Analysis and Design of ICF Target Development
Facility First Wall Reinforcing Structures

R.L. Engelstad and E.G. Lovell

July 1982

UWFDM-478

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.




Analysis and Design of ICF Target
Development Facility First Wall Reinforcing
Structures

R.L. Engelstad and E.G. Lovell

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

July 1982

UWFDM-478


http://fti.neep.wisc.edu/

ANALYSIS AND DESIGN OF ICF TARGET DEVELOPMENT FACILITY
FIRST WALL REINFORCING STRUCTURES

R.L. Engelstad
E.G. Lovell

Fusion Engineering Program
Nuclear Engineering Department
University of Wisconsin-Madison

Madison, WI 53706

July 1982

UWFDM-478



Abstract

Light ion beam inertial confinement fusion reaction vessels will be sub-
jected to intense dynamic overpressure and heat flux from nuclear micro-
explosions. The conceptual design proposed consists of a cylindrical chamber
with capped ends. The shell structure is supported by a gridwork of stringers
and ribs. Modal static deflections and stresses for beam components are
developed in parametric form. The dependence of modal dynamic load factors
upon the pulse shape of the fireball blast wave are identified. Maximum
dynamic load factor values are determined and characterized as functions of
flexural frequencies for the structural components. The dynamic response is
determined by coupling the static results with the appropriate dynamic load

factors.



1. Introduction

One of the major influences on the mechanical design of ICF reaction
chambers is the shock wave generated by the fireball. The shock wave imparts
a dynamic pressure to the first wall which is assumed to be uniformly distri-
buted over the surface. The reaction chamber considered for the Light Ion
Beam Target Development Facility (TDF) is shown in Fig. 1.(1)

If the first wall structure is modeled as a perfect isolated thin cy-
Tindrical shell, then the radial pressure distribution will be sustained by
uniform circumferential normal stress. In other words, such a concept is
essentially a thin-walled tube in which the pressure generates circumferential
stresses and complimentary axial normal stresses. Accounting for distributed
mass and elasticity for this model will lead to dynamic response characterized
by a breathing mode in which each cross section remains circular, expanding
and contracting in simple harmonic motion following the mechanical shock.

However, such an idealized state will not be realized in an actual
chamber because of a variety of mechanical constraints including beam ports
and external supports. A practical design would use a shell with a structural
reinforcement system. Since the overall shape of the TDF is cylindrical, a
configuration with axial stringers and circumferential ribs is consistent.
This is shown schematically in Fig. 1.

In the analysis which follows, the frame is modeled as a system of beams
in which the curvature and hoop force capacity of the ribs are not included.
In addition, the shell is assumed to transmit the full strength of the over-
pressure to the frame. This approach will lead to conservative design.

2. Dynamic Load Factor

One approach to the dynamic analysis of beams consists of determining the

quasi-static reaction and multiplying it by a dynamic load factor (DLF) to
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give corresponding dynamic effects. The dynamic load factor represents the
ratio of the maximum dynamic response to the static response.(Z)

Since a beam under uniform pressure will respond approximately as a
single-degree-of-freedom system, it is appropriate to consider the dynamic
response of such a system. For a simple spring-mass-damper system with

forcing function F(t), the equation of motion is given by
my + Ky + cy = F(t) (1)

where m and k are the mass and stiffness, respectively, and cy is the viscous
damping force. To express the solution in parametric form it is convenient to
introduce the concept of critical damping. This is the amount of damping that
is needed to eliminate vibration and is defined as ¢ = /75; .

Considering free vibration, the homogeneous solution to the equation of

motion is
_ o-Bt .
Yy = e (Cisin wyt + Cycos wyt) B < w (2)

where 8 = ¢/2m and wy = /wz - 32 . Here wy and w represent the damped and

undamped natural frequencies, respectively. If the system is subjected to an

initial displacement and velocity, y, and }0, Eq. (2) becomes

‘y0 * B‘y()

= Bt
= @ ( my

Yy sin w,t +y cos wdt) . (3)

It is apparent that when B = w the response is no longer periodic. Instead of

vibrating, the system simply returns to its equilibrium position, i.e. it is



critically damped. Thus, B is a measure of the damping present and is speci-
fied as a certain percentage of the critical value.

For the forced response, consider the general load-time function shown in
Fig. 2. The shaded area represents an impulse applied at time t = 7. The
particular solution for the forced vibration due to an increment of impulse is

given by

F(t) dt e—B(t-T)

Yp = mw

sin w,(t - 1) . (4)
d d

With F(t) = Fpax f(t), the static response is

= - 2
= Fmax/ k=F __/m” . (5)

yst max

This is substituted into Eq. (4) and the effects of all contributions are
summed:
2 t

w
Yp = Yep — [ fl1) e
P st wd o

-8(t-1) sin wd(t - 1) dt . (6)

Finally, the complete solution is given by

Y=Yyt Yp

or, .
_ -8t Yo ¥ BYo .
y=e (———zar——-s1n wgt + ¥ cos wyt)
(7)
2 t
-(t-1) _;
* Yot %E-fo f(t) e sin wd(t - 1) dt .
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For the chamber wall design, a pressure-blast pulse is used for f(t).
The load function consists of a ramp with rise time t, followed by an expo-
nential function with decay constant k (Fig. 3). For the first interval the
initial displacement and velocity are zero. Using DLF = y/ys¢ and integrating

the response, the dynamic load factor for t < t,. becomes

ﬂz_ [ t _ 28
t 2 2 2 2.2
roBT oty (8™ + wd)

e-Bt{

2 2\
. (8% - wy)sin wyt + 28w cos wyt}

2,2
q)

DLF = (8)

wd(B2 + w

For the second interval y, and 90 are the displacement and velocity terms at

t =t
2t e_Btr{(B2 - w2) sin w,t_ + 28u.coS w,t ]
y =0 r _ 28 + d d’r d d'r (9)
o %, B + wﬁ (8% + w§52 wd(B2 + wg)z
-t
ri;,2 2, .
;- W2 [ 1 e " {(8" - wy)sin w,t_ + 28w cos wgt, )
o t. L2 2 2 2.2
roBT touy wd(B + wd)
e_Btr{(s2 - w)cos w,t - 28w,sin w,t } !
+ d d'r d d’r ]
2 2.2 *
(8™ + wd)
Thus, the dynamic load factor for interval II (t > tr) is
-8(t-t )y + By,
DLF = e [ my sin wylt - t) +y cos wy(t - t)
(11)
2 Rt (B-k) (t-t ) _
t = 7 [uge - (B - K)sin wy(t - t) - wycos wglt - t)].
wd (B"k) +wd

3. Frame Analysis

The dynamic overpressure is considered uniform over the plates and parti-

tioned to the stringers and ribs as shown in Fig. 4. The tributary areas will
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produce uniformly varying 1ine loads with maximum values pa and pb for
stringers and ribs, respectively, where p denotes the maximum overpressure
from the shock. The procedure for analyzing the stringers and ribs involves
first determining the static response and subsequently modifying this by means
of a dynamic load factor to account for dynamic effects.(3) In this case,
stringer and rib Tengths have been chosen a priori. The design effort pri-
marily involves the determination of cross section characteristics such that
the mechanical stresses are within design 1imits and deflections are not
excessive.

The analysis uses a prismatic beam element with uniform mass per unit
Tength under a time-dependent loading which may be arbitrarily distributed but
is eventually specialized to the profile shown in Fig. 4. The effects of
shear deformation and rotary inertia are not included. With these consider-
ations, then, the principal equation of motion governing the transverse

vibration of the beam is given by

3 345"2’” +m azy(g’t) = p(x,t) (12)
X at
where: E = elastic modulus
I = cross section moment of inertia
m = mass per unit length
p = dynamic pressure (force per unit length)
t = time
Y = transverse displacement.

The coordinate system and loading on a typical beam of length & are shown in

Fig. 5.
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To determine the natural frequencies of the beam, the external Tload is
set equal to zero, resulting in the differential equation for free vibration.
A solution of the form

yix,t) = a(x) Y(t) (13)

is substituted into Eq. (12),‘1eading to

el dYe(x) _ 1 dPy(t) (14)
= - (53 v
mé(x) dx dt

With x and t being independent variables, the preceding equation can be satis-

fied only if both sides are set equal to a constant, producing two ordinary

2

differential equations. Choosing w“ for this constant, these equations will



have solutions of the form

Y(t) = Cisin wt + C,cos wt (15)
®(x) = Asin ax + Bcos ax + Csinh ax + Dcosh ax (16)
where
a4 = ﬁwz/EI .

The deformed shape of any span can be characterized by zero slope change

and zero relative deflection at each end. Thus, the boundary conditions are

y(0,t) = y(2,t) =0
(17)
ay(0,t)/ax = ay(e,t)/ax = 0 .
With these and Eq. (16) the following transcendental equation is obtained:
cos af cosh ag =1 . (18)

This equation generates an infinite number of discrete eigenvalues, an
(n =1,2,3,...), which are obtained numerically and are related to the natural

frequencies w, by

o = af](EI/ ) 1/2 n=1,2.3,... (19)

Corresponding to each natural frequency is a characteristic shape or

eigenfunction

e, (x) = Cp [(An/Bn)(sinh ax - sin a x) + cosh ax - cos anx] (20)

10



where An/Bn = (cos L - cosh anz)/(s1nh a % - sin anz)

and C, is an arbitrary constant.
After the mode shapes and frequencies have been determined, a modal-
superposition method of analysis can be used to solve for the dynamic response

of the forced vibration. Thus, any displacement can be expressed by super-
imposing appropriate amplitudes of the vibration mode shapes for the
structure. This can be written as
y(x,t) =¥ o, (x) Y () . (21)
n

Using an energy solution, Lagrange's equation is applied to the system

d[aK/a?n(t)]/dt +3U/3Y (t) = ag /aY (t) (22)

where: K = total kinetic energy
U = total flexural strain energy
e = external work

and (-) denotes differentiation with respect to time, t. The kinetic energy

for the entire system is given by

~
H

_ 2
(1/2) m [ y(x,t)" dx
0

L
(1/2)m [ [] o (x) ¥ (1)]° dx (23)
o n

— o o2 oo
(1/2) W] ¥(6) [ oo(x) dx
n 0

11



where m is considered to be constant over the span and orthogonality of the
mode shapes has been utilized.

The work done by external forces is

2
8, = [ plx,t) y(x,t) dx
0

(24)

L
=] P, 0[] o (x) ¥ (£)] dx .
0 n

Considering p(x,t) = P(x)f(t), where P(x) is the spatial load distribution and

f(t) is the time function, the external work becomes
2
e = flt) L Y (£) [ P(x) o (x) dx . (25)
n 0

Substituting into Eq. (22) yields

” £ 2
WY (8) [ e2(x) dx = au/aY () = () [ P(x) 5, (x) dx

0 0
or
- 2 _ L _22
Y (£) = w ¥ (t) = f(t) fo P(x) o (x) dx/m fo o (x) dx . (26)

Eliminating the time dependency, the modal static deflection can be

defined as follows:

o — 2 * o2
L fo P(x) e (x) dx/ m w fo e, (x) dx . (27)

To determine the dynamic response, the static response is multiplied by the
dynamic Toad factor (DLF). Then, the total deflection at any point is given

by

12



yix,t) = ] e (x) ¥, ot DLF -
n
The dynamic bending moment can be determined from
M( - 2 2_ 2 2
x,t) = EI 8%y(x,t)/ax" = EI ) Y DLF_ d“¢_(x)/dx (29)
n N st n n
giving a flexural stress
- - 2 2
o(x,t) = M(x,t)h/21 = (h/2)E g Yn st DLFn d @n(x)/dx (30)

where h is the cross section depth of the beam (Fig. 5).

Equations (28) and (30) are used to determine the beam deflections and
stresses, respectively. These equations can be simplified by considering P(x)
to be uniformly varying line loads as shown in Fig. 4. Also, it is found in
the beam analysis that the fundamental mode dominates both the static and
dynamic response. Therefore, only the first mode will be considered in the
following computations.

4. Quantitative Results

The reaction chamber (Fig. 1) has a cylindrical shell structure with a
height and diameter of 6 meters. Since the 40 beam ports are located in
pTanes at three elevations, it is convenient to partition the stringers and
ribs into lengths of 200 cm and 47 cm, respectively.

A number of materials have been proposed for the chamber wall and it
would be practical to use the same alloy for the stringers and ribs. Since
these components are completely immersed in the shield water, the material

properties correspond to 25°¢, (4)

13
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The dependence of stringer and rib fundamental frequencies on cross-
sectional radius of gyration is shown in Fig. 6. It can be seen that the
natural frequencies of the ribs are approximately an order of magnitude
greater than those of the stringers. This is an important design consider-
ation since dynamic load factors are strongly influenced by the flexural
frequency magnitudes. The dynamic load factors also depend upon the shock
ramp time (t.) and the exponential decay coefficient (k).

The frame analysis was based on a specific fireball calculation that
included the largest overpressure which could be expected in the TDF cavity
gas. This corresponds to xenon cavity gas at 70 torr seeded with 0.5% Cs with
a resulting maximum overpressure of 1.71 MPa at 1.32 ms (Fig. 7).(1) The
coefficients t,. and k were determined to be 0.14 ms and 3432/s, respectively.
Then, using Eqs. (8) and (11) numerical computations were carried out to ob-
tain the maximum DLF as a function of the fundamental vibration frequency for
various levels of damping as shown in Fig. 8. Because of the relatively low
frequencies of the stringers, the DLF will generally be less than unity but
the rib DLF's will be substantially larger.

Design curves for flexural stress as a function of cross section modulus
for both stringers and ribs have been developed from Eq. (30). These curves
represent the maximum static stress associated with the fundamental mode at
the "fixed" end of the beam. The overpressures cover a range of values and
include the specific case of 1.71 MPa as shown in Figs. 9 and 10. It should
be noted that the stress graphs can be used for any elastic material under the
given conditions. The design stress would be based upon both the yield
characteristics of the material and the DLF. With this, the section modulus
can be determined and thus the beam properties are established. In addition,

static deflections for the first mode have been developed from Eq. (28).

14
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Figures 11-20 show the midspan displacement as a function of cross section
moment of inertia for stringers and ribs for the various materials under
consideration.

5. Numerical Example

A specific case is presented here to outline the procedure. The material
selected is aluminum 6061 with a yield stress of 276 MPa. Cavity gas is xenon
with 0.5% Cs and an overpressure of 1.71 MPa as indicated earlier. In this
work, the following notation is used:

I = major axis moment of inertia

S = major axis section modulus

r = major axis radius of gyration

w = fundamental flexural frequency
o = flexural stress

Yy = maximum transverse displacement.

The various steps in the design procedure are summarized in Table 1. It
can be seen that the AISC manual has first been used to select four different
sizes of rectangular structural tubing. For each of these, the relevant cross
section parameters are listed. Next, the fundamental frequency is determined
and consequently the DLF is established. Using the cross section modulus (S)
and moment of inertia, the static stress and deflection (cS and ys) for each
are found from the appropriate design curves. These in turn must be amplified
by the DLF to give the corresponding dynamic response (o4 and yq). Finally,
each dynamic result must be compared with the design 1imits.

From the sample calculations in the table it is observed that the
stresses in the 8 inch tubing are below yield with acceptable deflections for
both stringers and ribs. With these dimensions a section of the wall and

frame has been drawn in proportion and is shown in Fig. 21.

20
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STRUCTURAL FRAME DESIGN EXAMPLE
Al 6061/5086; Overpressure 171 MPa

STRINGER RIB

V

l. Structural Tubing

26

Dimensions from 8x6x1/2 7x5x1/2 8x3x3/8 7x4x3/8
AISC Manual (in.)

2. Cross Section I-in* 103.0 63.5 51.0 44.0
faranerers (10%mm*) (42.9) (26.4) (21.2) (18.3)
Manual 3

S=in _ 25.8 18.1 12.7 12.6_

(10°m’) (422.8) (296.6) (208.1) (206.5)

r=-in. 2.89 2.48 2.64 2.45

(mm) (73.4) (63.0) (67.0) (62.2)
“

3. Static w=-Hz 330 284 5465 5073
Response
from DLF 0.65 0.58 1.27 1.34
Design
Curves OS-MPa 391 558 187 189

, ' ys-mm 7.94 12.9 0.21 0.24
“

4, Dynamic od-MPa 254 324 238 253
Response
(Undamped) 0.K.? Yes No Yes Yes

y4~mm 5.16 7.5 0.27 0.32
0.K.? Yes Yes Yes Yes
Table 1



CONCEPTUAL FIRST WALL
STRUCTURAL SYSTEM

Figure 21
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Stress and deflection time histories have also been determined. For
example, the flexural stress response of both the stringers and ribs are shown
in Figs. 22-25. 1In the undamped cases it can be seen that initially the
stress response follows the pulse and subsequently develops into free vi-
bration. With damping the number of cycles at various stress levels can be
determined and subsequently used in fatigue 1ife calculations.

This specific example is intended to identify the details of the design
procedure. Different aspect ratios for the stringer and rib spacings can be
used. As well, different geometries for the stringer and rib cross sections
can be considered. Finally it should be emphasized that the analysis upon
which the design procedure is based is extremely conservative. Refinements
will lead to a design in which stringers and ribs are both lighter and not as
closely spaced.

6. Conclusions

Modal analysis has been used to determine the response of reaction
chamber reinforcement components proposed for a light ion fusion target
development facility. From the techniques developed, parametric data is
generated for design purposes. The relationship is established between stress
and deflection magnitudes and extreme values of dynamic load factors. These
in turn are shown to be primarily dependent on the natural frequencies of the
components, structural damping levels, and the shape and amplitude of the
dynamic overpressure. In particular, it is shown that the supporting
structure can be designed to carry the dynamic overpressure generated in the
reaction chamber of the proposed Target Development Facility.
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