Now we can obtain the barrier density profile along field lines from

ny(z) = J v flv,zc,z) , (53)
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where the integral extends over the part of velocity space with v, ? 0 for
ze[0,1/2] and v, <0 for ze[1/2,1]. Using Eq. (45) we may write Eq. (53)

approximately as
ny(2) = [ &v £ (v) expl-v(v)z] . (54)

The density along field lines is

nb(s) = [nb(z) + nb(l - Z)]z=s/2Lb , (55)
and for yz <1 << ¢,/T;. we obtain
~ “YoS s
ny(s) = n{exp(itB—J + exp[-Yo(l - ?E—J]} , (56)

with v, = v(vg). The expression (56) is the result of integrating (54) using
Eq. (51). From Eq. (56) we find
"o

Y Y. °? (57)
2 exp(- §9J coshﬂzg)

=?
n

where np = nb(s=Lb/2) = density at the bottom of the barrier well. The

barrier density profile along field lines may then be written as

exp(—yos/ZLb) + exp[-yo(l - s/ZLb)]

0 { 2 exp(-Yo/Z) cosh(Yo/4) (58)

nb(s) = Ny

Next we use Eqs. (18), (44) and (51) to evaluate Eq. (49) obtaining (for

vz <1 << op/Tie),
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1/2
) Npo » (59)

Jg = Wvg epety
where ji = ion trapping rate in the thermal barrier for strong pumping
(g ~1);

exp(yo/Z) erf /?;

Y = s (60)
4/?; cosh(Yo/4)

is a factor that takes into account the variation of the barrier distribution
function along field lines; v, = Vex/ s wy = wplvg) = Voip/2Lly is the bounce

frequency for boundary layer particles; Vo = (2®b/M)1/2; Lp = barrier length;

(v,) 2R () o) (61)
v = v (v Ry l+) = ’
s eff s 0 b Tp (ZOb/“)Z

(6, = arccos tp) is an effective collision frequency for particles to pitch-
angle scatter out of the passing barrier region; vs(vo) = vZ me* 1n 2
nbo/Ml/2 Qg/z; B = (Tic/ﬁbéb)l/zg and np, s the density at the bottom of the
barrier. Therefore, in the case of strong pumping in the barrier (g ~ 1), the
barrier particles are being trapped at a rate

Yt T IP(\)s eff “’0)1/2 ' (62)
This frequency takes into account the frequency for particles to scatter over
the passing region of velocity space, the trapping due to the finite steepen-
ing of the distribution function at the boundary contour of velocity space,
and the corrections due to the variation of the distribution function along

field 1ines. 1In cases of interest (y, < 1),
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pox—— (1 +22) . (63)

For strong pumping situations (g ~ 1) the ion trapping rate is given by Eq.
(69) and this expression sets a 1imit for the result given in Eq. (1) which is
valid for a less strong pumping g > 2.(2)

5. CONCLUSION

A boundary layer analysis of the particle distribution function in a
tandem mirror with thermal barriers near the boundary contours on velocity
space has been presented in order to obtain an expression for the ijon trapping
rate in a thermal barrier in the 1imit of strong pumping (filling ratios
g ~ 1). This result sets an upper bound to the value that the barrier ion
trapping rate as given by a classical ana]ysis(Z) can attain when the ion
pumping rate is high enough to almost totally remove trapped particles from
the thermal barrier. The expression obtained in Eq. (59) complements the
result of Ref. 2 (as given in Eqs. (1) and (2) of this work) which is valid

for filling ratios g > 2.
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