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Abstract

Radiation-induced segregation in alloys leads to compositional gradients
around point defect sinks such as voids and dislocations. These compositional
gradients in turn affect the drift forces on both interstitials and vacancies
and thereby modify the bias. Linear irreversible thermodynamics is employed
to derive the total drift force on interstitials and vacancies in substi-
tutional binary alloys. The obtained results are evaluated for binary Fe-Ni
alloys.

It is shown that radiation-induced segregation produces new drift forces
which can be of the same order of magnitude as the stress-induced drift force
produced by edge dislocations in an alloy with uniform composition. Hence,
segregation results in a significant modification of the bias for void nucle-
ation and swelling.

The additional drift forces on interstitials and vacancies are due to the
compositional dependence of the formation and migration energies; due to the
dependence of the point defect's strain energy on the local elastic proper-
ties; due to a coherency strain field caused by lattice parameter variations;
and finally due to the Kirkendall force produced by the difference in tracer
mobilities.

Estimates of these forces given for Fe-Ni alloys indicate that the
Kirkendall force is small compared to the other segregation-induced forces on
interstitials. In contrast, the Kirkendall force seems to be the dominant one

for vacancies.



1. INTRODUCTION

The segregation of solute elements to point defect sinks has been ob-
served in numerous alloys after irradiation. As reported in the literature,
and in particular at two recent symposia [1,2], solute segregation has been
found near external surfaces, at grain boundaries, and around voids and dis-
Tocation Toops. The experimental evidence as well as the general physical
basis for radiation-induced segregation strongly suggests that this phenomenon
is general and likely to occur in any alloy and even in metals with minor
impurities.

Radiation-induced segregation may occur for two reasons. First, the
presence of a high supersaturation of vacancies (and interstitials) enhances
the mobility of impurities and solute elements. Equilibrium segregation which
may be too sluggish to occur without irradiation may therefore be speeded up.
The second reason for segregation is connected with the continuous flux of
point defects to sinks. The associated atomic jump processes may transport
preferentially certain solute elements leading to their enrichment or deple-
tion at the sinks. The resulting compositional gradients are truly non-
equilibrium gradients and require for their maintenance the continuous point
defect fluxes to the sinks. But even for a continuous and constant irradi-
ation, a truly stationary state may never be achieved for two reasons. First,
the sink structure changes both in space and with irradiation time. The cause
for the evolution of the sink structure is of course the well known bias for
preferential absorption of interstitials at dislocations. Since the non-
equilibrium segregation is coupled to the point defect fluxes to sinks, a con-
tinuous redistribution of solutes occurs with the microstructural evolution.

A second reason is that the segregation itself will lead to a modification of



the sink bias factors and therefore directly influence the microstructural
evolution.

It is the main purpose of this paper to investigate the physical basis
for the bias modification as produced by the radiation-induced segregation.
This will be done by deriving the diffusion fluxes for interstitials and
vacancies in an alloy with compositional gradients. Although explicit bias
factors will not be derived in the present paper, it will nevertheless become
evident that the new drift terms which appear will profoundly affect the bias
factors of all sinks, i.e. voids and dislocations alike.

The previous work of Wolfer and Mansur [3] on the capture efficiency of
coated voids 1is in light of the present work only a special case of bias
modifications as produced by non-equilibrium segregation. In this previous
work, the compositional gradient around voids was modeled by a discrete shell
whose lattice parameter and elastic properties differed slightly from those of
the surrounding matrix. The presence of this shell resulted in a significant
change of the void bias factors as compared to those for bare voids, particu-
larly when the void radius was very small. Recently, Si-Ahmed and Wolfer [4]
have demonstrated that minute differences in either the lattice parameters or
the shear moduli between shell and matrix can change the void nucleation rate
by several orders of magnitude.

Because of the sensitivity of void nucleation to segregation-induced bias
modifications, one must inevitably conclude that void formation and swelling
is to a large degree dependent on, if not entirely determined by, the
radiation-induced segregation and precipitation. This conclusion lends much
support to the empirically derived hypothesis by Garner [5] that the micro-

chemical evolution is one of the major factors which control the onset of



swelling in austenitic stainless steels, and perhaps other alloys. This idea
is deduced from extensive observations on segregation and precipitation that
precedes and accompanies void swelling in type 304 and 316 stainless steels
[6-111.

The effect of segregation on the diffusion fluxes of vacancies and inter-
stitials is derived with the help of the linear theory of irreversible thermo-
dynamics in Section 2. This derivation follows the approach of Marwick [12],
and Chauvin [13] and Martin [14]. The various contributions to the drift
terms in the diffusion fluxes are then examined in detail in Section 3, and
numerical estimates are made in Section 4 for these contributions in the case
of binary Fe-Ni alloys.

2. ATOM AND POINT DEFECT FLUXES

In order to keep matters simple we consider a substitutional binary alloy
made up of atoms A and atoms B. Diffusion of both atoms may take place via
the vacancy and the interstitialcy mechanisms. For the latter, an atom mi-
grates as part of the dumbbell interstitial formed as a result of the radi-
ation damage. Furthermore, we assume that no coupling exists between the atom
fluxes JAV’ JBV and JAI’ JBI associated with the vacancy and interstitial mi-
gration. This assumption is justified since the atomic fractions of both
vacancies and interstitials, xy and xp, are very small compared to one.
Hence, the presence of vacancies does not affect the interstitial flux other
than leading to recombination. This reaction is, however, taken into account
in the rate equations which determine the global concentration of both vacan-
cies and interstitials. In contrast, the equation to be derived for the
fluxes of atoms and point defects applies to the local scale between sinks,

i.e. to regions of "good" crystal.



If Xp and xg denote the atomic fraction of A and B atoms in the alloy on
substitutional places, then

Xp ¥ Xp =1 - x,21., (1)

The fluxes of both atoms, Jp and Jg, and the fluxes of point defects, Jy and

Ji, satisfy the condition

JA+JB=JI-JV (2)

for any cross sectional area not intersecting a point defect sink. Based on
the above assumption, the atom fluxes, Jp and JB, are composed of two contri-

butions, e.g.,

Jy =d,y +J s (3)

AV Al

and they are independent of each other and simply additive. The partial

atomic currents are related to the point defect currents by

J (4)

av * gy ©
and

J.. +J (5)

Al BI ~

The driving forces for these currents are the local chemical potential gradi-
ents for the two atomic species and the two point defects. We define the

chemical potentials in the conventional manner as



up = uz + kT 1n(YAXA) (6)

g = ug + kT 1n(YBXB) (7)
by = kT 1n(xv/x$q) (8)
Cup = KT In(xy/x$%) (9)

where ”X and “g are the chemical potentials of the atoms in a reference state,

Yp and yg are the activity coefficients, and

X
o
L

1]

exp(-Gy /KT) (10)

x
[1°3
o

1]

exp(—G;/kT) (11)

are the thermodynamic equilibrium concentrations of vacancies and intersti-
tials, respectively. It is assumed in the following that the Gibbs free ener-
gies for point defect formation, G€ and G{, are functions of the local alloy
composition and the local state of stress.

According to the linear thermodynamics of irreversible processes, the
currents of atoms and point defects are in general linearly dependent on the
gradients of all four chemical potentials [15,16]. However, based on the
assumption above, the currents Jy, Jay, and Jgy are independent of VuI,
whereas the currents Jp, Jars and Jgp are independent of Vi - Furthermore,

because the currents associated with vacancies are related by Eq. (4), there

are only two independent currents among Jys Jay» and Jgy- Therefore, one may



write [13]

v 1 v 1

Iav = “Lag 7 Vg - wy) = Lpg 5 Vg - wy) (12)
v 1 Vo1
Jgy = ~Lgg T Vg - wy) - Lpg 7 V0uy - ), (13)
v

where the phenomenological coefficients LAA’ etc., are to be determined later.

Similar equations can be written down for the partial interstitial current Ja1

and Jdgy except that they depend on the gradients V(uA + uI) and V(uB + uI).
The Gibbs-Duhem equation provides a further relationship that connects

the chemical potential gradients according to
XpVup + XgVup + XyVuy + x;Vu; = 0 . (14)

For all practical situations of interest to high-temperature radiation damage,
the point defect fractions xy and xj are orders of magnitude smaller than the

atom fractions x, and xp even in case of dilute alloys. Therefore,
XAVuA + xBVuB =0, (15)

which represents the traditional Gibbs-Duhem relationship for a binary alloy.
Equation (15) allows us to eliminate one of the chemical potential gradients,

say, VuB, and we obtain for the partial currents the expressions

X
v Ay VooV .1
Jay = ~(lan - %5 Lag) 7V + (Lpp + Lag) 77y (16)



X
- (A Vv vVl v V,1

Jpy (YE Lgg = Lap) T Va * (Lag + Lgg) T Ty - (17)

In order to express the partial currents in terms of concentration gradi-

ents we make use of the defining equations for the chemical potentials, Egs.

(6) to (9), and we find

Vu, = oA
A
€
1 VA
Vi, = kT — - kT — wx (19)
) Xy V Xp A
where
a= 1o T (20)
A d In xA
is the thermodynamic factor and
9 1In xsq Xp Gs
T TR, TR, (21)

i.e. a factor proportional to the rate of change of the vacancy formation
energy with the alloy composition.

It should be noted that it was assumed in Eq. (18) that the chemical po-
tential up or the activity coefficient Yp Is independent of the vacancy and
interstitial concentrations. Although this may not be a legitimate assumption
in a global sense it is valid when applied to crystal regions of dimensions

less than the average distance between defects. Again, as pointed out above,



the expressions for the fluxes are then valid only for these regions of "good"
crystal in between defect sinks.

The partial atomic fluxes can now be written as

v v
L L £
- _L[(-AA _ “AB } Vo) VA v Vil
LXB LgB T AN
Jgy = 'k[(i_”" —-—JaA + (LAB + LBB) i——-]VxA + k(LAB + LBB) = Vxy (23)
A B A v
and the vacancy flux as
v v ) v
L L L L
v ) ') 1 AA AB BB AB
Jy = ~k[Lap *+ 2Lyp + Lon] =— Vx, + k[ (== - + -a
v AA AB BB Xy v xA xB xB xA A
(24)
v v Vo, Sva
+ (LAA + 2LAB + LBB)'XK_] X, -

According to Manning [15], the phenomenological coefficient can be related to
the tracer diffusion coefficients D;V and D;V and the correlation factor fy
for the vacancy mechanism of diffusion; the latter is fy = 0.78145 for the fcc

lattice. The relationships are

kLpy = NxpDy, (1 + x,Dy Q) (25)
kipg = NxgDg, (1 + x;Dz Q) (26)
Kpg = Nx, 0 D2 Q (27)
where 0y = (%;-- 1)/(x,Dy, + ¥;D5) (28)

8



and N is the number of atomic sites per unit volume. Therefore,

e e Yy = N 0t x DT ) = NxuDL = GuD (29)
a2 bgg) T (Pay + xg0gy vOy = Gyby

k(
where Cy is the vacancy concentration and Dy the diffusion coefficient for
vacancy migration. This Tatter assignment is of course made to cast the first
term of Eq. (24) into the familiar form, namely DVVCV. The relationships
expressed in Eq. (29) further suggest the following definition of the atomic

diffusivities,

-0 30
A S DAV/(foV) (30)

O
t

. (31

as introduced by Wiedersich et al. [17] (and denoted by dpy and dgy in their

paper).

The fluxes can finally be expressed in terms of concentration gradients

as
- D" 1 D VA C. +D (32
Jpy = Daylll + (Dyy = Dgy)xpQ Joyy + (?V‘J} Vea * DayXa¥ey )
I X Xg Eva 33)
gy = gyl - (Dpy - Dpy)xgQyJay - GG, b o+ Dy ™y (
and
f
DyCy 3G

Jy = -b,vC, - —— VC (34)

vyt T, Tt (Dpy = Dgylapx,VCy -

9



Since the vacancy formation energy, Gs, is a function of the local alloy

composition, we must Tikewise presume a dependence for the vacancy migration

energy. Hence, if Ds denotes a constant pre-exponential factor, then

D, = D°

v =0y exp(-Gv/kT) (35)

where Gw(xA) is the local Gibbs free energy for vacancy migration.

Equation (34) may then be cast in the alternate form

D, C
- vy f m
Jy = —V(DVCV) - —ET—-V(GV + GV) + (DAV - DBv)anVVCA . (36)

The above derivation for the vacancy flux can be repeated along the same
lines for the interstitial flux with two differences. First, as seen from
Eqs. (4) and (5), the interstitial flux is in the same direction as the
partial atomic interstitialcy currents. Second, this results in a change of
sign in Eqs. (12) and (13) such that the interstitialcy currents Jar and Jpp
are now driven by the chemical potential gradients V(uA + u;) and V(uB + uI),
and they are proportional to different phenomenological coefficients LiA, etc.
The Tatter can again be related to tracer diffusion coefficients D;I and D;I
or interstitialcy diffusivities Da; and Dgy according to equations analogous
to the Eqs. (25) to (31).

The atomic interstitialcy fluxes are then found to be

t1A

_ * * * (37)
ar = Dap {01+ (Dpq - Dgp)xaQploy - (?;"J} Yp = Dar¥a¥C;

10
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and the interstitial flux is

D.C
_ 11  F m
Jp = =90 Cy) = == VIGp + Gp) - (Dyp - Dgp) ayx;VC, (39)

Equations (36) and (39) represent the basis for the segregation-induced bias
modifications. The following section is therefore devoted to a more detailed
discussion of the drift terms, i.e. the last two terms contained in Eqs. (36)
and (39). When the discussion applies equally to interstitials and vacancies,
the indices "I" and "V" will be omitted.

3. THE CONTRIBUTIONS TO THE DRIFT

A. Overview

The drift terms in Eqs. (36) to (39) are responsible for the bias. Al-
though only two drift terms appear explicitly in the flux equations for the
point defects, there are in fact more contributions as illustrated in Fig. 1.
The various contributions will be discussed briefly in the following, and more
extensively in later sections.

Let us consider first the drift term proportional to the gradient of the
saddle point energy, vief + a™. The energy (6f + aM represents the total
Gibbs free energy when a point defect is created in its saddle-point configu-

ration, and it can be broken down into the following parts:

LI T T L T (40)

11
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The first term, GS, arises from the chemical bond changes when the point
defect is introduced into an ideal lattice which is free of stress, and with
all atoms confined to remain in their ideal lattice positions. GS depends
then only on the local composition.

The remaining terms in Eq. (40) arise in conjunction with the relaxation
of atoms to new equilibrium positions, giving rise to the strain field of the
point defect. A1l these terms represent therefore the total mechanical work
US associated with the creation of a point defect. This mechanical work

consists in turn of the so-called relaxation energy
R = BR 4yl (41)
and of the mechanical interaction energy

TANSRTATE (42)

The relaxation energy WR of a point defect is equal to the elastic strain
energy associated with the displacement field of the point defect. uR depends
on the position of the point defect with regard to free surfaces and inter-
faces. When the point defect is far from any free surface or interface, it
consists of a single contribution, called henceforth the bulk relaxation
energy UBR,  Its evaluation will be given below for a medium with spatially
varying elastic properties. In the vicinity of free surfaces, or interfaces
separating regions of distinctly different elastic properties, an image inter-

action UI must be added to UBR.

13



The contribution to the mechanical interaction energy M which has been
considered in the past as the only source of the bias is UC. (Exceptions are
the investigations in Refs. 3, 4, and 12.) This energy arises from the inter-
action of the point defect with the stress field of the sink, and it is com-
posed of two parts: the size interaction which is linear in the stresses, and
the modulus interaction which depends on the second power in the stresses.

Segregation may affect this mechanical interaction energy M in two ways.
First, compositional variations may lead to variations in the local lattice
parameter. However, since regions with different lattice parameters must re-
main coherent, additional strains are produced which superimpose on the
strains created by the sink itself. This results in a coherency strain energy
U® which will be derived below. The second effect is associated with the non-
uniform elastic properties which modify the stress field of the sink in the
original medium with uniform elastic properties. For small changes in the
elastic properties, however, this effect is negligible when compared to the
original strain field of the sink such as the one of an edge dislocation.

A1l the contributions to the saddle-point energy 6> combine and relate to
each other in a manner indicated in Fig. 1. In a material with uniform compo-
sition and therefore uniform properties, only those energies or effects
contribute to GS which are indicated by double frames in Fig. 1. The addi-
tional effects and contributions caused by segregation are marked by corner
triangles in Fig. 1.

The following sections are now devoted to a more detailed treatment of
the drift contributions, particularly of those which arise in conjunction with
segregation. However, the other contributions are also discussed briefly for

the sake of completeness.

14



B. The Relaxation Energy

Consider first a medium with uniform elastic constants. For simplicity
we assume that the medium is also elastically isotropic with bulk modulus ¥
and shear modulus u. As shown in Appendix A, the strain energy of an isotro-

pic point defect with relaxation volume v is given by

peR . 2y v (43)
3¢ + 47 ¢
where Q@ 1is the atomic volume, and the point defect is far from any free
surfaces.
Suppose now that the medium has a spatially varying composition and

therefore varying elastic constants given by
w(F) =W+ 8u(F)  and  «(F) = % + 8c(F) (44)

where T and < are average values. If 8u/m and 8x/k vary only by small amounts
over distances on the order of a few lattice parameters, then the change in

the relaxation energy of the point defect is given by

R, 3 b, 45 ox iR (45)

sU U
I+ 4y Ik + 40«

iR

As shown 1in Appendix A, this approximation for sUBR represents in fact a
correct upper bound, and it is exact to linear order in 8u and ék.
With this 1linear approximation, we can define the spatially varying

relaxation energy simply as

15



+> + 2
UBR(F) = TR + guBR(p) = 2clPulP) v (46)

3c(P) + dult) B

It should be noted that the relaxation volume v may also depend on the local
alloy composition. However, there is virtually no information available
regarding this possibility, and we shall have to disregard it.

C. The Image Interaction

The above Eq. (45) becomes invalid when the elastic moduli change abrupt-
1y as in cases where the point defect approaches a free surface (beyond which
the elastic moduli vanish) or a precipitate interface (beyond which the
elastic moduli assume substantially different values).

Close to these surfaces, the relaxation energy UR changes by an addition-
al amount, the so-called image interaction ul, A detailed evaluation and
discussion of this interaction has been given by Wolfer and Mansur [3,18] for
the case of a spherical void. When the segregation around voids produces only
small variations in the elastic properties, the image interaction can be

approximated by the expression [3]

2 =2
(1 + V) uv [(L_ 1)3 + 7 - 5v (_Y‘__ 1)6]-1 (47)

I _
V) = - ey Rt

where a is the void radius, r the distance to the void center, and v is
Poisson's ratio.

If the segregation produces a distinct coherent precipitate shell around
the void, the more complex expression [18] is required for the image inter-

action UI.

16



D. The Coherency Strain Interaction

The lattice parameter of an alloy is in general a function of the compo-
sition. With a non-uniform composition, the local lattice parameter ao(?)

would deviate from the average value 56 by the relative amount

a_(¥) -3 '
nr) =22 (48)
a
0

if the crystal were in fact not subject to coherency strains. The latter can
be computed from the function n(*) as shown in Appendix B. Based on the size-
interaction with this coherency strain field, the interaction energy is found

to be given by
i = w20 () (49)

In the derivation of UC given in Appendix B, we assumed constant elastic
properties in order to obtain a theory consistent to first order in the compo-
sitional gradients as required by the linear theory of irreversible thermo-
dynamics. In other words, terms are neglected which are of the order of
Su * nand 8k * n.

E. The Mechanical Interaction with the Stress Field of Sinks

If a sink produces a stress-field oij(F), the point defect interacts with

it according to the expression [19,20]

K G

0__1 Q Q 1 1
u” = T V., + EEEE-Oiiojj + ZEE— oij Gij . (50)
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Here, repeated indices indicate a summation,

is the deviatoric stress tensor, and &K and of are the elastic polarizabili-

ties of the point defect. The above interaction energy is generally the one
considered in bias calculations, and often only the first term, the size-
interaction, is retained, whereas the remaining modulus interaction is
neglected.

The interaction U® has been evaluated previously for both dislocations
[20] and voids [21], and its effect on the bias factors for these sinks has
been derived.

F. Energy Associated with Bond Changes

Although it is conceptually simple to separate the formation energy of a
point defect into the two parts, GS and UaR, it is only the sum that can be
measured experimentally at least in the case of vacancies. Here, the sum
represents the activation energy for self-diffusion. The relaxation energy
UeR for vacancies is typically on the order of 0.1 eV to 0.5 eV (1.6 x 10'20
to 8 x 10720 J), whereas the corresponding value U?R for the self-interstitial
is a factor of about 20 larger. Therefore, the formation energy of a point
defect in its stable or saddle-point configuration consists mainly of the
contribution GS due to bond changes in the case of vacancies, but in the case
of interstitials, the relaxation energy U?R is the main contributor. As a
result, we shall assume that G? can be neglected compared to U?R. For the

vacancy, on the other hand, we shall equate the sum (Gﬁ + U%R) to the acti-

vation energy for self-diffusion, and utilize experimental data when avail-

18



able. Then

VI(Gy + TR ATI = -vin D (51)

sp?
X *

where Dgp is the self-diffusion coefficient. If DRV and ng are the tracer

diffusion coefficients measured at thermal equilibrium conditions, then Eq.

(29) gives

*

_1 o* 0

where both tracer diffusion coefficients are in general further dependent on
the alloy composition.

G. Kirkendall Force

The last terms in Eqs. (36) and (39) represent what Marwick [12] calls

the Kirkendall flux. It can be written as

where the upper (lower) sign holds for the interstitial (vacancy) Kirkendall
flux. The second factor in the Kirkendall flux may now be interpreted as a

drift force, which we shall call henceforth the Kirkendall force

P = £ ————5 KT¥x, . (53)

The factor containing the tracer diffusion coefficients can be related to

measurable quantities under thermal equilibrium conditions for the case of

19



* *
vacancies.  Although DAV and DBv represent the tracer diffusion coefficients

under irradiation, they are connected with the coefficients for thermal equi-

1ibrium according to

*

* o _ eqyn0* =

(x, /xeNDY, (54)

Hence, the Kirkendall force for vacancies can also be written as

(DR; - Dg;)aA
Kv v A x. 0% + x.D° A
A~AV BBV

where the Kirkendall force coefficient Ky can now be evaluated with measured
tracer diffusion coefficients and measured thermodynamic data. An example
will be given below.

Tracer diffusion coefficients for interstitialcy migration must, however,
be obtained under radiation conditions, and no experimental data is yet avail-
able. Furthermore, under irradiation, diffusion of tracer atoms would occur
both via the vacancy and the interstitialcy mechanisms, and only the sum
(D:V + D;I) could be obtained. By a separate measurement of the equilibrium
tracer diffusion coefficient DX; and a knowledge of the vacancy concentrations
both with and without irradiation, the tracer diffusion coefficient D;I could
be isolated. Similar measurements would also be required to obtain D;I'

4. MAGNITUDE OF THE DRIFT TERMS FOR BINARY Fe-Ni ALLOYS

Having discussed the physical origin of the various drift contributions,
estimates for their magnitude will now be provided. In view of the extensive
data base available for void formation in austenitic stainless steels, we

select the face-centered cubic binary alloys of iron and nickel. Although no

20



attempt will be made here to establish a connection between radiation-induced
segregation, segregation-induced bias modifications, and the dramatic depend-
ence of void swelling on the nickel content in the austenitic series of
alloys, this connection is certainly our ultimate goal and motivation for the
present investigation. It will furthermore become apparent that more data on
fundamental parameters for these alloys must be obtained before this con-
nection can either be firmly established or rejected.

Let us first consider the various contributions to the mechanical inter-

action energy. For the following estimates, relaxation volumes of vi = 1.4 @
G 17

and vy = -0.2 @, and shear polarizabilities of ay = - 2.73 x 107°" J and
as = -0.27 x 10'17 J were selected for the interstitial and vacancy, respect-

ively. An average shear modulus of u = 105 MPa and a Poisson's ratio of 0.3
were chosen. Using the expressions given above as well as the one derived
earlier [20] for the interaction energy U° between an edge dislocation and a
point defect, values as given in Table 1 are obtained. Note that the inter-
action energies are the differences between the potential energies of the
point defect far from the sink and near the sink. Negative values indicate
therefore an attraction of the point defect, positive values a repulsion. It
is seen that segregation resulting in a 3% elastic modulus change or in a 0.4%
change in lattice parameter can change the interaction energy of an inter-
stitial with the sink by amounts comparable to its interaction energy it has
at a distance of 10 b from an edge dislocation. Local changes of shear
modulus or lattice parameter of the above magnitude can easily be obtained
with nickel segregation at sinks. For example, Marwick et al. [22] found that
in a high nickel alloy of about 35% average nickel concentration, local con-

centrations of more than 54% nickel were obtained near voids. Similar obser-
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Table 1. Typical Values for Mechanical Interaction Energies

Associated with the Bias

Energy* in eV and in (10721 g) Interstitial Vacancy
U® at a distance of 10 b from an edge
dislocation above (upper signs) and below +0.25(+40) ¥0.05(+8)
(lower signs) the glide plane
Ul at a distance from the void surface
of 2 b -0.25(-40) -0.025(-4)
5b -0.005(-0.8) -0.0005(-0.08)

sUBR for a shear modulus change of +1%

uC for a lattice parameter change of

$0.1%

$0.08(+13)

+0.06(£9.6)

$0.002(+0.32)

70.008(+1.3)

*Negative values imply a reduction of the point defect's energy relative to

its average value or its value in an ideal and uniform crystal.
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vations were made by Brager and Garner [23] in 316 SS and by Thomas [24] on
voids in Fe-Ni-Cr alloys.

Nickel concentration has a strong effect on both the shear modulus and
the lattice parameter, as can be seen from Figs. 2 and 3. The data shown in
Fig. 2 are computed values for the shear modulus of a polycrystal, based on
measured elastic moduli for single crystals [25]. The lattice parameters
shown in Fig. 3 are due to Owen and Yates [26].

For an estimate of the drift force VG% and of the Kirdendall force, the
diffusion measurements and thermodynamic data of Million et al. [27] are uti-
lized. They have obtained tracer diffusion coefficients at temperatures be-
tween 985°C and 1305°C in binary Fe-Ni alloys, and fitted the results to the

following equations:

0% _ 15152 340
Togyy Dyj = 0.537 - 22P% - x_ (0.488 - > (56)
o* _ 14561 993
Togyg DPy = -0.142 - 22222 + x . (1.106 - 22%) (57)

Here the temperature is in Kelvin and the diffusion coefficients in sz/s. If
we use Eq. (52) to compute the self-diffusion coefficient and then the quanti-
ty (-kT Tn Dgp), we obtain the activation free energy required in Eq. (51).
Since we only need the gradient of this quantity, -kT 1In Dgp was normalized
such that it gives the same value for xyi = 1. The results are shown in Fig.
4. It is seen that (Ge + UER) varies between xy; = 0.35 and xyi = 0.54 by
0.0075 eV or less within the temperature range of swelling. This must be

compared with GUSR which is about 0.008 eV for a 3% change in the shear
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Figure 2 Shear modulus variation in binary alloys of iron and nickel
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Figure 3 Lattice parameter variation in binary alloys of
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Figure 4 Activation energy for self-diffusion in binary alloys
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modulus. Therefore, both estimates of the change in the saddle-point energy
of a vacancy lead to roughly the same order of magnitude.

Finally, we estimate the Kirkendall force for both vacancies and inter-
stitials. For the vacancies we can utilize again the above expressions for
the tracer diffusion coefficients. 1In addition, we require the thermodynamic

factor

din Y\

a=1+—1—-——dani.

Million et al. [27] have obtained data for the activity coefficient yy;
in the temperature range of 950°C to 1250°C, and expressed the results in the
form

1n i = at bXNi + cxﬁi + dxﬁi (56)

where a, b, ¢, and d are temperature dependent parameters. Since In YN = 0
and « = 1 for XNg = 1, the four constants are related by a + b + ¢ + d = 0 and
b+ 2c + 3d = 0.

Figure 5 shows the values obtained by Million et al. [27] for the para-
meters b and d, together with our extrapolation to lower temperatures. With
these extrapolated parameters, the thermodynamic factor is as shown in Fig. 6.
The dotted curve is based on an alternate measurement at a temperature of
1236°C, also performed by Million et al. [27]. Included in this figure is
also a result based on measurements by Tanji et al. [28]. It is seen that
measurements of activity coefficients in the Fe-Ni alloys are not yet very

satisfactory. Nevertheless, for the present purpose of estimating the
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Figure 6 The thermodynamic factor for binary alloys of iron and nickel.
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Kirkendall force on vacancies, the results of Million et al. will provide a
convenient correlation.

The Kirkendall force coefficient Ky for vacancies is shown in Fig. 7, and
it is found to vary between -0.5 and 1, depending on temperature and alloy
composition. According to Eqs. (36) and (55), (-DyCyKyVxy4) is the Kirkendall
contribution to the vacancy drift. Therefore, when the coefficient Ky shown
in Fig. 7 is negative, the vacancies are attracted toward higher nickel con-
centrations. It is seen from Fig. 7 that this is the case when nickel segre-
gation occurs at sinks in alloys with nickel content less than about 35%.
Conversely, in alloys with more than 35% nickel, vacancies will be repelled by
sinks with nickel segregation.

The Kirkendall force integrated over a nickel variation of about 20% can
give rise to a potential energy change of about 0.015 eV at 300°C and of about
0.003 eV at 700°C. Therefore, at the lower irradiation temperature, the
Kirkendall force on the vacancy can be comparable to the mechanical inter-
action force exerted by the dislocation stress field. As a result, the
Kirkendall force is significant with regard to vacancy bias factors.

As there are no tracer diffusion coefficients available for diffusion by
the interstitialcy mechanism we shall assume that the saddle-point energies
for nickel and iron migration as part of the dumbbell interstitial differ by
0.05 eV. Using the same thermodynamic factor as before, the Kirkendall force
coefficient K; for interstitials is as shown as in Fig. 8.

Since the Kirkendall drift has the opposite sign for the interstitial
flux as compared to the vacancy flux, a positive coefficient K; implies that
interstitials are attracted towards higher nickel concentration. This is the

case when nickel is the faster diffusing species when migrating as part of a
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Figure 7 Predicted Kirkendall force coefficient for vacancies in

binary alloys of iron and nickel.
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Figure 8 Example of a possible Kirkendall force coefficient for
interstitials in binary alloys of iron and nickel.
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self-interstitial. However, when it is the slower diffusing species, then Ky
is negative and the interstitials are repelled by regions of higher nickel
concentration.

Considering the magnitude of the Kirkendall force coefficient Ky, it ap-
pears that the Kirkendall force will affect the interstitial bias to a similar
degree as it does the vacancy bias. However, the effect could of course be
opposite for the two bias factors.

5. CONCLUSIONS

The presence of radiation-induced segregation in an alloy depends on the
continuous flux of vacancies and interstitials to sinks and on the unequal
mobilities of the alloy constituents. Given these two conditions it then
follows by necessity that the compositional gradients will also affect the
flux of vacancies and interstitials by introducing additional drift forces.
Although the absolute magnitude of each point defect flux will not be changed
significantly, the difference between the interstitial and vacancy flux will
be altered. In other words, although the average mobility of the point defect
is hardly affected by the segregation, the bias can be modified considerably.

The bias modification is basically the result of the following effects.
First, the energy of a point defect depends on the local alloy composition.
Therefore, when the point defect migrates through a compositional gradient it
diffuses either up or down a potential energy gradient. Whether this po-
tential energy increases or decreases depends on three factors: the contri-
bution of interatomic forces to the point defect energy, the dependence of the
strain energy of the point defect on the local elastic moduli, and finally,

the coherency strain field produced by the non-uniform alloy composition.
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These potential energy changes induced by the segregation can be of the
same order of magnitude as the mechanical interaction energy of the point
defect with the stress field of dislocations, as has been demonstrated here for
the case of binary Fe-Ni alloys. It is to be expected that similar changes can
also be induced in other alloys where radiation-induced segregation occurs.

In addition to the above potential energy changes, the inverse Kirkendall
effect gives rise to an additional drift force. Its effect on the interstitial
bias factors appears to be of secondary importance compared to the other ef-
fects. However, for vacancy bias factors, the Kirkendall force appears to be
significant.

The implications of the present findings are that they may provide a
physical basis not only for the understanding of the effect of alloy compo-
sition on swelling, but also for alloy development. In principle, radiation-
induced segregation has the potential to both increase or decrease the bias.
Whether the last possibility can in fact be realized in a particular alloy
system will depend on the detailed knowledge of such fundamental properties as
elastic moduli, lattice parameter, and tracer diffusion coefficients as a
function of alloy composition and temperature. These properties have in the
past not been considered essential in the development of radiation-resistant
alloys. In view of the new results presented here, however, such properties
may contain essential information to assess the radiation damage resistance of
an alloy class.
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Appendix A

The energy associated with an elastically strained solid is given by
21

where .. = C

ij = CijkeSke = C (A2)

ijkelk, e °
U is the displacement vector field, ¥ is the load vector on the external

surface S, and ¥ is the distribution of body forces required to simulate the

presence of point defects.

0
ijke
while the same body and surface forces are maintained. As shown by Walpole

Suppose that the elastic moduli Cijkz(;) are changed to new values C

[29] the energy change associated with the modulus change is

=1 0 0
or
21 0 0

0
1j
strains after the modulus change. An upper bound for (U - Uy) can now be ob-

where Sijkz is the compliance tensor and o;. and e?j are the stresses and

tained when € is replaced by e?j

replaced by o?j in Eq. (A4).

in Eq. (A3), and a lower bound when oij is

For elastically isotropic solids we obtain then
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Lt - 2620 - 122 - 20 0 1 av < u - 7 T - Ddyet,

ij7ij ~ 3 'k i1733 ijoij
(A5)
1 ,x u, o o
+ 5 (— - o .} dv
3 Ko Mo i JJ
where yu, uy are the shear moduli and «, Ko the bulk moduli.
Let us now assume that Mg and Ko are constants and that
w(P) = u + 8u(F)  ,  k(F) =« + &c(¥F) . (A6)

0 0

For small variations, &u << By and 8k << k,, we can expand the factors con-
taining the elastic moduli. Keeping only linear terms we find that the upper
and lower bounds of the inequality (A5) coincide. Therefore, to linear order

in Su and 8k,

|=
O
o
—
O
ra
O
O
L_l
Q.
=3

su

U- U f[ (A7)

Nln—-

Furthermore, Eq. (A7) still represents an exact upper bound regardiess of the
magnitude of Sp and é«k.

Suppose now that the stress field o?j is the one produced by a point
defect modeled as an inclusion. The inclusion is thought to be formed by
expanding a spherical volume @ to a new volume @ + v, where v is equal to the

relaxation volume of the point defect. Then [19]
(16 2/9|< Y{v/Q )2 for r < r
Ho/ 7o A )

(4uo/3)(v/m)2(ro/r)6 for r > "o
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and

2 2
(16uo/9Ko)(V/QY) for r < L
0 for r > s
where r, is the radius of the sphere with volume @ and
Yy = (3|<0 + 4uo)/3a<O .

It is seen that outside the inclusion, the strain energy density de-

6 with increasing distance r from the center of the inclusion.

creases as r-
As a result, the dominant contribution to the integral in Eq. (A7) arises from
the volume inside and immediately outside the point defect. Therefore, if su
and éx vary little over the volume of the point defect, they may be taken out-

side the integral and we obtain

3k 4y

= o Sp 0 Sk 1BR A8
sU {ﬁ—Ko+“o“o+Ko+“oKo}UB (A8)
where
2¢ _p 2
R _1 0 0 - o’0 Vv

is the strain energy or bulk relaxation energy of the point defect.
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Appendix B
Variations of the 7lattice parameters introduce an inelastic strain
distribution of ey = 6ijn(F) into the solid similar to thermal strains. The
associated stress distribution can be obtained from the equilibrium conditions
%j,j = 0, where an index preceded by a comma indicates partial differenti-

ation. Using Hooke's Taw

og5 = wluy g ¥ Uy g - 20y oy Syslu - e ) (B1)

one obtains

1 _ a1l +wv
it To o Y, AT (82)

If we write U = Vo, then Eq. (B2) yields

2,1ty (B3)

The elastic dilatation is now given by

= - ol - 1-2v
sﬁ-ui’i—3n—v¢-3n—-21——_—5—n. (B4)

The size interaction of a point defect with this elastic strain field yields

then the coherency strain interaction

cC _ - l-2v ,»
U’ = -VKei'i = 2k I—ﬁ- n(r) . (BS)
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Using the expression for the bulk relaxation energy UBR we find

uC = u -‘S}UBR n(r) . (B6)
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