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ABSTRACT

It has been proposed to investigate(l) the possibility of surrounding the
target chamber of the Light Ion Beam Target Development Facility with a water
shield. Such a shield would effectively isolate the chamber from the environ-
ment while providing a medium in which to absorb energy imparted to the target
chamber following impact of the fireball.

If the water surrounding the chamber provides a damping mechanism for the
wall vibrations, it also provides a medium through which a pressure pulse can
be transmitted to the outer wall of the shield region. It is desirable to
minimize the pressure loading upon this structure.

A preliminary investigation of the effects of a bubble screen upon the
propagation of the water pressure wave is presented, along with some possible
criteria for the design of a screen. It is found that, while a screen effec-
tively shields the outer wall, reflection back to the target chamber occurs.

A screen must be tuned for an optimum balance between reflection, transmission
and absorption.

Estimates of the fluid pressure amplitudes are arrived at by modeling the
target chamber as a harmonically pulsating vessel and solving for the result-
ant fluid motions. For purposes of analyzing the screen an incident plane

wave with comparable amplitude is employed.



1. INTRODUCTION

In this report we present calculations of the propagation of acoustic
waves generated by a pulsating vessel submerged in a large water filled pool.
In addition we calculate the reflection, attenuation, and transmission of
these acoustic waves by bubble filled regions in the water tank. This is
shown schematically in Fig. 1.

This work was motivated by design activities on the Light Ion Beam Fusion
Target Development Faci]ity(l) depicted in Fig. 2. In this facility a light
ion beam driven target is exploded inside of the vessel shown in the center of
Fig. 2. The vessel is filled with approximately 20ktorr of gas to support the
propagation of the ion beams through preformed plasma channels from diodes to
the target. This gas subsequently absorbs the x-ray and ionic debris emanat-
ing from the target, creating a micro-fireball that propagates to the wall of
the vessel. The wall of the vessel must be designed to withstand the blast
pressure and heat flux from the fireball.

Approximately 30% of the fusion energy is released in the form of x-rays
and ionic debris. The remainder comes in the form of high energy neutrons.
Thus there is the need for substantial amounts of neutron shielding around
this reaction vessel to protect operating personnel and to avoid activation of
the surrounding pulsed power machine that generates the energy to drive the
ion diodes. Since this is meant to be an experimental facility it is also
desirable that there be easy access to the vessel and the diodes. In this
situation a water shield in the region between the vessel and the water di-
electric section of the pulsed power machine is an obvious choice. It can be

easily drained to give access to the vessel for maintenance.
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However, this concept does present some technical difficulties. The
shock overpressure on the vessel wall created by the micro-fireball sends the
wall into a vibrating motion, thus transmitting the overpressure into the sur-
rounding water shield. This disturbance will propagate through the water to
the wall separating the water shield from the water section of the pulsed
power machine. It will propagate through this wall, into the water section,
and possibly damage the pulse forming lines or other components.

A proposed solution to this problem is the introduction of a bubble
“screen” in the water shield that would attenuate the pressure wave. To pro-
vide the basis for the analysis of this design we have investigated the propa-
gation of cylindrically and spherically divergent acoustic waves radiated from
a pulsating source. We have verified that the linear acoustic theory is
applicable to our particular set of conditions. Knowing the structure and
amplitude of the waves we analyzed the interaction of these waves when they
are incident upon a bubble filled region of finite thickness. We calculate
the reflection, attenuation and transmission of waves in general, and for our
particular set of circumstances.

1.1 Formulation of the Problem

A conceptual picture of the Light Ion Beam Target Development Facility is
shown(1) in Fig. 2. The target explosion within the target chamber generates
a blast wave which propagates through the cavity gas, transmitting a pulsed
heat flux and shock overpressure to the first wall. Maximum overpressures
have been estimated using computer simu]ations.(z) Figure 3 shows a typical
result for a particular choice of design parameters.

The target chamber is supposed to be constructed of plates and stringers,

Fig. 4. The frame is modeled as a system of beams in which the curvature and
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hoop force capacity of the beams is not included, the plates are assumed to
transmit the full strength of the overpressure, without resistance from cir-
cumferential tensile stresses.(3) Dynamics of first wall response is treated
in detail in Refs. (3) and (4).

Detailed modeling of the response of a plate section yields the time
behavior of the maximum deflection point. After a short transient time the
motion is harmonic and damps exponentially. Damping is dependent upon intern-
al dissipative mechanisms such as strain energy. Previous analysis of the
plate motion has included no external damping forces.

For the purposes of this study the structure of the vessel wall will be
simplified considerably, with plates and stringers eliminated completely. The
target chamber will be modeled as a single component, of uniform composition,
comprised of a cylindrical barrel with hemispherical caps. This vessel will
pulsate harmonically in the same fashion as the maximum deflection point of a
plate. Transient effects will be ignored, the wall begins damped oscillations
at time zero with maximum velocity taken (unphysically) at this time. This
has no effect upon further analysis except to eliminate the transient wave-
front emitted by the vessel during this time.

This model presents a worst case treatment as far as the outer wall is
concerned. Due to the complicated rib-plate structure a real wall would not
be expected to emit perfect cylindrical or hemispherical waves. In this case
it is expected that the overpressures at the outer wall would be diminished;
due to the randomizing effect of the vessel wall much of the energy would be
emitted nonradially. Further, the deflection amplitude is over-estimated and

should be taken as a mean deflection over a plate surface.(5)



Complicated reflection patterns, associated with a free-surface and a
zero-velocity surface, will develop in the water shield. These effects are
ignored with the assumption of a chamber surrounded by an infinite shield.

A cylindrical bubble screen, concentric with the vessel, is generated by
a plenum as shown in Fig. 2. Since the screen is assumed to be located some
distance from the chamber it will prove adequate to consider only plane waves
incident upon a bubble slab.

1.2 Cavitation at the Water-Wall Interface

Before considering the propagation of acoustic waves in the water we look
at the conditions that are necessary to avoid cavitation at the wall-water
interface. Cavitation in this region might change the character of the trans-
mitted pressure wave. Water supports very little tension, consequently, for
violent wall pulsations, water may break away from the wall, forming local
boiling and turbulence. This cavitation results from negative instantaneous
pressure at the water-wall interface, thus the concern is with pulsations that
Create pressure amplitudes greater than the hydrostatic plus atmospheric
pressure.

The acoustic intensity of a sound wave (average power transmitted per

unit area) is given by

2
[ = Ppeak
Z2pC

where ¢ is the sound of speed and p the density of the medium through which
the wave is propagating. This is also the power per unit area emitted by the

wall, hence cavitation will occur if



V2 IpC > PO

where P, is the ambient pressure at the water-wall interface.
The sound speed in a one-component, two-phase mixture is dramatically de-
creased with respect to the sound speed in either the pure vapor or the pure

fluid p _.e. An asymptotic result, valid for void fractions X << 1 is(6)

c = unvl/RT /cP |
1

where: R = gas constant
Vi = liquid specific volume
p = molecular weight
P = pressure
T = absolute temperature
cp1 = Tiquid specific heat at constant pressure.

Formation of voids at the water-wall interface will decrease the sound speed
in a thin sheath surrounding the vessel wall. Voids will form on the compres-
sion cycle and condense out on the expansion cycle of the wall. Whereas
shocks are not expected to be launched into pure water in the case of the TDF
they could be launched into this two-phase boundary region if the sound speed
were less than the wall speed at some point of the expansion cycle. Even when
most of the voids have been condensed out, the sound speed is greatly de-
creased.

Finally, the fact that the water at the water-wall interface will be ex-

posed to a neutron flux could increase the likelihood of void formation.(7)



A major assumption will be that void formation will not appreciably
change any of the important characteristics of the wave ultimately impinging
on the outer wall.

2. ANALYSIS OF WATER PRESSURE WAVES EMMITED BY A PULSATING VESSEL

In this section a nonlinear treatment of the fluid dynamics, allowing the
possibility of shocks, is presented. The equations are then specialized to
the linear accoustic case for the remainder of the analysis. The basic

hydrodynamic equations governing wave motion in a fluid are

sEelmt) + TR 0UF,1) = 0 (1)

e o(F U = -TP(F,0) - 33,0 + o(F, 003 (2)
P(F,t) = P(o(F,t),s(F,t)) (3)

st =o0. (4)

Equation (4), which is the specific entropy transport equation is a conse-
quence of assuming reversible adiabatic changes behind the wave front. This
condition is achieved if the influence of heat conduction and diffusion can be
neglected in the time interval during which an element of fluid is traversed
by the wave. In reality all elements of the wave are not on the same adiabat.
For cylindrical or spherical waves the wave front is of changing intensity so
that the entropy increment of a fluid element depends upon the time at which

it passed through the wave front.(8)

10



There are six equations to determine:

o(F,t) s(r,t) V(F,t)

P(Fr,t)

Neglecting the stresses due to viscosity and assuming only radial dependence

the basic equations reduce to:

p(ryt) 3 (rt) + olr, tW(r,t) () = - 2 p(r,q) (5)
2 etrt) + L2 (om0 = 0 (6)
’ ;‘Ear ’ s .

Following Ref. (8), the Tait equation of state along an adiabat is employed

pO (ap) = 1
P \aP/T o CZ (7)
n( 2 °+p)

with n = 7. The entropy equation (4) is then no longer needed. With the

introduction of a velocity potential there results:

V(r,t) = 2= o(r,t) (8)
2 v
Laig. L g w2-4%. (9)
A do A= A E

The nonlinear wave equation (6) specializes to

11



—2-(Y‘¢) ——E—Z-(Y‘tb) =E’Z(7Z—3’r'_'a’t_J (10)

15 1086 1 2% 1 L V2 qv2

————— — - (11)
2 st c Z ar HTfJ

for the cylindrical wave. Boundary conditions are:

3¢ _
5?'(Rwa11’t) Vwa11(t)
¢(r,=) =0

p(e,t) <

¢(r,0) =0 r >R .

wall

Determination of the pressure proceeds from the continuity equation

3 3 Vv . kV )
(-a—t"' v 3';"’ -a—r-:"" Y‘_) p(r,t) =0 . (12)
With the definition
glr,t) = -(% + Ky (13)

the continuity equation is written as

(%{'+ v E—J plr,t) = &g(r,t)p(r,t) (14)

from which we get

12



dp g _ _
ar v Hf-g a-E—V (15)

along a characteristic. Finally, the equation of state closes the system

2

p.C 2

Plr,t) = 20 (20t g (16)
pO

Given the wall velocity V(R,,t) this system of equations can be solved
for the pressure wave in the fluid. This method will not be employed fully
but will be reduced to the acoustic 1imit by showing that the nonlinear terms
are of little consequence for the wall motions ﬁnder consideration.

2.1 Spherical Wave Case

2.1.1 Spherical Waves

If we neglect the nonlinear terms in Eqs. (8) and (9), they become

2
v (re) - L2 (re) = 0 (17)
c ot
= 3¢
V=3
BV _ 9P
o3t~ " ar -

2.1.2 Undamped Case

The solution of these equations for the velocity, assuming undamped

harmonic wall pulsations Vw(t) = Vwcos wt, t >0 s

13



2
v r - R
Vir,t) = W' 1—-[(c2 + R rw)cos w(t - Ly
2 22 2 W
c +wa r
(18)
r-R
c W
_ r-R, Vwcsz r-R, 'W(t'c )
- colr - R )sin ot - —)] + — 5~ €
¢+ R w
W
(17)

valid for t < (r - Rw)/c.

2.1.3 Evaluation of Nonlinear Terms

The previous linear result can be used to estimate the nonlinear effects.

We substitute this expression for velocity into the nonlinear term

2 2
1 (Vv dv
7 Zw " @) (19)
c
at the wall, at time zero, and this yields
v v
1 2 oV _ W2 W
- Zﬁ'vw (ar)wall (E—J ﬁ;" (20)

For the wall pulsations under consideration a typical velocity is not greater

than 10 m/s. We find

(?.V.J,ZV_LZ_G_Z%) =;ﬂ_5"é£§ (21)
or r e ot wall W c° ot
so that the ratio of nonlinear/linear effects is

v

(Eﬂjz <1 . (22)



2.1.4 Damped Case

When we introduce a damping function y(t) the wall velocity can be repre-

sented by

0 t <0
vV, (1) = { (23)
VwY(t)cos wt t>0.

In this case we can solve for the fluid velocity using Laplace transforms:

%_+ o e r-Rw
Vir,s) = VwRe[?(s - iw)] c e ¢ (24)
RtS
W
where
T(s - dw) = Llv(t)e'®h .
Exponential damping y(t) = e™ 't is assumed so that:
r-R
R -1 + 4 S -s = w
Vir,s) =v W 4[5Sty I e ]. (25)
wr 2 ¢
(s + 'Y) p—"' S
W

Inverting this expression, the velocity is determined to be

e e
Vir,t) = (%_-_ :)g — 7 e c {%;.(%;.- Y)(r - R, Je W
W
+ [c(%;—— Y) + of - Y(%;'- y)r]cos w(t - ’ ; RW) (26)
- E_.(r - R )sin u(t - ' ; Rw)} .

w

15



To determine the important quantity, which is P(r,t), the relation

Plr,s) = Re[{-2X_ oV(r,s)] (27)
—+ i e
r C

is employed. The result is

P(r,t) = 2 [(Acos w(t - Ly
2 W\, 2 ¢ 2. T c
(1-r ;ﬁ)(m + (ﬁ;" Y)")
(28)
r-R c r-Rw
. r- Ry (e )T R;{t- )
+ Bsin w(t - ——))e + Ce ]
where
2, 2 2 )
A= Y‘Z‘”Z('w—-::;l‘ - %Y‘) + Y‘(%—- -yl wz)) + [C(Yz + Wl - .E__Y_)
W W W
200y 1 2, 2y ,w 2 .2 weyy , wct
B=r (E—'(Y +w ) + R_'(“ -¥9)) + (- R—_J L (29)
W W W

2 wzc 2 + w2 C2 w2c c 2 2
C=r(=2) + r(c X R - R L ) * Lo (y" +w%)c) .
R W

w

This function is depicted in Fig. 5. A1l physical parameters and design para-
meters are as in Table 1. - The plot depicts the wave fronts for times 0.1 to
0.7 ms. The wave fronts end abruptly since the motion of the wall is assumed,
unphysically, to begin at time zero at maximum velocity on the expansion
cycle. The detailed structure of the wave front beyond the abrupt termination
depends upon the initial movements of the wall during the transient period, as
discussed earlier. Figure 6 depicts the same wave for times 4.1 to 4.7 ms as

it impinges upon the outer wall. The pressure amplitude at the outer wall at

16
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Table 1. Specific Parameters for Acoustic Wave

and Bubble Screen Calculations

Target Chamber Parameters

Ry, = 3 m barrel and hemisphere radius

Hw = 6 m barrel height

w = 4838 sec'1 vibration angular frequency

V, = 5.7 m/s maximum wall velocity

E =60 M blast wave hydrodynamic energy per shot
y = 0.118 ms'1 damping constant

Fluid Physical Data

103 kg/m3 water density

Py =
¢ = 1470 m/s sound speed
Ky = 4.76%10"10 mz/nt compressibility

Bubble Physical Data

Ry, = 4 mm resonant bubble radius

Ry = 2 mm bubble radius

8§, = 0.02 bubble resonant damping constant
o = 0.07 J/m? bubble surface tension

Kp = 5*10'6 mz/nt compressibility

18
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this time is 2.4 MPa. Figure 7 shows the same wave at time 8.5 ms which is
one damping time of the wall motion.

2.1.5 Pressure at the Wall

The fluid pressure at the water-wall interface is computed from the

relation:

PR ,t) = Re[p v, o= liovty

cw i % (30)
W
This yields:
PoRu'w 2 i vt
P(Rwst) B —2_7 [(Rw %’— - y)cos wt - (w + YRW %’-)sm wt]e LA (31)
1+ RS2
Wz

Figure 8 depicts this pressure for the data in Table 1.

2.1.6 Intensity and Total Energy Per Shot

Analysis of the external damping effect of the fluid upon the pulsating
wall is currently underway.(g) Inclusion of coupling between the wall re-
sponse and the surrounding fluid response will result in an estimate of the
relative amounts of energy absorbed by the wall per shot which are (a) dissi-
pated within the wall, (b) transmitted to the fluid and (c) reflected back to
the target chamber interior.

The energy flow rate through a unit area at the vessel surface, averaged
over a cycle, is:

t+ X
w w

I(t) =5 f" PR ,T)V, dr . (32)
t-7

Inserting P(R,,7) and V (1), this yields:

20
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RS
I (t) = 1 cV2
W 7 Pot'w

o le
N
NN
'
Ol
pro)
=

e 2vt | (33)

w
Rw Zz—+ 1

Integrating over time and the hemispherical surface, the energy emitted per

shot is:
3,2
E =T pORWVW (R ﬁ_ )
n T , 2N Y (34)
1+ Rw Z?-

Inserting values from Table 1 yields 5.65 MJ emitted per shot.

2.1.7 Cavitation

Recall that from our previous discussion the condition that no cavitation

occur is I, < p2/2p.c. Using I, from 2.1.6 this condition becomes

2 2
R w
B
y <D0 v & i (35)
w p.C V4
wC

which is inconsistent with the data from Table 1. This indicates that cavi-
tation should be expected. The effects of this cavitation on the ultimate re-
sult of this analysis are not yet clear.

2.2 Cylindrical Wave Case

2.2.1 Cylindrical Waves

If we again neglect nonlinear terms for the cylindrical wave case the

basic equations become

23



3¢, 134 _1 3¢ (36)
o T Z?
Vir,t) = 3—-¢(r t)
5 ar H
V. _3x
Po 3T ar
2.2.2 Undamped Case
An undamped harmonic wall pulsation generates a fluid velocity
(2) rw
Hy“' (=) .
- 1 ‘c jwt
V(Y‘,t) = VwRe [m e ] (37)
1 W C
where Hiz) is the first order Hankel function of the second kind. This may be

used to check the magnitude of the nonlinear terms as in the spherical case.

2.2.3 Damped Case

Taking the Laplace transform of the basic equations and applying the

transformed boundary conditions results in

Ky (T s)
Vir,s) =y, —2 LY 1 (38)
(S + Y) + w K (_w S)
1'c
where K; is the modified Bessel function of order 1. This may be inverted
using the residue method(lo)
1 oti® 4t 1 zt N zt
f(t) = EET-O_éw e”" Flz)dz + ??T'fcm e”" Tlz)dz = nlees[?Tz)e ]z=Zn . (39)

The function K, (z) is analytic in the z-plane cut along the negative real axis

and has no zeroes in |arg z| < /2. The number of zeros in n/2 < |arg z| <=

24



is the even integer nearest v - 1/2 unless v - 1/2 is an even integer in which
case the number is v - 1/2.(11) Ky thus has no zeroes, furthermore
K1(z)/Kq(cz) is single-valued. Therefore v has poles only at s = -y £ iw.

Choosing the contour shown below

Ims
..[®
= Res
® | 4o
the inversion yields
Kl(%'(_y + im)) _( -im)t
v(r,t) = V Re[—-< e TR (40)

Kl(-c—"i (-y + iw))

which reduces correctly to the undamped case for y » 0. The modified Bessel

function of a complex argument will be expanded as

- 3 1
Ky(z) = /o= e™® [1 + 5= + o) - (41)

From this the resulting fluid velocity is

R
v (%372 -y(t-(r-R_/c)
Vir,t) = () e ( /) (42)

(R 3 YC )2 + (3 wC )2

w 8 2 2 g 2 2

Y tw Y tw
W 8‘7—?‘Y . W '8-C T—Q_Y . o CosS w C

3 wc . r- Rw

'g'—z—'z-(r‘—Rw) sin w(t- c )] .
Y to

25



The fluid pressure is obtained from the expression

. Ko (T (-7 + iw)
plr,t) = Vo Re[el 101t °(g IAACIEN (43)

Kl(c—w (-y + iw))

The result, upon approximating K, to the same order as Ky, is

R
(;!J3/2 -v(t-(r-R /c))
p(r,t) = VP oS RS _ 2R cr + (3c)2 1 €
w & w2 2 8/ 2 J (44)
Y to Y tow
r - R
1 c¢r CH\2 1 W
*[(PR+ 32— (R - 3r) - 3(§) ——t—s)cos w(t - )
w 8 Y2 + wz W 8 YZ + wZ c
1 cw r‘—Rw
-g—5 7 (r, * 3r)sin w(t - - )] .
Y tow

This pressure is plotted in Figs. 9-11. These pressure waves are analogous to
the spherical waves. Pressure amplitudes at the outer wall are greater for
the cylindrical wave, as expected, since the geometry results in a weaker
divergence.

2.2.4 Fluid Pressure at the Wall

The fluid pressure at the cylindrical wall is

) 1 Yty 10202 . 2
P(Rw’t) - proc RZ( 2 + w2) _ §-R cy + (3c)2 € [(Rw(Y too- ZRWCY
w' Y T WY 8

(45)

- 3(§J2)cos wt - %—chw sin wt]

and this is plotted in Fig. 12.
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2.2.5 Intensity and Total Energy per Shot

The acoustic intensity of the damped cylindrical pulsation is

2 2 C\2
(v2 + o) - 2R WY - 3(g)
2 w g -2yt
I, (t) = 2—V p C[ 72 I 2]e (46)
W( + w ) 'IR cy + (-8—)

where the factor in brackets is approximately unity for data in Table 1 since
the wavelength, 1.9 m, is not large compared to the cylinder dimensions. The

total acoustic energy emitted by the cylindrical wall per shot is

RE(Y% + w?) - 2R ey - 3(8)?
E =5 V% R H 7Y W g (47)
2Y woww R2(v2 + w2) - IR c s (392
R v F "W T g

For the data in Table 1 this yields an energy of 11.4 MJ per shot.

The sum of the energies emitted by the cylindrical and hemispherical
walls, 22.7 MJ, is to be contrasted with the total hydrodynamic energy, 60 MJ,
of the blast wave incident upon the target chamber inner wall. A more real-
istic model would perhaps include only the upper hemisphere for the purposes
of energy emission since the bottom hemisphere is firmly anchored to support-
ing structural members as shown in Fig. 2.

2.2.6 Cavitation

Again if we look at cavitation at the water wall interface for the cylin-

drical case we find

2 2 3 c+\2
v < Po [ g(Yz + ) - 3 RCY + 3£§J2 1/2 (48)
L R, (¥ + ) -4chy+(-8£)

which is inconsistent with Table 1.
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3. BUBBLE SCREENS

It is of interest to contemplate the use of a screen of small bubbles as
a barrier to and absorber of pressure waves launched by a vessel submerged in
a pool of water. This report represents a preliminary examination of such an
application. Although many of the models employed are perhaps oversimplifi-
cations it is hoped that the major issues involved are clearly delineated.
Further work could be carried out to improve the details of the analysis.

The pronounced effect of gas bubbles in a fluid upon the sound propa-
gation within that fluid is well known. A few widely dispersed bubbles, so
small as to be invisible, have an appreciable acoustic effect.(lz) The propa-
gation speed is greatly diminished and substantial attenuation occurs.(13)
Fluids containing a large number of bubbles will be practically opaque to
acoustic waves.(12)

For the purposes of this analysis a bubble screen is defined to be a
random distribution of bubbles, of identical radius and physical properties,
within a well defined slab region in a pool of water. Upward motion of the
bubbles is neglected since the frequencies of interest are quite high. Vari-
ation of the bubble size and internal pressure with depth are ignored.

Given the void fraction x within the screen the nearest neighbor in the
random distribution can be computed. The probability that the nearest neigh-
bor 1ies between r and r + dr is

W(r)dr = 4nr2nexp(- %—nr3n) dr (49)

(14)

where n is the number density. The expected separation distance is

32



[+ <]

D = /[ rW(r)dr = 0.5539 n~1/3 (50)
0

or, in terms of the bubble radius b and x

D = 9;%;%2 My
X
For ry in Table 1 and x = 0.001 this gives D = 1.8 cm. The corresponding num-
ber density is n =3 * 10% m=3. Such a screen can be modeled as a homogeneous
fluid, suppressing the discreteness of the bubbles. This is the approach
employed in Section 3.2.1.

3.1 Bubble Screen Conditions

3.1.1 Damping Constants

"Bubbles excited to volume pulsations have a polytropic equation of state
for the enclosed gas which results in a phase difference between the change in
pressure per unit original pressure and the change in volume per unit original
volume. Therefore, the work done in compressing the bubble is more than the
work done by the bubble in expanding; this difference in the work done repre-
sents a net flow of energy into the 1iquid.“(12) The damping associated with
this mechanism is called thermal damping.

A second damping mechanism is called radiation damping. Pulsating
bubbles act as sources of outgoing spherical sound waves. A fraction of the
bubble energy is radiated in this fashion. Since this energy is initially in
the incident or driving wave this represents a loss mechanism for the incident
wave mode. The combined effect of many such oscillating bubbles is a random-

ization of the wave energy initially organized in the incident wave.
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The third important damping effect is that of viscosity. Although as a
bulk the fluid is considered to be inviscid, at the fluid-gas interface
viscous forces are included. As the bubble rapidly expands and contracts this
viscous effect results in heating of the fluid.

The possibility of bubble breakup and the associated energetics of the
latent heat of surface formation will not be considered. The bubbles are
small enough that breakup seems unlikely.

A total damping constant is defined to be the reciprocal of the Q-value
of the bubble-fluid system. The Q-value characterizes the fraction of remain-
ing energy lost per cycle. In terms of the three mechanisms discussed, the

total damping is

§ =8 +§8,, +6 . . (51)

The resonant frequency of a bubble-fluid system is given by Minnaert's

expression
7
_ o 1
fM = —3——-2;Rg (52)
where: vy = ratio of specific heats of bubble gas
P, = static pressure at which bubble has radius Ry.

For Table 1 data the radius of a resonant bubble is 4 mm.

Analytic expressions for the damping constants are:(lz)
16 1 F 3 1/2 3y -1
-3 s
8, = 2 (y - 1)
th 6 1 Fg_ 4 (53)
S y-12F
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n = polytropic exponent
F = 3YP0/4npr
Dy = thermal diffusivity of bubble gas.

Other variables are as previously defined. For f << 7kHz this expression re-

duces to Sepy = 4.4 * 10’4/? accurate to 1%. The radiation damping constant is

i 2nR0f

Grad C

gy1/2

&) (54)
where g/a is a factor which describes the departure of the bubble wall from
adiabatic stiffness. For large bubbles g/a ~ 1. Finally, the viscous damping

constant is

8w

1
Svis =3

5 f (55)
PO

L

Y
u = coefficient of viscosity at the gas-water interface.

Evaluating these at resonance yields the resonant damping constant. There are

numerous sources of uncertainty in this matter, nevertheless, the total damp-

ing constant will be taken as § = 0.02. One can get data such as this from

Table 1 as well as from the chart given in Ref. (12).

3.1.2 Attenuation Coefficient

A general theory of scattering from randomly distributed scatterers(ls)
is applied in Ref. (16) to derive the attenuation in decibels of a wave inci-

dent upon a bubble screen. For normal incidence the result is

3

R
0 w
4qR Eﬁ— 60 E
0 2 0



~
1]

bubble radius

~
]

resonant bubble radius

screen thickness

w
1]

8§, = resonant damping constant.

From this, an exponential damping coefficient can be computed as

5
1 3
=356 x| ]. (57)
w o EE‘ (1 - £9)2 + E65§

The function in brackets is sharply peaked about £ = 1 and achieves the value
6;2 there. Inserting Table 1 data gives
6

3
alg,x) = 1139 X .
(1 - £5)° + 0.0004 £°

This function is plotted in Fig. 13.

3.2 Bubble Screen Analysis

3.2.1 Barrier Problem

We assume that acoustic waves are normally incident upon a homogeneous
slab of bubbles dispersed within a fluid. The acoustic properties within the
slab are characterized by a sound speed Cp and attenuation coefficient a.
Outside the screen the sound speed is Cq and there is no attenuation.

A simple model will be used to estimate the sound speed within the
screen. The important effect is the change in fluid compressibility. Con-

sider two fluids differing only in compressibility

C = - % (g_;) (58)
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where v is the specific volume. Plane acoustic waves in each fluid are de-

scribed by
- e .
€ = pV energy density
p = Cpv pressure (59)
P =0, density .

A steady state source drives waves into fluid 1 and fluid 2, then

elclAt = szczAt (60)

through any test volume. This implies

|
2 1 c2
¢
Vo = Vg EE— (61)
C
2
P, =P —_.
2 1 c1

For a 1iquid the sound speed is c = vB/p where B is the bulk modulus. Taking

fluid 1 to be water and fluid 2 to be water + bubbles gives

_ 2
Cy = € //(g; . (62)

When a sound wave passes through a substance the compressions and rarefactions

are adiabatic. Then the appropriate compressibility is
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-1
Y

Kadiabatic Xisothermal

where v is the ratio of specific heats. Actually, as mentioned, the bubble
compressions and rarefactions are polytropic. For small bubbles the process
occurs isothermally whereas for large bubbles the process is adiabatic for gas
deep within the bubble and isothermal at the gas-water interface. Bubble com-
pressibility will be taken as adiabatic to simplify matters. Assuming the air

within the bubbles behaves as a perfect gas the adiabatic compressibility is

Kb ='7—F— (63)

where: Py = Patm + pygh + T
b

h = bubble depth
o = latent heat of formation of unit surface area.

Using the relation BZ/Bl = Kl/Kz it follows that

1 1/2
Cpr = C .
2 1[ Kb - Kw] (64)

Assuming plane waves we can calculate the reflected and transmitted waves as

shown in Fig. 1. We write

i(wr-kIX) i(wt+k1x)
u1 e + Are

ilutkx) i (utk,x)
u, = [Be % +Be 2 Je™ (65)

i(wt-(x-s)k,)
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and matching 3/3t and -pC2 3/3x at the water-screen interface yields the

transmission and reflection amplitudes:

2
c
1+ (—-g-%cos2 E%—s)z
IA¢l = 2] 1 — 11/24-as
o coa c, ¢
((1+e™*%)cos %E-- 2~ sin 9§J2 (—EL-cos 3§-+(—§-+ e *$)sin EEJZ
,  w ¢, co ¢, ‘¢t ¢ c,
(66)
2
C a coa c, ¢
((1 - e**)cos %5-- —é}-sin %5)2 + (EEE cos-%i - [Eg" El-eas)sin %5-2
AL = 2 2 1 2 9 9 2_j1/2
r 2 .
c cHo c, ¢
27 . wsy2 2 ws 2 1 asy. . wsy2
((1 + e*)cos L5 - £ gipn 25) (== cos =+ (== + — e7)sin =)
c, w c, clw ¢, ‘¢ % c,

Reflected pressure amplitudes are depicted in Figs. 14 and 15 for screen

widths between 0.1 and 1.0 meters using a bubble radius of 2 mm, which is half

the resonant radius.

These plots show that appreciable reflection occurs.

This situation seems undesirable since the reflected waves are focused back

upon the pulsating vessel.

and void fraction gives a screen with a tolerable reflection ratio.

This

However, an appropriate choice of screen thickness

situation represents a "tuned screen" which effectively. divides the waves into

acceptable reflected and transmitted components.

Figures 16-18 depict the absorption, transmission, and reflection power

ratios respectively.

fraction x =

Fig. 18 shows that with this choice the reflection is tolerable.

3.2.2 Multiple Screens

In order to alleviate the reflection problems associated with a bubble

screen it may prove desirable to employ more than one screen.

40

Figure 16 shows that a screen of width 0.4 m with void

0.00075 results in a favorable rate of energy absorption, while

A plenum which
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generates a bubble screen with a void fraction gradient could be used to cre-
ate a void fraction ramp. The incident wave would not see a square barrier
but would gradually find itself in regions of higher void fraction. This
should result in enhanced transmission and reduced reflection. At some dis-
tance beyond this ramped screen a second, square barrier, could be employed.
This arrangement would have the effect of trapping the wave. If a small void
fraction were placed between the two screens wave energy could be absorbed
effectively. Analysis of this muitiple screen situation is currently under-
way .

A second possibility is to launch the waves directly into a screen
contiguous with the target chamber surface. This would probably result in

emission of shocks, complicating the analysis considerably.
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