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Abstract

The solution of the heat conduction problem in moving boundary conditions
is very important in predicting accurate thermal behavior of materials when
very high energy deposition is expected. Such high energy fluxes are
encountered on first wall materials and other components in fusion reactors.
A numerical method has been developed to solve this problem by the use of the
Green's function. A comparison is made between this method and a finite
difference one. The comparison in the finite difference method is made with
and without the variation of the thermophysical properties with temperature.
The agreement between the Green's function and the finite difference method

is found to be very good.



A. Introduction

The rapid heating of fusion first wall components either due to x-ray and
ion debris deposition in ICF reactors or during a plasma dump in magnetic
fusion reactors may lead to melting and subsequently to intense evaporation.
As a result, an accurate analysis of this heat conduction problem requires the
solution of a two moving boundaries problem. A moving face where vaporization
occurs becomes one boundary in addition to the moving internal boundary be-
tween the liquid and solid. Because of the moving boundaries and the differ-
ence between the properties of the 1iquid and solid states of the same materi-
al, the distribution is nonlinear.

The solution of the heat conduction equation in moving boundary con-
ditions is presented by the use of the Green's function method. A comparison
between the Green's function solution and a finite difference solution de-
veloped in previous studies(3) is also presented. This comparison with finite
difference methods is made with and without the variation of the thermal
properties with temperature.

B. Formulation of the Heat Conduction Problem

Consider the first wall as a semi-infinite medium. This is reasonable in
view of the short heat penetration depth during a plasma disruption or target
debris deposition in ICF reactors. Under a heat flux F(t), the temperature

distribution T(x,t) must then satisfy the heat conduction equation:

a7 .
pC 5% - VekVT = q(x,t) (1)

where: p = density

[}
1]

specific heat



k

thermal conductivity
&(x,ﬁ) = volumetric energy deposition rate.
A11 the thermophysical properties are functions of the local temperature.
The boundary conditions are that T(x,t) » Thack = constant for large depth

distances x, and on the surface x = 0,

4
0

FlE) = k(T)) 24 o(T )L VIT,) + oe(T) - T2) (@)
where Tv(t) = T(0,t), L, is the heat of vaporization, and v(T,) is the veloci-
ty of the receding surface. This velocity is a function of the instantaneous
surface temperature and other materials parameters. Furthermore, the radi-
ative heat transfer term contains the Stefan-Boltzmann constant, o, € is the
emissivity of first wall material, and the surface temperature of the cold
portion of the first wall is T,. For the radiative heat loss, it is assumed
that parts of the first wall (mainly in magnetic fusion reactors) not struck
by the plasma dump remain at the steady state temperature T,. In ICF reactors
this term goes to zero since a microexplosion reaction is assumed to be sym-
metrical.

The general heat-conduction equation with constant thermal properties can
be written as:

2

oc 2 - kv?T = 4(x,t) (3)

ot

where p, ¢, k are independent of temperature. For a semi-infinite medium, the

Green's function is given by:



- (x-x')? - (xtx')?
G(X,t,X|,t') = 1 ZFa(‘t—t ) + m} (4)
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where a is the thermal diffusivity. The general solution for the temperature

rise due to any deposition function is given by(4)

T = [ S Alx LG, B, E) dX'dE (5)
If the heating is continued long enough and at a sufficiently high rate,
significant vaporization may occur from the surface assuming that the melting
material stays in place. It is necessary to account for the receding surface
at the interface between vapor and solid or liquid. This can be done by

introducing a moving coordinate system:
z(t) = x - s(t) (6)

for which the surface always remains at z = 0. Transforming the heat con-

duction Eqs. (1) or (3) to this moving frame gives

pc3L + 2L . 82y - vuvT = 4lz,1) )
where %%’= - d3£t) = - it °

v(t) = velocity of the receding surface. Substituting Eq. (8) into Eq. (7)

gives



oT

T .
T ocv(t) =z " VekVT = qglz,t) . (9)

pC
The main difference in this equation is that it includes the convective term
vit) %;-. This term is important in the case of intensive evaporation if we
are to obtain accurate calculations of the temperature. The velocity of the
receding surface, i.e. v(t), is a highly nonlinear function of temperature.

The surface boundary condition is then given by

T
9z |z=0

4

F(t) = -k o

+ oL v(t) + oe(Th - T2) (10)
where: v(t) is again the velocity of the receding surface,
F(t) is the incident heat flux.

Equation (9) can be written as

aT(z,t)

oc 3T(2,t) _ yo?7(2,t) = 4lz,t) + pcv(t) 57

{z .oan

The right-hand side of Eq. (11) consists of the volumetric energy depo-
sition function and a convective term pcv(t) %;-which could be treated as a

part of the deposition function. Then Eq. (11) can be written as

pc ALY ye1(z,1) = §'(2,0) (12)
where q'(z,t) = qlz,t) + pcv(t) EI%EAEQ-. (13)

The solution for the temperature rise due to the deposition function given by

Eq. (13) and boundary condition in Eq. (10) is given by(s)



T(z,t) = [ [ i §'(2',0)6(z,t,2',t') dz'dt’

t' x' P
. (14)
- qf dt' G(z,t,0,t') EILQLE_l .
tl oz
From Eq. (10) the gradient of the temperature can be represented by
aT(0,t) _ 4 4
k =52 = oL v(t) + oe(T - T ) - F(t) . (15)
Substituting Eqs. (15) and (13) into Eq. (14) yields
T(z,t) =%—C-f [ (a{z',t") + pcv(t')VT(2',t")) G(z,t,2',t") dz'dt'
t' x!'
(16)

1 . . . PR |
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where: VT(z,t) = EIéézil
z
T, = T(0,t) .

The difficulty in calculating the temperature rise from Eq. (16) is that
both v(t) and vT(z,t) are functions of the current temperatures which are
unknown. This is also true for the radiative heat transfer term in the second
integral of Eq. (16). Although calculating the surface velocity, v(t), re-
quires only the knowledge of the surface temperature, the term vT(z,t) re-
quires the current temperature distribution throughout the entire space.

A good approximation for the solution of Eq. (16) is to use numerical
techniques developed in Ref. (2). Assuming that we divide space and time into

many divisions, the solution for the temperature increase is given by:
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n-1 o
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where: T(x,,t,) is the temperature at any point x, and time t,
Wy is a weighting factor depending on the method of integration
Aty incremental time.
In this last integral the Green's function possesses a singularity at
t% >t To avoid this singularity, first we integrate from t; = 0 up to

t; = t,_1 and the Tast term in this integration is treated separately. Also

At << At (18)
and ti1 =t - At . (19)
It can be shown that‘l)
 (x=x?
Lim —— e fae L s(x - x') (20)
e+0 2Vmace

where §(x - x') is the cronial §-function. Tﬁe last term of the first inte-

gral in Eq. (17) can then be written as



< 1 pd ' ' \ ' 1 . 1 1
WAt £ EE{q(X y63) + pev(E5)VT(x',t) ] t1Tt Glx,,t .x",ts)
i n

oo

= w ot {)%E—[&(x',t%) +pev (£t T[60x - x') + 6(x + x)] &' .

Also note that

[ fix',t)8{x - x') dx' = f(x,t)

[ f(x',t)8(x + x') dx'

f(‘Xst) .

Then substituting Eq. (20) in Eq. (17) the temperature rise in Eq. (17)

reduces to:

t

-1
t!zo Ati[F(t;)
! (21)

_ 1 e 1
T(x,t) = oo+ waty EE{q(xn’tn) + pcv(tn)VT(xn,tn)] t e

] 4 ] 4 1
- oL v(ts) - oe(T (0,t) - T )JG(x .t ,0,t;)

2
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Zhere Z dx' a(x',tn)a(xn - x') = &(xn,tn) and

é dx' VT(x',tn)G(xn - x"') = ¥T(x,,t,) since 6(-xn,tn) =0 and VT(-xn,tn) = 0.
Again the R.H.S. of Eq. (21) contains terms which are functions of the

current unknown temperature. These can be approximated by using the tempera-

tures from the previous time step which are known. By choosing the increments

between time steps small enough, the solution of Eq. (21) yields an accurate

approximation to the integral Eq. (16). These choices always involve a

compromise between accuracy and computer time.




The solution of Eq. (21) is implemented in the computer code A*THERMAL.(Z)
This equation can be used to determine the thermal response of fusion first
walls both in inertial and in magnetic confinement reactors due to any kind of
incident radiation, such as laser, x-rays, heat flux or ions (1ight or heavy)
for inertial confinement and plasma ions in magnetic confinement reactors.

C. Test Case

To test the accuracy of the solution for the moving boundary problem de-
veloped in this study, a comparison with the finite difference methods is
made. An example of the plasma disruption cases(3) is considered where 400
J/cm2 is deposited in a carbon first wall in 20 ms. The comparison is made
between the finite difference with and without the variations of the thermal
properties with temperature. In the Green's function methods it is assumed
that the thermal properties are constant and equal to those of the finite dif-
ference with constant properties. Perturbation methods to account for the
variation of thermal properties with temperature in the Green's function
methods are developed in Ref. (1). A solution for the two moving boundaries
problem where the material could change phase beside the surface moving bound-
ary using the Green's function is also contained in the computer code A*THERMAL.

D. Results and Discussion

The surface temperature as a function of the deposition time for the
three methods, i.e. finite difference with variable properties, finite differ-
ence with constant properties, and the Green's function is shown in Fig. 1.
The agreement between the Green's function and the finite difference with
constant properties is very good as is seen from Fig. 2. The little differ-
ence between the two methods, which is less than 3%, could be explained by the

size of the time step chosen for each method. The size of the time step for
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Green's function problem is much larger than that for finite difference. This
is chosen to keep the computer cost for the two prob]emstre1ative1y the same.
The Green's function method required more calculations than the finite differ-
ence but with a much Targer time step. The effect of the variation of thermal
properties on the surface temperature can also be seen from Fig. 1. The
constant thermal properties chosen for the Green's function and the finite
difference was an average over a high temperature range. Because the lower
the temperature, the higher the conductivity for carbon, the finite difference
with variable properties has lower temperature than the other two methods
either at earlier time in the pulse or at longer times after the end of the
disruption.

The velocity of the receding surface, v(t), as a function of time for the
three methods of calculation is shown in Fig. 3. The lower surface velocity
at earlier times for the finite difference with variable properties is due to
the lower surface temperature because of higher thermal conductivity. The
difference between the finite difference with constant properties and the
Green's function is illustrated in Fig. 4. The agreement between the two
methods is considered very good. The slightly higher velocity predicted by
the Green's function is due to the slightly higher surface temperature.
Because of the highly nonlinear dependence of the surface velocity on the
surface temperature, the difference between the surface velocity calculation
by the Green's function and by the finite difference methods is larger than
the difference in calculating the surface temperature.

The amount of the total material vaporized can be estimated by inte-
grating the velocity of the receding surface over the pulse duration time.

Figure 5 shows the amount of carbon vaporized as calculated by the three

11
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different methods. The good agreement between both the finite difference
methods, i.e. with and without the variation of thermal properties, is not be-
cause of the insignificance of the variation of the thermal properties with
temperature, but rather because of the chosen value for the constant proper-
ties. This can be seen from Fig. 4 where although the velocity of the surface
for the variable properties is lower at earlier times of the pulse, it becomes
higher than the velocity for the constant properties near the end of the
pulse. This has the effect of producing almost equal material vaporized from
carbon for these two methods. On the other hand, Fig. 6 shows about 10%
higher total material vaporized by the Green's function methods than the
finite difference with constant properties. Although the surface temperature
calculated using the Green's function is only slightly higher than that calcu-
Jated by the finite difference and even lower after the end of the disruption
time, the strong dependence of the evaporated material on the surface tempera-
ture and the integration of the surface velocity over all the pulse duration
causes larger differences. After the end of the pulse the temperature drops
very fast to where there is no significant vaporization occuring. So the
slightly lower surface temperature calculated by the Green's function after
the end of the pulse will not affect the total material evaporated.

The temperature distribution inside the bulk of the first wall material
is also calculated using the three methods. Figures 7 through 10 show the
temperature distribution of carbon at distance x = 14 and 70 microns from the
surface. Because of the Tower temperature inside the material the difference
(at x = 14 and 70 microns) between the finite difference with variable proper-
ties is larger than the difference between the other two methods. The larger

the distance into the material the lower the temperature and the larger the

15
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effect of the thermal properties. The agreement between Green's function and
the finite difference with constant properties at larger distances into carbon
is still very good as can be seen from Figs. 8 and 10.

E. Conclusions

A method has been developed to solve the heat conduction problem with
moving boundaries and other boundary conditions by the use of the Green's
function. The agreement of this solution with the method of the finite dif-
ference to solve the same problem is seen to be very good. The variation of
the thermal properties with temperature can be very important in calculating
accurate temperatures, especially in the case of very high energy depositions
or if the material undergoes a change of phase. This is because of the larger
differences between the solid and liquid phase properties. Because of the
highly nonlinear dependence of the receding surface velocity on the surface
temperature, a small change in calculating the surface temperature could
result in large differences in the surface velocity and consequently larger
differences in calculating the total material removed from the surface by

evaporation.
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