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Abstract

A variational calculation of the trapping rate and trapped ion density in
thermal barriers is presented. The effects of diffusion in energy as well as
pitch angle scattering are retained. The variational formulation uses the
actual trapped-passing boundary in velocity space. The boundary condition is
that the trapped jon distribution function matches the passing ion distri-
bution function, which is taken to be a Maxwellian, on the boundary. The
results compare well with two-dimensional Fokker-Planck code calculations by

Futch and LoDestro.



1. Introduction

The thermal barrier({l) is a recently introduced concept in tandem
mirrors. It is a region of depressed potential between the central cell and
the plug; the thermal barrier reduces the rate of energy transfer(2) between
the plug and central cell electrons and thereby allows one to heat the plug
electrons without excessive heating of the central cell electrons.

A fundamental problem is the trapping of ions in thermal barriers.
Trapped ions increase the electron density in the thermal barrier (through
quasi-neutrality) and thereby reduce the magnitude of the potential depres-
sion; this reduces the effectiveness of the thermal barrier. In order to re-
move the trapped ions, a "pumping" mechanism is required. One such method for
pumping the thermal barrier is to inject a neutral beam at the appropriate
energy and ang]e.(3) Charge exchange between the trapped ions and the in-
jected neutral atoms removes trapped ions and replaces them with "passing"
(i.e., they can pass back into the central cell) jons. Alternative techniques
using drift orbits,(4’5) or induced radial losses of the trapped ions by time-
varying fields(6) have also been proposed. In a previous paper(7) we at-
tempted to set up a model for the drift pumping case. In this paper we treat
the neutral beam pumping case.

Numerical calculations of the trapping rate in thermal barriers have been
done by Futch and LoDestro(B) using Fokker-Planck codes. Recently Carrera and
Ca]]en(g) have given an analytical calculation of the trapping rate using a
pitch-angle scattering collision operator; diffusion in energy was neglected.
In this paper we present an alternative analytical calculation of the trapping
rate; it is based upon a variational method,(lo) extended to the non-

Maxwellian field particle case. It allows a better treatment of the boundary



condition and includes the effect of energy diffusion. The results are
generally in good agreement with the numerical results in both the high and
low barrier mirror ratio cases.

2. Formulation of the Problem

We model the magnetic field and the potential in the thermal barrier as a
square well, as shown in Fig. 1. The boundary in velocity space between ions
which are trapped in the thermal barrier and ions which can pass back into the

central cell (i.e., "passing" ions) is shown in Fig. 2. This boundary is

given by
2 2 2
vt Vl(l - Rb) - V¢b =0 (2.1)
2 2 )

and Vys v, are measured at the bottom of the barrier. Here, potential and
temperature are measured in units of energy, and m is the ion mass.

The kinetic equation for the trapped ion distribution function, f, is

V.T-vf=0 (2.3)

where T is the diffusion current in velocity space and charge exchange pumping
is modeled as an “"absorption" term with a constant coefficient v, which has

1

units of sec™ . Note that all V operators are in velocity space in this

report. The diffusion current I can be written as

T=R-0.%F . (2.4)
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Fig. 1. Square well model for the thermal barrier.
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Fig. 2. Trapped and passing particles in velocity space.

Fig. 3. The center-shifted coordinate system (V]O,G]O,w) in velocity space.
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A and D are the dynamical frictional and diffusion coefficients, respectively:

4 >
Ay = - He I A g :_Z;X—;Jd%' (2.5)
m v -v'
> 21re4 In A R M 3
B(v) = —~——7————»§ V[ fWIV - V] v . (2.6)
m

For simplicity, we consider only ion-ion collisions. The boundary condition
to be satisfied by f is that it match the distribution function of the passing
ions on the trapped-passing boundary in Fig. 2. The passing ion distribution
function is taken to be a Maxwellian under the assumption that the central
cell is long compared with the thermal barrier. The trapped ion distribution

function is symmetric in v, and has its dominant part in the neighborhood of

[
the trapped-passing boundary.

We assume a separable form for the trapped ion distribution function £f(V),
+
(V) = R(vy)Z(n) (2.7)

where 310 is the vector from the vertex of the boundary hyperbola to a field

point V (see Fig. 3)

> > >
Y10 =V - Vep (2.8)
and n is a second velocity space variable to be determined later. The surface
n = 0 is defined to be the trapped-passing boundary. We define Z(n = 0) = 1.
The boundary condition on f is that it matches the Maxwellian distribution of

the passing particles; this becomes a constraint on the choice of R, which is



taken to be only a function of Vig, the magnitude of 310. On the boundary, we

need

2
-mv©-/2T . -6, /T
R = Ge Pe b®"p

(2.9)

where G is a normalization constant determined by the passing ion density, Nps

in the thermal barrier,

_ m 3/2
G = np(2FT;J H

For large ¢, Ry, H =~ Rb —

The desired expression for R is obtained by letting

V2 > )2 = V2

g 2
= (g * Vyp 10+ Vob T 2V10¥4bCOS 019

and replacing 61g by 61p, the value of 610 on the boundary. One gets

2
-mvi~/2T  -mV,,V,. COS 64, /T
R(Vlo) =ge 1077P g 10%b 1b%7p

1 . Vb ///V¢b 2
where cos 6,, = [- 2= + (=) +R (R -1)].
1b Rb Vio V1o b'"b

6

(2.10)

(2.12)

(2.13)



Substituting Eq. (2.7) and (2.4) into Eq. (2.3), we get
-V« [Z(AR - B-¥R)] + ¥.[RB-¥2] - RZ =0 , (2.14)

which is an equation determining Z. In the expressions for R and § (Eq. (2.5)
and (2.6)) we replace the distribution function f by R(vyg) and integrate only
over the vy > 0 half (including the passing ions) of the phase space. The
justification for this latter assumption is that the relative velocity is
smaller for trépped particles having the same sign for v, and hence this
should be the dominant contribution. We renormalize the transport coef-
ficients to the total ion density, Ny, in the barrier. Hence, replacing f by
Rig in A and § affects only the isotropy of the field particle distribution
function and not the total field particle density, np. Since A and B no
Tonger depend on Z, Eq. (2.14) has been linearized by this assumption. This

allows us to construct a variational principle from Eq. (2.14).

We define
t =M -0 . (2.15)
The vector t is, in general, non-zero since R(vlo) is not Maxwellian, even

centered around 310 = 0. Since A and B are isotropic about le = 0, we can

write

so that Eq. (2.14) becomes



Ve (RB¥Z) - (VR + Ve (tV,.))Z - tVloo$Z =0 . (2.16)

10))

Near the boundary, we expect Vlo-ﬁz to be small. Consequently, we neglect the
last term in Eq. (2.16) in order to put it in self-adjoint (i.e., Sturm-
Liouville) form.

Thus Ve (RD-VZ) - (WR + %-(tvlo))z =0 . (2.17)

3. The Variational Form

We define
L(Z) = [ & {J2-RBVZ + [wR + U= (80,0127 (3.1)

where the integration is over the total trapped particle part of velocity
space. Requiring that L(Z) be stationary with respect to variations in the
function Z yields Eq. (2.17). Before discussing the physical meaning of L(Z),
we first rewrite it in another form. We transform from the spherical coordi-
nates (v10,6810,¥) centered about the vertex of the hyperbola to (vig,n,¢),

where y is the azimuthal angle in velocity space. Then L(Z) can be written as

L(Z) = [ dn {P()(E)P + a(m)z?(m)} (3.2)
where P(n) = [ dvlodw J(vlo,n)$n-Rﬁ-§n (3.3)
q(n) = qo(n) + qq(n) (3.4)



gp(n) = J dvig [ dv Jlvygsn) WR (3.5)
qp(n) = [ dvyg [ dv dvqq,n)¥e (7)) (3.6)
We also define q2(n) = | dv10 [ dy J(vlo,n)t310-§n s (3.7)

which will be used later. Note that g2 involves the term neglected in obtain-
ing Eq. (2.17). Hence we expect gy to be small. Here J(vig,n) is the
Jacobian of the transformation and is given by

= 9yl s
J(vlo,n) = 2vlos1n %10 — (3.8)

Vip»¥
The factor of 2 comes from integrating over both vy > 0 and v, < 0.
The Euler-Lagrange equation which determines Z(n) such that L(Z) in Eq.

(3.2) is stationary is
d dz -
aﬁ{P(n) HEJ - q(n)Z(n) = 0 . (3.9)

We have now obtained an ordinary differential equation from the partial dif-
ferential equation (2.17). Substituting Eq. (3.9) into (3.2), we obtain the
stationary value of L(z)

(dZ)Z

= d dz
L(z) stationary ~ [ dn {P(n) o)t ) g [Pn) HEJ}

= [ dn & {P(n) & 2(m)}



n=n1

dz
= [P(n) Z(n)
[P(n) g Z(n)] 0

where nq is the value of n on the midplane (v" =0). In a well-pumped thermal

barrier, there are few trapped particles at the midplane (v" = 0) so that we

can write

dZ
L(z) stationary ~ -[P(2) dn Z(n)] =0 (3.10)

The trapping current per unit volume can be written as

43
Jipap = | €V Vf (3.11)

since, in equilibrium, the trapping current equals the pumping current. Using

(2.3) and (2.4), this becomes

_ 3 o >
pap = - v Ve(Rf - B.VF) .

We now use (2.7), (2.15), and (2.16) to write this as

Jirap = -/ a3y Ve (ztd ) - RB-Y2) (3.12)
> > n=n
oV v > 2 1
= -f dviqdY xo— X = + (Ztv,, - Rﬁ-VZ)I
10% v, X v 10 =0
n=n1

= - dvygdy I(vyg.n)ine(2th, - RD-VZ)

n=0
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n=n1

az
= J dvygdv J(vyqn) [FneRD-Tn G2 - Zt¥ 5+ 9] n=0

:nl

dZ
= [P(n) - q,(n)Z(n) I
[ n an 2 ] n=0

~ dz
= -{P(n) - q,(n)Z(n)
[ n 2 n)] =0

Since Z(n=0) = 1, we find that

stationary * q,(n=0) . (3.13)
Consequently, the stationary value of L is related to the trapping current.
The second term q,(0) is usually small, since in Eq. (3.7) Vloo$n ~ 0 on the
trapped-passing boundary.

4. The Trial Function

The property of L(Z) being stationary with respect to changes in Z allows
us to obtain an estimate of the trapping rate which is second order in the
error in the trial function. It is necessary, however, that the trial
function satisfy the boundary condition Z = 1 on the trapped-passing boundary.
In order to choose the appropriate tria} function Z, we first consider the
case obtained by Tetting R(vyg) = e 1070 4 Eq. (2.17). Then from Eq.
(2.15) t = 0 and Eq. (2.17) becomes

1 5 ROy sin 65 47 )

1 - WZ =0 (4.1)
V1SN 944 9049 V10 %19

where D‘L is the diffusion coefficient in the direction 1 710. Equation (4.1)

has the approximate solution

11



Z(0;4) = e " (4.2)

/w2
- 10 1
where n = —UI—-(I - 5 (cot 8y 36,0 - 87,)) (099 - 87,) - (4.3)

This solution becomes exact as 6 » CITY

This solution, obtained for a choice of R corresponding to a Maxwellian
distribution centered about 310 = 0, has the property of n = 0 and Z = 1 for
910 = ®1p. as required by the boundary condition. Hence, we choose the form
in Egqs. (4.2) and (4.3) as our trial function to use in L(Z), but retain now
the more exact expression for R in Eq. (2.12) and keep the t term in Eq.
(2.17). The estimate for Jtrap is then obtained from the stationary value of
L (see Eq. (3.13)). Because of the stationary property of L, we can estimate
the trapping rate with better accuracy than that possessed by the trial
function Z.

The diffusion coefficient Dl in Eq. (4.3) is simplified further by taking

the value for a Maxwellian distribution with effective temperature, Taff-

4 n
_2me In A by 1 1 de (x)
D, = ———;2—-——-(7—J VIE»[¢(X) - E;?-(¢(x) - X "HY"J] (4.4)
X 2

where o(x) = _g-f et gt

YT 0
v

and x = —10__ (4.5)

2T oge/m

In Eq. (4.4) ny is the total ion density in the barrier. We treat Tesf as a
variational parameter determined by requiring that L be stationary using the

trial function Z given in Eqs. (4.2) and (4.3). The parameter n, in Eq. (4.4)

12



is the total ion density (trapped plus passing) in the thermal barrier and is
discussed in the next section.

The Euler-Lagrange equation (Eq. (3.9)) evaluated at n = O with

Z(n=0)

H
—

dz
dn

n=0 -

427

=1
dn2

n=0

gives p(0) - %E'n=0 - q(0) =0 . (4.6)

The quantities p(n) and q(n) are given in Eqs. (3.3)-(3.7) and can be evalu-
ated now that n has been chosen. We choose Tegs in Eq. (4.5) by requiring
that the results p(n) and q(n) satisfy (4.6). This is equivalent to requiring
that our trial function satisfy the Euler-Lagrange equation on the trapped-
passing boundary.

In the evaluation of p(n) and q(n) the dynamical friction A and the dif-
fusion coefficient D are needed as well. For X and § in these expressions,
Eq. (2.5) and (2.6) with f replaced by R(vjg), as discussed earlier, are used.

These can be rewritten as

v
4 n 10 ®
0f = Z5n & (o) 5 [ [ vERWIamE av + vy [ 2RI av]  (4.7)
m 010"~ vi, 0 Y10

13



4 n V10 Y10
00 = 2 A b ) Rvam? av - L [ vER(van? dv
m 010 O 3v10 0
(4.8)
2 1 2
t 3 Vg [ 5 ROVIAnVE dv] .
V10

Here C, is a normalization constant

C = [ R(v)4nvZ dv .

0

oO-— 8

Note that the total ion density, Ny, has been introduced explicitly in Eq.
(4.7) and (4.8).

5. The Total Ion Density

There is one remaining complication in the total ion density, which we
now consider. We integrate Eq. (2.3) over the trapped particle part of
velocity space to get the trapping current,

J

wn, = v(nb - np) (5.1)

trap B
where ng, Nps and n, are the trapped, passing, and total ion density in the
barrier. Generally speaking, Np is determined by the central cell parameters,
and v by the barrier pump neutral beams. Consequently Eq. (5.1) is a self-
consistent relationship between the trapping current per unit volume, Jtrap’
and the ion density, ny, both of which are determined by the collisional
relaxation processes in the barrier. Upon combining Eq. (5.1) with (3.13), we

have

\)(nb - np) = p(0) + q,(0) . (5.2)

14



In the expressions for p(0) and qp(0), the passing ion density enters R(vig),
and the total ion density, np, enters through R and B, and also through the
Dl in the expression for n. It is convenient to define

n

b

9y = 7 (5.3)
"

and renormalize p(0) and q2(0) to be independent of gy, i.e.

p(0) > p(0) = —1 _ p(0)
"p"9p"p

~ 1
q,(0) » q,(0) = q,(0) .
2 2 np(gbnpi 2
Then Eq. (5.2) becomes

v(gy - 1) = /gns p(0) + gyngap(0) (5.4)

which is a quadratic equation for /§;.

We treat Eq. (4.6) in a similar way. We define

45(0) = —2— q,(0)

p"9p"p
A 1
qq = q, (0)
L np(gbnp)sz2 1

dp _ 1 dp
dnl g np(gbnp) dn|n=0

15



and rewrite (4.6) as

~

-gp(npar (0)) - Vg 2| o+ (5(0) - Go(0)) = 0 . (5.5)

Equations (5.4) and (5.5) are two simultaneous equations which determine
the barrier parameter, g,, and implicitly through the coefficients, the effec-
tive temperature, Tope. The coefficients involve integrals over velocity
space. They are complicated, but can be done numerically. The procedure for
calculating gy, and hence the trapping rate through Eq. (5.1) and (5.3) is
completely formulated. In the next section we present some results and
compare them with the numerical Fokker-Planck results of Futch and LoDestro,
and with the analytical results of Carrera and Callen.

6. Results from the Variational Calculation

A numerical solution of Eq. (5.4) and (5.5) for the barrier parameter,
dp, the trapping rate and T.¢¢ has been obtained for the same input data used
in the two-dimensional Fokker-Planck calculations of Futch and LoDestro.(S)
The input data are the passing ion density, Nps temperature of the passing
ions, Tp, barrier mirror ratio, Ry, barrier potential, ¢p» and the neutral

beam pumping rate, v. For the Coulomb logarithm, the expression(g)
In A =34.9 - In E__-T

was used. The units are cm™3 for Ny, and keV for the mean ion energy, E,,

and for the electron temperature, Te. The mean ion energy is approximated by

Tp + ¢b.

16



For a preliminary calculation, the al and &2 terms in Eq. (5.4) and (5.5)
were neglected since they are expected to yield only small corrections. Table
I shows the results for the Tow barrier mirror ratio (R, = 2) case for various
values of Nps Tp, and v. Table II gives the corresponding values for the high
barrier mirror ratio (R = 20) case. We have included for comparison the ana-
lytical results of Carrera and Callen. The variational results are in rather
good agreement with the Fokker-Planck code results; the error in g, is gener-
ally less than 10%, except in the 8th case in Table II, where it is 16%.

In Tables I and 11, we have chosen to make our comparison for a specified
passing ion density, Np> rather than for a specified total ion density ny,
which was the procedure used in Ref. 9. The former is a more sensitive test.

To see this, write Eq. (5.1) in the form

~ 1
Jtr‘ap = vnb(l - —g'I;) .
In the 1imit of large gp, Jtrap is only weakly dependent on gy, and approaches
vny (which are simply input data) as gy + «. Specifying np as input data puts
Eq. (5.1) in the form

Jtrap = vnp(gb - 1)
which is more sensitive to the calculated value of gy. One hopes to obtain
values for g, in the range 2 to 4 in thermal barrier tandem mirror experi-
ments.

A graphical representation of the results and their comparison is given

in Fig. 4 and Fig. 5 for both the low and high mirror ratio cases.
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TABLE I. Low Mirror Ratio Case

Rb =2 , ¢p =40 keV , Tg =15 keV

Input Data 9p Jt (1011 cm=3-sec1)

n T v
(101lcm3) (keV) (sec™l) Numerical™ variational Analytical™™ Numerical® Variational Analytical™™

1.1 15.0  0.25 3.45 3.14 2.54 0.675 0.589 0.424
1.1 15.0 0.5 2.31 2.30 1.96 0.721 0.715 0.528
1.1 15.0 1.0 1.80 1.82 1.62 0.880 0.902 0.682
1.1 15.0 2.0 1.48 1.53 1.41 1.06 1.17 0.902
0.55  15.0 0.25 2.33 2.31 1.97 0.183 0.180 0.133
1.1 10.0 0.5 3.62 3.48 2.25 1.44 1.36 0.688
1.1 10.0 1.0 2.46 2.49 1.79 1.61 1.64 0.869
1.1 10.0 2.0 1.90 1.93 1.52 1.98 2.05 1.14
0.55  10.0  0.25 3.66 3.50 2.27 0.366 0.344 0.175
2.2 10.0 2.0 2.45 2.47 1.79 6.38 6.47 3.48

* Ref. 8.

** Ref. 9.
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TABLE II. High Mirror Ratio Case

Rp =20 , ¢p = 1.0 kev , Tg = 0.4 keV

Input Data b Jt (1015 cm-3-sec~l)

n T v
(1011cm'3) (keV) (103sec‘1) Numerical™ Variational Ana]ytica1** Numerical™ Variational Ana]ytical*

8.9 1/3 2.0 4,76 4.30 3.90 6.69 5.87 5.16
8.9 1/3 4.0 2.90 2.94 2.73 6.79 6.91 6.16
8.9 1/3 8.0 2.12 2.19 2.07 7.97 8.47 7.62
8.9 0.2 4.0 5.0 5.33 3.51 14.2 14.9 8.94
8.9 0.4 4.0 2.54 2.52 2.52 5.48 5.41 5.41
8.9 0.5 4.0 2.22 2.15 2.30 4.34 4.09 4.63
17.8 1/3 4.0 4.68 4.25 3.86 26.2 23.1 20.4
4.45 0.2 4.0 3.06 3.55 2.53 3.66 4.54 2.72
17.8 0.4 4.0 3.79 3.48 3.48 19.8 17.7 17.7
4.45 0.4 4.0 1.94 1.96 1.96 1.67 1.71 1.71
17.8 0.5 4.0 3.10 2.85 3.11 15.0 13.2 15.0

*

" et o
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Fig. 4. Comparison of the trapping ratio, gp» calculated by the three differ-
ent methods (Low Mirror Ratio Cases; Ry = 2, ¢, = 40 keV, Te = 15 keV).
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Fig. 5. Comparison of the trapping ratio, 9y calculated by the three different
methods (High Mirror Ratio Cases; Rb = 0,¢b =1 keV, Te = 0.4 keV).
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7. Summary

A variational calculation of the trapping rate and trapped ion density in
thermal barriers is presented. We retain in this formulation dynamical
friction as well as pitch angle scattering. The distribution function is
chosen to be a product RZ, where R is spherically symmetric about the vertex
of the trapped-passing hyperbolic boundary and matches to the Maxwellian
distribution of the passing ions on that boundary. We then get a kinetic
equation determining Z which is linearized by appropriate choice for the field
particle distribution function in the dynamical friction and diffusion coef-
ficients. A mapping n is introduced and a small term in the kinetic equation
is neglected. We then get a variational functional whose stationary value is
related to the trapping rate in the barrier. With a suitably chosen trial
function, which matches exactly the desired passing ion distribution function
along the actual trapped-passing boundary, estimates for the trapped ion
density and trapping current are obtained. The results compare well with two-
dimensional Fokker-Planck code calculations and are generally better than an
analytical calculation using only pitch angle scattering.
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