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Abstract
The moment equation approach to neoclassical transport theory has been
generalized to nonaxisymmetric toroidal systems under the assumption of the
existence of magnetic surfaces. In particular, the parallel plasma flows and
bootstrap current are calculated in both the Pfirsch-Schluter and banana
regimes. It is found that both parallel plasma flows and the bootstrap
current can be reduced as the toroidal bumpiness increases in an otherwise

axisymmetric system.



I. Introduction

The moment (or fluid) equation approach developed by Hirshman and Sigmar1
has provided a relatively physical procedure for calculating the transport
properties of an axisymmetric tokamak. This approach can be summarized as
follows: first, the drift kinetic equation is employed to calculate parallel
viscosities <§-$-Fa> and <§-§-6a> directly in terms of the plasma flows (B is
the magnetic field, ;a and 6a are stress and heat flux tensors and < > indi-
cates a flux surface average); second, the parallel (to the magnetic field)
momentum and heat flux balance equations are used to determine the parallel
plasma flows and bootstrap current;2 and finally, the flux-friction relations
are used to obtain the particle and heat fluxes in terms of the flows and
hence gradients. We generalize this approach to nonaxisymmetric toroidal
systems under the assumption that magnetic surfaces exist. In this paper we
begin by setting up a fundamental framework for the moment equation approach
to nonaxisymmetric transport theory, and then focus on the problems of the
parallel plasma flows and bootstrap current in a nonaxisymmetric toroidally
confined plasma.

A typical nonaxisymmetric torus is the stellarator. Since the rotational
transform is provided by the external coils, a stellarator can in principle be
operated in a current free regime. Most of the equilibrium and stability
studies of such plasmas have been based on such an assumption. Even though
the plasma is free of an externally driven current it can still have a dif-
fusion driven "bootstrap current." The bootstrap current may have a profound
impact on the equilibrium and stability of stellarator plasmas. Thus, it is
interesting to investigate how large the bootstrap current is in a stella-

rator.



Another nonaxisymmetric torus example is the rippled tokamak. Recent
experiments in ISX-B have observed that the toroidal rotation is reduced as
the toroidal ripple strength increases.3 This provided an additional moti-
vation for us to study the plasma flows in nonaxisymmetric toroids.

Even though the particle and heat fluxes in such a system have been cal-

4-6 4 systematic study of neoclassical plasma trans-

7,8

culated by many authors,
port in nonaxisymmetric toroids has been lacking. This has caused debate
on whether the bootstrap current exists in a nonaxisymmetric torus. One of
the purposes of this paper is to clarify this point and give an explicit

expression for the bootstrap current. Similarly, the parallel plasma flow
velocity has only been calculated in the Pfirsch-Schluter regime by solving

the drift kinetic equation.9

In this paper, we will calculate the parallel
plasma flow velocities using the moment equation approach in both the Pfirsch-
Schluter and banana regimes and give a simple physical picture to explain the
qualitative results.

This paper is organized as follows. In Sec. II, we specify the coordi-
nate system and list the transport equations which will be used in the paper.
We also employ the small gyroradius expansion scheme to discuss the first
order plasma flows and the relationships among them. The flux-friction
relationships are derived in Sec. III. Some properties of the parallel vis-
cosities are discussed in Sec. IV. In Secs. V and VI, we calculate the paral-
lel viscosities in both the Pfirsch-Schluter and banana regimes. The plasma
currents in a nonaxisymmetric torus are discussed in Sec. VII. In Sec. VIII

. we calculate the parallel plasma flows and bootstrap current. A simple physi-

cal picture is also given there to explain the results qualitatively. The



slowing down of the toroidal rotation and determination of the radial electric
field are discussed in Sec. IX. Concluding remarks are given in Sec. X.

[I. Coordinates and Basic Equations

To describe a general nonaxisymmetric torus, we employ the conventional

Hamada coordinates10 V,6,z with
B = WxV (y'e - x'z) = §t + §p , (1)

where V is the volume enclosed by each toroidal flux surface, 6 and ¢ are
angle variables in roughly the poloidal and toroidal directions. Also, here
p' = dy/dV = B-Vz and x' = dx/dV = B-V6 are toroidal and poloidal flux densi-
ties, and §t = w'?Vx§e and §p = - x'VVxV; are the toroidal and poloidal mag-
netic field components. The Jacobian J = WxVe.Vz is unity everywhere. The

11 which implies

line integral ¢ de/B is assumed constant on rational surfaces,
the existence of magnetic surfaces.12 Throughout this paper, we will assume
the existence of magnetic surfaces.

It is well-known that the macroscopic plasma behavior can be described by

a set of conservation equat1‘onsl’13’14
an
a 2 >y
55t V'(naua) 0, (2)
3 1 2 3 1 2 5 > - > >
EE-(E-namaua + ?’Pa) + V'[(i'namaua + i.pa) Uy + 7 e+ qa]
.+
= (naeaE + l?al).ua +Q, , (3)
daa _ (g + 1 > g) + F} -v).P .V;.+ (4)
Maa at ~ "a%a T Ya* al ~ Wa - VT



3. e

a_ "arg, (5 - > > 1 _ ..
-a—t—- ﬁa— [E ('2' Par + 'lTa + manauaua) + E’ Gaxm + Ga § Y‘a . (5)
The notation used in Eqs. (2-5) are standard and are defined in Ref. 1.

It is convenient for the transport calculation to employ the gyroradius
ordering with small parameter A = p/%, where p is gyroradius and % is a typi-
cal scale length of the system (cf. Refs. 1 and 14) to solve Eqs. (2-5). With
this ordering, the first order stress tensors Fa and Fa have diagonal forms,15
namely L (P"a
subscripts "1" and "L" in the plasma variables are used to indicate components

aa . aa 1
- Pla)(nn - 3-T) and ¥ = raf +r, - ria)(nn - 3-T). The

parallel and perpendicular to the magnetic field line components, respect-
ively, and n = B/B is the unit vector along the magnetic field. When the
collision frequency v is of the order of the drift frequency wds another small
parameter Ar/g << 1 has to be assumed to exist, where Ar is the typical radial
step size induced by the drift orbits. The discussion in this paper is
Timited to the high collisionality regime v > w4 where the radial step size ar
is limited by collisional processes; its applicability to more collisionless
regimes remains to be clarified.

As in an axisymmetric system, from the lowest order equation and the

equations of motion Eqs. (2) and (4), we obtain

1l > _
naea(-§¢ + E—ualxg) = §Pa s (6)
R Bde . DXV,
Ujgg=Cc—*tc Vi (7)
B "aeaB
Vi =0, (8)



which means that the first order flow velocity Gal is divergence free or
incompressible and lies within the flux surface. With Egs. (7) and (8) we can
show that the first order flow velocity vectors aal are straight lines in the
Hamada coordinates (the proof of this statement is the same as that which
shows the current lines 3 are straight.1ines in Hamada coordinates and can be
found in Refs. 10 and 11) and can be expressed as

>

U, = utaWX% + upa%xﬁv , (9)

al
where ugy = uga(V) and upy = upa(V) are functions of the flux coordinate V
only. The flow velocity can also be decomposed into the form

(10)

U, =u .n+1i
al la lal

where Ua is the parallel flow-speed along the magnetic field line. Taking

the poloidal and toroidal components of Eqs. (9) and (10), we obtain

"'+ . = A. "1 )
Upa = Ugy Ve u, N Vo + U, Ve , (11a)

ta V. (11b)
Equation (11) is a geometric relationship between the components of the first
order flow velocity aal'

Similarly, employing the lowest order steady state energy and heat flux

balance equations [Eqs. (3) and (5) and Eqs. (6-8)1,



. +> _5¢
we obtain qalxﬁ = Z'EE'PaﬁTa s (12)

and $'aa1 =0 . (13)

From Eqs. (12) and (13), we can again show that the first order heat flux
vector aal is also a straight line in the Hamada coordinates, and obtain the
following relationships

q.. = aa1'§e = q"aﬁ-ﬁe + alal°§e , (14a)

_ A +>
1-%; = q"an-§c + qla1-§c . (14b)

1
OV
=3

Uta

where alal =5 cpa$Ta/2ea. The geometric relationships between the components
of the first order flows aal and aal given in Eqs. (11) and (14) will be used
in the calculation of the parallel viscosities.

II1. Flux-Friction Relationships

As in an axisymmetric tokamak,1 the relationship between the second order
cross field particle flux and dissipative forces can be derived from the first

order momentum balance equation

+
ou
al 1 >
-mon, =gt "aea(g + E-uaxﬁ) + F

-v7pa-$-1? =0 . (15)

al a

Taking the perpendicular component of Eq. (15) (B x Eq. (15)) and averaging it
over a flux surface, we obtain the flux-surface-averaged radial particle

flux PS of species a:



B enxtV nxTV e e B
< = . = <n, al > - < s, (16)

&
v a la

¢ E.SX$V> * me. m_g
a‘a a'a
where ﬁa = Paf + ;a’ Q5 = eaB/myc is the gyrofrequency and the angular
brackets denote the flux surface averaging <A> = § deédzA. The interpretation
of Eq. (16) is the same as that in the axisymmetric tokamak . 1,14 Namely, the
classical flux is driven by the perpendicular friction force ?al-ﬁxﬁv, and the
neoclassical flux is driven by the viscosity (banana-plateau) and the pressure
variation (Pfirsch-Schiuter) within the flux surface.

To derive flux-friction relationships, we take the toroidal component of

Eq. (15) ($Vx§e-Eq. (15)) and obtain the flux-surface-averaged particle flux

a a a a a nac EﬁA) 82
STy = Tgg * Tpp *IDg+ IR+ i < (<D g 1)> (17a)
n.c
a (A & ~o(A)
e <§t £ §t ng >
a __ _ ¢ .
where I‘Cf, 'e—aw- <§t F?.Lal> ’ (17b)
(A)
a _ ¢ SD<BIF +ngeE0)>
I‘b - - + 2 ’ (17C)
p eaX <B >
F 2
a c fal B
rd = . & < I - <> >, : (17d)
ps e X B ( <BZ>
a = C o+00
o o <§t Ve >, (17e)

and I = §t-§/w', E=-Up + E(A), and ral = ﬁualﬁ + ?lal' The classical

(sz), banana-plateau (rgp), and Pfirsch-Schltuter (r;s) fluxes have the same



meaning as in an axisymmetric tokamak, and are ambipolar. The nonaxisymmetric
flux Pia in Eq. (17e) is induced by the toroidal viscosity <§t-§-Fa> and is
nonambipolar. In the low collisionality regime (usually this means for the
collision frequency v less than the bounce frequency wp), the dominant contri-
bution to <F$> is usually from rsa. From the flux-surface-averaged parallel

component of Eq. (15), we have

+ n_e E(A))> = <§-V-Fa> . (18)

<B(Falu aal

Hence, we can also write Eq. (17¢c) as

<I><§.$.Ea>

[
r, = - - . (19)
bp eax <B2>

i.e., as in the axisymmetric tokamak, the banana-plateau flux can be viewed as
driven either by the parallel friction force or parallel viscosity.

To relate Eqs. (16) and (17), we need a geometric relationship between
§t and nx¥V. The desired geometric identity is

ﬁ _ X' ﬁ;VV . (20)

b ¢
v B
With Eq. (20) we can show that Eqs. (16) and (17) are equivalent. Thus Eq.

(16) can be written as

(A)
nc E 2 -
a a a a a a“ - B EefixWV
- - < — ., (21
<I'v> I'C,Q, + Fbp + I'ps + l"na + ;(-1—- <-—r (<I> -<—B-2—>— I)> + naC B ( )



Usually, the magnetic flux surface is not totally static during the transport
process. From Faraday's law 8B/at = -cVxE, we can define a toroidal flux ve-

locityl’l6 <G¢-§v> = 3y/at. Taking the Vg component of Faraday's law we have

E-8

U oW> = 4ot B> L (22)
% Xy

Combining Eqs. (21) and (22), we find the particle flux relative to the

. a. _ ,.a >
toroidal flux <rp> = <ry> - na<u¢ V> to be

(A)
n_c <E "B><I>
a, - @ a a a a I _1 <™
TR> = Teg * Tpp + Tpg + Tpy + 53 s (1 M ) . (23)

The last term in Eq. (23) is the usual Exﬁb radial flux. The relative parti-
cle flux <PE> can be used in three-dimensional transport ca]cu]ations.16

We have derived the flux-friction relation, Eq. (17), by taking the to-
roidal component of Eq. (15). However, there is no particular reason that we
have to do so. We can also take the poloidal component of Eq. (15)

[VWxVz+Eq. (15)] and obtain

<rd =@ 40 L@ 2$S <E§A) (<1 > BZ -1 (24a)
Vip cL bp ps ¥ B <B2> p-
n.c
a .g(A) ~=(A)
I R A
a _ ¢ .
where Teg = E;§T$r §p ?ial R (24b)
(A)
a _ ¢ <Ip><B(Flla1 * naeaEu )>
I‘b = T T 2 ’ (24C)
P oexv <B%>

10



F 2
a c nal B
Pps = e < (Ip - <1p> __2_J> R (24d)
a <B™>
a _ C -
I‘na = - ____,__.’.eax m <§p-$-na> , (246)

and 1, = B -B/x'. since (I, - <1p>B%/B%/y" = -(1 - <1>8%/<B%)/x", the
Pfirsch-Schluter fluxes defined in (24d) and (17d) are identical. With Eq.
(18), we can show that the sum of the banana-plateau and nonaxisymmetric
fluxes Ty, + Ty are identical in Eqs. (17) and (24). To transform from Eq.
(17¢) to Eq. (24c) (or Eq. (17e) to Eq. (24e)) or vice versa, we need only add
(or subtract) an ambipolar flux that is proportional to the parallel friction

+ n_e E(A)]> or

<B[Falu aal bp*

Thus in general, to transform from one repre-
sentation of the flux-friction relationships to the other, we need only add
(or subtract) a term in rgp (or rza). Since this term is proportional to the
known flux ng this involves no additional computational effort and does not
alter the net radial transport arising from the sum over the various pieces.

The physical reason that the representation of the flux-friction relation
is not unique is that a nonaxisymmetric torus can be thought of as a pertur-
bation of an originally axisymmetric torus. For every axisymmetric configu-
ration, there is a representation of the flux-friction relationships corre-
sponding to it. For example, to obtain Eq. (21), we implicitly assumed that
the nonaxisymmetric torus results from the perturbation of a toroidally sym-
metric torus; conversely, to obtain Eq. (29), we implicitly assume that the
original torus is poloidally symmetric.

So far, we have discussed the relationship between the particle flux and

the dissipative forces. A similar relationship between the heat flux and the

dissipative forces can be obtained from the steady state heat flux balance

11



equation (accurate to first order in the gyroradius expansion):

e
a 5 - 1 .
r—n-a--[E-(,z-paI' tr )+ Q8]+ G - VeF =0 . (25)
Taking the toroidal component of Eq. (25) (VVxVe<Eq. (25)), we obtain the

radial component of the flux-surface-averaged heat flux

>a - 5 a
<qv-§v> = <6a-$v -7 T,Iy> as

<ES°$V ': <q3 = (®qd + qd+ ¢ )T_l (26)
Ia - T;> 9%2%p " s T %na’'a

where the classical q2 , banana-plateau q? , Pfirsch-Schluter q% and
qCE qbp! qps

nonaxisymmetric qﬂa heat fluxes are defined by

a
Yo _ c
T;_ = o é;;T$T <§t- la2> s (273)
a
qb - c<I> <BF"32> (27b)
= - ‘ > ,
a €aX <%
a
q F 2
PSS . _ € a2 g, B >, (27¢)
Ta e, B ( <BZ>
qa
na _ ¢ B
-— - ~ - - - nn - 1 =
and Fp = Fragh + Flgp and 8 = [m(ry, = v )/T, 5(py, = Pal/2linn - 2 1)
(e"a "Oia) (nn - %—Y). From the flux-surface-averaged parallel components of

Eq. (25) and Eq. (18), we obtain the parallel heat flux balance equation

<B > = <§-§-6a> . (28)

Flla2

12



Thus, like the banana-plateau particle flux rﬁp, the banana-plateau heat flux

qu can be viewed as driven either by parallel heat friction F o Or parallel

la
heat viscosity <§oV-6a>.

IV. Parallel Viscosities <§-$.Fa> and <§-§-6a>

The plasma parallel flows and bootstrap current can be calculated from
the parallel momentum and heat flux balance equations! Eqs. (18) and (28).
Since the general expressions for Fual and Fua2 in terms of the relative
plasma parallel flows and heat flows are known,l’17 we need only calculate the
parallel viscosities <§-§-Fa> and <§-§-6a>. With 7 = (P, - pia)(ﬁﬁ - %-T)
and éa = (0,, - 9., (nn - %-T), we can simplify the parallel viscosities

<§-3-§a> and <§-§-6a> and obtain

BeVeT > = <lp, - P, N "B> , | (29a)

<§-$-6a> <o . - e"a)ﬁ-$B> . (29b)

la
In principle, we can calculate the paré]1e1 viscosities from Eq. (29) as long
as we know the particle distribution function fy of particle species a.

It is well-known that in the Tow collisionality regime, v << wp, the
particle flux is dominated by the nonaxisymmetric flux r:a' Since the paral-
lel viscosity <§-§-¥a> is proportional to the banana-plateau flux rap, we do
not expect the parallel viscosity <§-§-?a> in a nonaxisymmetric system to have
a different collision frequency dependence than that in an axisymmetric
system. Indeed, we can show that the solution of the bounce averaged drift

kinetic equation fy which can give rise to the nonaxisymmetric flux Fﬁa in the

13



Tow collisionality regime v < wp will not contribute to the parallel viscosi-
ty. To show this, we note that since f, is a solution of the bounce averaged
drift kinetic equation, fy, will not depend on the variable that measures the
distance along the field 1ine. For convenience we define B = $Vx¥8 with
B =19'6 - x'z and choose ¢ as the variable that measures the distance along
the field line. Then, f, will have the functional form f = f(E,u,V,8) where
E=1/2 mav2 and p = 1/2 mavf/B are total energy and magnetic moment of parti-
cle species a. From Eq. (29) and neglecting the flow velocity ﬁa compared
with the thermal velocity V, we have
v2
<§-§-Fa> = <n.VB [ dv ma(?i-- v%)fb> . (30a)

Changing variables from dv to 4wdEduB/m§|v"| and expressing the flux surface
average explicitly, we can write Eq. (30a) as

- An 1 8 Y1 2

The term inside the square brackets can be written as a total derivative with
respect to z, i.e.,

2
1 B Y1 2 3
11q1'§2'(2"" V) = -5z Uyyle) . (30¢)

Since f, is independent of ¢, we can carry out the ¢ averaging first and ob-
tain <§-§-Fa> =0 . This result is physically related to the fact that the
bounce averaged drift kinetic equation is not sensitive to the Coulomb col-

lisional contributions in the parallel momentum balance, and thus will make no

14



contribution to the parallel friction force and rap. Similarly, one can show
that f, will not contribute to the parallel heat viscosity <§-§-§a>.

V. Calculation of Parallel Viscosities in the Pfirsch-Schluter Regime

Before we start calculating the parallel viscosities with the drift
kinetic equation, we first calculate the parallel viscosity <§-§-Fa> from the
fluid theory. For collision frequency v Tess than the gyrofrequency @, the

pressure anisotropy js18

p, - p, = - 3prla-¥(n-d) - (A.F).d1 (31)

where p is the plasma pressure and t the ion-ion collision time. To obtain
Eq. (31), we have used the fact that V.U = 0, and neglected the heat flow.

The second term inside the square brackets of Eq. (31) can be simplified with

(h «3R) o0 = ﬁé'V)B i (32a)

In Hamada coordinates, the first term inside the square brackets of Eq. (31)

can be written as

nedlnen) = & [ (u

] 3 1
B '35 i X ) + ET3 (u"x )] . (32b)

Using the flow relationships described in Eq. (11), we obtain

- G0 + 3 28 (uy - 0P - [ (d)-F) + 3P0

(32¢)

AvA-d) = 5 58 (o

Combining Eqs. (31) and {(32), we have for the pressure anisotropy

15



. 1 3B 1 3B >
Py =Py = 3T [ggg Uyt uy - (Bl 2 )] (33)

Recalling that ﬁl is just the diamagnetic flow and ¥xB-¥V = 0, we can show

that the term in parentheses in Eq. (33) is

> > 1 1l o 20
V'ul+2—-—B-—‘-B—2-V'(UlB)—Oo
Thus, the parallel viscosity becomes
BeVei> = 3 prenetBE By + LBy, (34)

B30 Yp T B AT Ut

Equation (34) reduces to the axisymmetric tokamak resu]t1 by neglecting the
aB/oz term.

Anticipating that the result should have the same form as Eq. (34), we
can also calculate the parallel viscosities from the linearized drift kinetic
equation

of

of
« > ao Tao _
v"n-§fa1 * Vda'W vt By e T GFa) s (35)

where Ca(fal) is the linearized collision operator, and

<4r

v v v v
6 3 Vi Bxoy) = L o P Budv.ve) + 2 -l-§x$V'§C)] , (36)
g g BW) s g g ) 5z

is the radial drift velocity. We will use the same method to calculate the
parallel viscosities as that developed in Ref. 1, except that we now remove

the axisymmetric assumption. Equation (35) can be solved in the Pfirsch-

16



Schluter regime by an auxiliary expansion with the small parameter wg/v where
wy = v"/L" is the typical transit frequency with L" being the typical parallel

scale length. The zeroth order equation is then
C, (f(O)) =0,

which has the solution that f;f) = na(ma/ZnTa)3/2 exp(-E/T ), where

= (1/2)mav2 is the kinetic energy of the particle. Note that f(°) is es-

sentially a Maxwellian distribution but both density ny and temperature T, are

allowed to have a gradient along the field 1ine. The first order equation is

L(372) |, L2 ¢ (e, (37)

v (Ala 0 2a’1

where Ayg = he¥ I py - e B /T, Rgy = -a-¥T /T, L2 for 50,12,

are Laguerre po]ynomials19 of order (3/2) with Lé3/2) =1,

L{3/2) 52 - 2 2

- . (1)
Xgsee and Xy = E/Ta. The solution fa1 to Eq. (37) can be

expanded in terms of Laguerre polynomials and is

(1) _ [ 9a (3/2) |
fal = ZT(U B-TJ——L -.o)fao N (38)
v
ta
where Via = 2Ta/ma. The second order equation from Eq. (35) is
vaedet) ey Vv = ¢ (f{2)) | (39)

I al

Using the Hamada coordinates and Eq. (36), we can write Eq. (39) explicitly as

17



(1) o)

v of Vi v
I ' al || ' al
B X 50 *r—e‘( B - %J—\T‘*B—“’ 5
(40)
v v af
I3 I3 2 (2)
Substituting Eq. (38) into (40) and using Eqs. (11) and (14), we obtain
) 1 L(3/2)
oB 1
2Xq E'—E'faopz(g)(upa Y P, qpa)
- {3/2) 2 (41)
oB 2 2
+2xa§ac ao 2(5)(U "S'—Ta'—— ) "C (f )
where pp(g) = 3t2/2 - 1/2 is the Legendre polynomial and £ = v /v. The so-
Tution f(2) to Eq. (41) can be found again by expanding f(Z) in terms of
Laguerre polynomials L§5/2) as
(2) _ 2 (5/2)
fal 3-xa pz(g) % paJLJ (xa)fao . (42a)
5 [ dv x (5/2) ;f)pz(k)
and Pai = 57272 (42b)
) n (X [L- I}
a i
_ < 2, 4 (5/2)
where {A(v)} = (8/3/7) [ dx exp(-x“)x Alxvi ). The first few terms of L
0
are L(5/2) 1, L(5/2) =7/2 - x2, «es o From Eq. (42b) we have

(p"a - pla) = PPao ANd %a " %4 " (pao - 7pa1/2)pa. Thus to calculate
parallel viscosities we need only know Pao and pa1. Substituting Eq. (42a)
into Eq. (41) and utilizing the results in Eqs. (30) and a similar one for

<§-$-6a>, we obtain

18



<BeVeT > = 3p, v [<n-TB L 2B,

2 9a
B 99 (“alupa ML BE—)

a
(43a)
A 51 9B 9ta
+ <n-¥B §'32>(“a1uta 5’“&2 P, 71
BBy = ~ ¥ 1 0B 9a
<B-¥ Y :)’para[<n B B'§§>(“a2upa 5'“a3 Py )
(43b)
~ 5o 1 3B Ita
+ <n-VB E'EE>(“a2uta 5'"a3 Py 71

where 1, is the self-collision time. The definitions of uaj for j =1,2,3 are
given in Ref. 1. For a simple electron-ion plasma, njp = 1.365, ujp = 2.31,
uj3 = 8.78, and u, = 0.733, ug2 = 1.51, ng3 = 6.06. Note that if we neglect
the heat fluxes dpa and qgy, Eq. (43a) is the same as Eq. (34) to within a
factor of order unity.

VI. Calculation of Parallel Viscosities in the Banana Regime

Since there are in general many different kinds of trapped particles in a
nonaxisymmetric torus, the banana regime for a species a is defined as the
range of collision frequency v such that the effective collision frequency
Veff is less than the bounce frequency wyi for all kinds of trapped particles.
The Tinearized drift kinetic equation, Eq. (35), can then be solved by an aux-
iliary expansion with small parameter veff/wpt. Note that Eq. (35) is valid
only when the geodesic drifts (i.e., those within the flux surface) are negli-
gible since these contributions are neglected in Eq. (35). Generally speaking
this 1imits the analysis to collision frequencies greater than a typical po-
loidal drift frequency -- the vg/v regime of nonaxisymmetric toroidal trans-

port. Thus by using Eq. (35) we neglect the possible existence of superbanana
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drift orbits.® We will not discuss the effect of the superbananas on parallel
viscosity in this paper.

The zeroth order equation from Eq. (35) for the perturbed circulating
(o) .

particle distribution falc is
~ 2c(0) -
v neVf 0 W —==0, (44a)
(o) I =
or §<7fa1c+$(a§<7v)_v_ 0. (44b)

Equation (44) can be solved if ¢ (dz/vu) vda°%V = 0 on the rational surface.20
The physical meaning of the solubility criterion ¢ (dz/v") Vda-§V = 0 is that
é v"dz = constant on the rational surface, or equivalently that the circu-
lating particles do not drift off a flux surface.?l We will assume that the
solubility criterion is satisfied, so that we can solve Eq. (44). If the
solubility criterion is not satisfied, Eq. (44) is not valid for describing
the circulating particles and circulating particles should be treated in a
manner similar to the trapped particles. We will not treat this case in this
paper.

The solution to Eq. (44) is

% .
;(1)2 I{ %‘3 ( LB W) +glV) =F o+ 9V) (45)

max

where at £ = fpay, B is the maximum By,x along the field line. The unknown
function g(V) can be determined from the next higher order (or first order)

equation from Eq. (35)
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(1, *fa0 (0)
v, n Vfalc eE,V, aE = C (f 1) - (46)

Flux surface averaging Eq. (46), namely <Bv|'|1 Eq. (46)>, we obtain a con-

straint condition determining g:

of B

ao _ B
ea<EuB> E <V—'Ca( alc)> ¥ <V_'C (g)> . (47)

! I
The general form for the function g can be written as

2H(1 - A)V"G(V,vz)

g(v) = . flo - o2y H(L -2
vTa vTa
(48)
172 Ta s & gy 1/2
<1 -8/ ) e=ax ] vl - BB ) V]
.[} 0 a 2 ax afao]
A <(1 - AB/B__ )1/2; oV
w2172
1 /B
_ oV max
where V, = o[ d

172
A <(1 - AB/BmaX) >

o = t denotes the sign of the parallel velocity V", X is the pitch angle vari-
able A = uBp,y/E, and H is the Heaviside step function. Note that the general
form for the function g defined in Eq. (48) is different from that defined in
Ref. 1. This is because in the axisymmetric tokamak the function g can only
have one kind of pitch angle dependence, namely V". However, in a nonaxi-
symmetric torus, the pitch angle dependence introduced by the pitch angle

scattering operator operating on F

lac in Eq. (47) cannot be put into a simple

form such as V". Thus we have to separate the g function into two parts: one

has the simple pitch angle dependence V , the other has the complicated pitch

s
i
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angle dependence introduced by F as in Eq. (48). The function G(V,v?) in

alc
Eq. (48) can be expanded in terms of the Laguerre polynomials L§3/2) as

6(V,v%) = A (V)L‘3/2) s a L2y (49)

The coefficients A;(V) will be determined after we know the trapped particle

distribution.

For the trapped particles, we separate Eq. (35) into axisymmetric and

nonaxisymmetric part522

f
~ + =
v"n-Vfals + (vda-VV - <v §V> "WT' (f 1S) , (50a)
- 5 af
vneVf .t <v vv>b —V— =C (fy.) (50b)

where <A>j = (§ do A/v,)/($ dg/v,) is the bounce average operator, and the
integral ¢ is carried out between the turning points of the trapped particles.
Note that the parallel electric EIl term is neglected in Eq. (50) since it will
not affect the lowest order solution of Eq. (50). The separation technique
performed to obtain Eq. (50) is slightly different from that originally pro-
posed by Boozer.22 The separation carried out in Ref. (22) is valid for a
perturbation on a known axisymmetric system. However, the bounce averaging
separation in Eq. (50) is valid for an arbitrary nonaxisymmetric system.

The solution to Eq. (50a) can be found by the standard technique used in
the axisymmetric tokamak transport calculation, since upon bounce averaging
the driving term it vanishes, i.e. <Vd-§v - <7d-3V>b>b = 0. Neglecting the

collisional term and integrating along the field line, we obtain
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2 ' of
_ de’ ;> > ao
fals = - { v, (Vda'§v - Vg Wp) =yt 9¢ » (51)
t

where 24 is one of the turning points of the trapped particles. The inte-
gration constant gt can be determined from the higher order equation of Eq.
(50a), and as in the axisymmetric tokamak gy = 0.

The solution to Eq. (50b) is a little complicated since for different
kinds of trapped particles, the solution could be different. For example in a
rippled tokamak, banana trapped particles may be in the collisionless ripple

22 while ripple trapped particles may be in the 1/v ("col-

plateau regime;
lisionless") regime.* For trapped particles in the collisionless ripple
plateau regime, the solution fj;,. to Eq. (50b) js22

f T <v §V> ¢ (‘é"l

tll a

falar = §x$v) —339 . (52a)

Note that the second term in Eq. (52a) is even in v  and is responsible for

f
the collisionless ripple plateau transport. However, since this term is inde-
pendent of the field line variable £, it will not contribute to the parallel

viscosity (cf., Section IV). For trapped particles in the 1/v regime, the so-

lution to Eq. (50b) js*23

JRYPS S R T a0 , & (-1)y _ o(-1) , (o)
falav - falav -] v V4 '§v>b Y / v ¢ (falav) - falav falav (52b)
g gy
where fgiil is the solution of the equation
af
- (-1)
$v>b _V_ <€ (F1au)”y (53a)
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(o) . .
and falav is the solution of the equation

~ 2.(0) > afao - (-1)
vyne vfala * <vda'W>b v = C (falav) . (53b)

The explicit form of f(Iil is not needed in this calculation. Rather, we need

only know that Bf( 1)/31& = 0, that f( 1) and af( 1)/au vanish for well-

(-1)

circulating particles, and that f is even in v . Since af( )/82

alav I
féi;& will not contribute to the parallel viscosity. The explicit form of
f;iil is obtained by many author‘s”'19 and will not be presented here. The

solution to Eq. (53b) was first obtained in Ref. (23) and is shown in Eq.

In summary, the trapped particle distribution can be written as

g = Foa +f o +f

alt als alar alav
% . of
_ dg > > >3 ao
= - £ v—"-— (Vda W -~ <Vda VV>b) —-v— P fals
t vl (54)
2 1 v
de | 3, ao
- ‘2{' -v—"— <V o%V) é %'( o §XVV) ——sv— ces falar
t
2 of 2
( 1) a0 2! (-1)
alav f ———-<v §V> v / v v ©C (falav) alav :
t Vi zt 1

> . . . . . . .
Note that the <vda-§v>b(afao/aV) term in the axisymmetric distribution f,;4 is
canceled out by the same terms in the distributions falar and falav’ as shown

in Eq. (54).
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Now we are in a position to calculate the function G(V,vz). Taking the

de(v"/B)L§3/2) moments of Eqs. (45) and (54) we obtain

A ol B2 U, [ gy 28 flap, % )
0 c B B B lal "3 B eB ‘P I
max kmax max a a
(55a)
i 120 % d2' ey 1/2 «
, A<(1 - AB/B_ ) 37.£ _E_.ﬁ [(1 AB/B_ ) AxVV 1>
'f dx max } ,
0 <(1 - AB/Bmax)1/2>
and
2.1/2 q 2 ' T! cT!
_ 2 o-1.-1 <B™> la 5 dg a -~ 15 B a
A =-5Pfe ——1lg *tz/ F PV Ge W) + 7P, r—p
max Zmax a a max a
(55b)

A 1
A<l - AB/BmaX)l/z : £ LI A AB/BmaX)l/z x>
m

1 YN
'f da ax
0 <1 - AB/BmaX)1/2>

where the fraction of circulating particle f. is defined as

£ = %_<BZ> } A da (56)
c Z 3 172 ° 56
Brax © <(1 AB/Bmax) >
. R a2 (c)
To obtain Eq. (55), we have used the definitions that uua/B = fdv(v"/B)(Falc + falt)

and q,./B = -de(v"/B)L{3/2)(fgfl + fa1¢)- Note also that the term

2 - -
/ dz'vnlca(félia) will not contribute to the current. This can be shown by di-
L

t

2
rectly evaluating the integrals [dv(v,/B) de'v:ic (f('l)). Physically this
Il ) I “a' alav
t

is related to the conservation of particles by the Coulomb collision operator.
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(0)

Since the elements of falc

and f 14 are either odd in v, or do not depend

l

on the field line variable %, fggg and fy14 will not contribute to the paral-

Tel viscosity. In order to find the nonzero contributions to the parallel

viscosity we have to solve the higher order drift kinetic equation

of

~ >.(1) ao _ (o)
vIlnﬁfal te B vy 5 T Clfy ) s (57)
where f(°) = f(°) for circulatin ticl d f(°) = f for t d ti-
al alc g particles and f_; alt for trapped parti
(3/2)

cles. Recognizing that by taking the <de3mav"L ...> moments of Eq. (57),

J

the left-hand side of Eq. (57) v,A-¥f{}) will yield the parallel viscosities,!

e.qg.

v n (1) = . -0
<devmav"v"n-§fal > = <B.¥ T,

fdin v, L{3/2)y f.pell) - B985 ,

we do not have to solve for fgi) explicitly, but only need to evaluate the mo-

ments <B[deav"L§3/2)Ca(f§g))> in Eq. (57). The final form of the parallel

viscosity will be greatly simplified if we subtract
[H(L - MY, @®>1/2/p%4Eq. (47)] from Eq. (57) to eliminate the E, term and
(o))l

those momentum balance terms in the collision operator Ca(fa1 . We then

obtain
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2,1/2

~ ac(l) _ (0)y _ _ -1, <B™ B
" ﬁfal Ca(fal ) - K1 MEY, “‘2"" (<V;'Ca(FQ1c)>
(58)
B af af
+ <v—II ca(g)>) - (e £V 'T' e, <E B> T) .
. > (3/2) .
Taking the <devmav"Lj ...> moments of Eq. (58), we obtain
f q
- 2, 't 2 a
<BeV > = v n.m, <B%> T (1T, * 5 vy P-a-) , (59a)
f q,
o 2, 't 2 a
_ _ -1
where fy = 1 - f., vy = Taa® and
u 2 ' cT P! e.d'
_ la ds > a a a
Uorgte ] GRS ik, (o)
2 e <B™> 'a a
max
— _Ya % 5 CTé
GB=75*/ B - (qia 1 %7 7= Pab o (600)
L e <B >
max
£ L
2 : W B \1/2 : BxVV
M2 Sl B L B2 g g BV,
2 1 Lmax B max max (1-A-§———J .
_ 3 <xB™ max
Brax © g <(1-AB/B
(60c)

In the toroidal symmetry case 3B/dz = 0, and Eq. (59) will reproduce the axi-
symmetric tokamak results. The constants Haj are defined in Ref. (1). For an

electron-ion plasma uj; = 0.53, pj2 = -0.62, pj3 = 1.36 for ions, and

Hel = 1.53, ugp = -2.12, ne3 = 4.62 for electrons.
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VII. Plasma Currents in a Nonaxisymmetric Torus

From quasi-neutrality we have
Ve J =0, (61)
and from lowest order force balance equation
JxB = cVP . (62)

where P = Pé + P%. It is well-known that the plasma current lines J are

10,11

straight lines in the Hamada coordinates and can be written as

J = jt§VX§6 + jp§§x§v (63a)

where ji = j¢(V) and Jp = jp(V) are functions of the magnetic flux coordinate

V only. The current J can also be expressed as

P
J = jn+3J, (63b)

where 31 = c§x§P/Bz. Taking the poloidal (Ve<Eq. (63)) and toroidal

(Vz+Eq. (63)) components of Eq. (63) we obtain

j"ﬁ-ﬁe + 3% = 3% , (64a)

[
n

iy = j"ﬁ-$; + 31-3; = 3.9 . (64b)
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From Eq. (64) we can express parallel current j" as

3p cP' BxiV.To

j" =—x—r-B -T—_B_—_ ’ (653)
C e opt Badvede
J“ -TB '-qTr——————B——— . (65b)

Defining the Pfirsch-Schluter current jpS which has zero average surface

(<ipsB> = 0) as

we obtain

. cP' Bx¥WeTo  <B.W.To>
Ips - ( 5 <5 B) , (66a)
. cP' BxWeVz  <BxtV.¥r>
= - - , 66
Jps = =y 3 <5 B) (66b)
.. J cP' <BxW.¥e> _ _ . <J.B>
J" = Jps + TB - X' <BZ> B - Jps + —<—Bz->—B ’ (67a)
It . P Byt JB>
j =j  +-—4B - B=3j_ _+ B . (67b)
Ju Jps ¥ v <BZ> Jps <B?>

Note that the definitions of j,s given in Eqs. (66a) and (66b) can be shown to

be identical. The rest of the parallel current <3-§>B/<Bz> given in Eqs. (67),

p

A
4
L]
= 2
v
(=

P' <BxWV.Vo>
——8=_1F8 - c B, (68a)
<B%> X" X <BZ>
Jeb . It o Bt
"'2__' B = -1 B - = B B . (68b)
<B~> IP \P <B2>
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can also be shown to be equivalent and will be determined from the flux sur-
face averaged parallel momentum and heat balance equations. In general, the
parallel current <J.B> consists of the classical Spitzer current <j.B> driven
by the parallel electric field <E B> and the neoclassical current <j,.B>
driven by the parallel viscosities <§-§-Ea>, and <§-§-6a> (Ref. 18). The
bootstrap current <j,.B> can be obtained from the neoclassical current <JncB>
by setting E" = 0 and will be discussed in the next section.

VIII. Parallel Plasma Flows and Bootstrap Currents

The paraliel plasma flows and bootstrap currents can be calculated from
the flux-surface-averaged parallel momentum and heat flux balance

equationsl’24

<B(F +nef )>= <§-$-Fa> , (69a)

1al aal

<BF > = <§-$-6a> . (69b)

a2
The expressions for the parallel viscosities <§-§-Fa> and <§-3-6a> in both the
Pfirsch-Schluter and banana regimes were derived in Sections V and VI. The
parallel friction forces for a simple electron-ion plasma are derived in Ref.

(20) and are

2 e e

= - - ,© _

F||e1 - Fuil JLll(”ui u"e) + T 45 3;— s (70a)

Frez = “#5alyy - ue) + 5, 5 (70b)
e2 12 704 le 5 22 Pe

Frig = "5t 5 (70¢)
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e _ e _ e e _ e i
where 211 = neme\)e.i, 212 = 1.5 211, 222 = 4,66 211, 222 = /7 n.im.i\)ﬁ.

Since |F"12| >> |<§-§-61>| and |Fue2| > |<§-3-5e>| for a large aspect
ratio torus, from Eqs. (69b) and (70) we have, to the lowest order in

(|<B+33,21/1F, 1),

(71a)

i e

]
o
L]

Qe = Ui ~ (71b)

Due to conservation of momentum and quasi-neutrality, we have from Eqs. (69a)

and (70a)
.Z <BeVerm.> =0 . (72)

Since |<§-§-¥i>|/|<§-§-ﬁe>| ~ /m7m, >> 1, the lowest order version of Eq.
(72) is

<BeVem,> =0 . (73)
From the expressions of ion parallel viscosities in the Pfirsch-Schluter and

banana regimes and Eq. (73), we obtain the parallel plasma flow speeds in the

Pfirsch-Schluter u and banana Upb regimes

ips
cT. P! ' T
. X 1 1 ed 1
“ips = Bps e (prr T T 1691 (74a)
CT. Pl- 1 TI-
_ 1 1 ed 1
U = By ey oyt ) (74b)
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where

1 9B,

<n 38

~ B39 >

G = ———a— BxWeVo + (8 » ¢) (75a)

pPS <(n-VB)%>
3 \ 2

G -6 GBI (75b)

3 B
max

The notation (6 + ) used in Eq. (75a) means this term is the same as the
first term except that 6 changes to z. In the axisymmetric tokamak limit
(3B/3z = 0), it can be shown that ﬁps = Eb = Bt/Bp where B, (By) is the po-
loidal (toroidal) magnetic field strength and thus Eq. (74) will reproduce the
axisymmetric tokamak results.

Utilizing the expressions of the parallel friction forces given in Egs.

(70a) and (70b), we obtain an expression for the parallel current

o 2
. - - 12
<GyB> = <nefuyy - uy B> = o= <FnelB t € Fre2B” » (76)
22

where o¢ = (ne)2 222/[222211 (2?2)2] is the classical Spitzer conductivity.
Employing the parallel momentum and heat flux balance equations Eq. (69), we
can write Eq. (76) explicitly in terms of the parallel electric field and

viscosities

g 2,
<§,B> = =3 (ne<E B> + Be¥er> + 22 12 3.3.5 -8) - (77)

ne
"22

The current driven by the parallel electric field in Eq. (77) is the classical

Spitzer current
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<Gy B> = o <E B> . (78a)
The current driven by the parallel viscosities in Eq. (77) is the neoclassical

current

e
o] L
> - S > 12 -
UpcB =7 (Be¥eri + = <B.V.5,) . (78b)
22
To calculate the bootstrap current, we use the expressions for the parallel

flow speeds given in Eq. (74) to evaluate the parallel viscosities in Eq.

(78b) and obtain

fv Mo Wep Miz . 12 Wep Mi2
GpeB> = -2.95 = G {P'(1 + == —) + nT,[(—+
bs ¢ P 1S, Vel T 4E, Vel Ml

(79)
F
Tl -

ze
v ez, 112 Ve3
el 25, Mel” 'y
22

u

The bootstrap current in the Pfirsch-Schluter regime is proportional to
(wte/ve)z, where wi, is the electron transit frequency, and thus is negli-
gible. Again, in the axisymmetric tokamak 1imit, Eq. (79) will reproduce the

usual tokamak resu]ts1

since Gb = Bt/Bp in this limit.

In the banana regime the geometrical factor Eb probably has to be evalu-
ated numerically for an arbitrary nonaxisymmetric system. However, in the
Pfirsch-Schluter regime the geometrical factor Eps can be easily evaluated for

an arbitrary nonaxisymmetric torus as long as a model for the magnetic field B

is given. We will consider two interesting examples in this regime. For
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simplicity, we will neglect the heat flux and radial electric field in the
present discussion.

For a rippled tokamak with model field B = By(l - ecos 6 - scos Nz) in
which § is the toroidal ripple strength, ¢ is the inverse aspect ratio, and N

is the number of toroidal bumps, we have

cT., 2 P! ) .
i1 - (N§) i, ed i

u, .= - ( ——) (p— + + 1.69 =) (80)
ips B Ty L ;2T F

where o = ¢/Nq6, and q = eBt/Bp. If 6§ = 0 (this corresponds to perfect to-

roidal symmetry), u = -(cTi/eBp)(P%/Pi + e@'/Ti + 1.69 T%/Ti) which is the

Ips

usual tokamak result.ls14 The parallel flow speed is reduced for a < 1, which

occurs for the relatively low ripple level of § > ¢/nq ~ 10-2 in a typical

tokamak. In the Timit N§ >> 1 (this corresponds to perfect poloidal symmetry)
—_ 2 ] ] ] . -

uups = (CTi/eBp)(Bp/Bt) (Pi/Pi + ed /Ti + 1.69 Ti/Ti)’ which is a factor of

(Bp/Bt)2 smaller than the toroidal symmetry value and the parallel flow is

oppositely directed (i.e., u, changes sign). The geometrical factor Eb also

[
has a similar qualitative behavior: namely, in the toroidally symmetric
system, Eb = Bt/Bp’ and as we increase the toroidal bumpiness of the system to
the extent that the system is almost poloidally symmetric ﬁb = 'Bp/Bt’ which
is again smaller than the toroidal symmetry value by a factor of (Bp/Bt)2 and
has an opposite sign. Thus, both the plasma parallel flow speed Uyp and boot-
strap current jub can be reduced if we increase the toroidal bumpiness of the
system.

Before we discuss a physical picture to explain these qualitative

features, we consider another example, namely a stellarator with model field

B = Byl - egcos 6 - epcos (26 - mz)] where e is the inverse aspect ratio, e
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is the helical perturbation, and 2 and m are the poloidal and toroidal field
periods of the windings. The parallel flow speed in the Pfirsch-Schluter

regime is then
CTi (1 + ¢ 62/82) - zmqu/g - m282 p! T!

h 1, ed'
U= - ( +1.69 +1) , (81)
Ips eBp 1+ (ZEhet - mqeh/et) P—- T_— ‘T:

where q = etBt/Bp. For both toroidal (ey » 0) and helical (ey + 0) symmetry

cases u -(cTi/eBp)(P%/Pi +e¢'/T: + 1.69 T%/Ti). However, if et ~ ep,

Ips
Mey << 1, and mq >> & as is typically the case in stellarators,
Ups = (cTi/eBp)(zlmq)(P%/Pi + e@'/Ti + 1.69 T%/Ti), which is a factor of
(2/mq) smaller than either its toroidal or helical symmetry value. For the
PROTO-CLEO ste]]arator,25 the factor ¢/mq is in the range of 1/10 to 1/5.

We will now give a simple physical picture to explain the qualitative be-

havior of the plasma parallel flows u and U and bootstrap current jnb'

Ips
Physically, this is because in a toroidally symmetric system plasma flows
freely in the toroidal direction (conservation of toroidal angular mo-
mentum). Its poloidal flow tends to slow down due to viscous damping. How-
ever, the equilibrium diamagnetic flow ﬁl has a poloidal component. In order
to eliminate this poloidal diamagnetic flow, plasma flows along the field line
with a speed u, such that its poloidal component cancels the poloidal diamag-
netic flow and the net flow velocity U = ﬁl + u"ﬁ is in the toroidal
direction, as shown in Fig. 1. [We note here that for a toroidally symmetric
system it is radial electric field ¢' that adjusts itself to cancel the
poloidal component of u,-. The u, is determined by the initial toroidal angu-

lar momentum on the flux surface. Thus, after this rapid relaxation process,

the radial electric field ¢' is related to the initial toroidal angular mo-
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mentum. 26 However, here we are more interested in comparison of the magni-
tudes of u  for the same ¢', n', and T' in systems with different symmetry

properties and initial conditions. The adjustment of u, here should be inter-

I
preted as choosing different initial conditions such that their &' are the
same after a few viscous damping times.] As the toroidal bumpiness of the
system is increased the plasma cannot flow freely in the toroidal direction
without viscous dissipation. In order to minimize the viscous heating, the
net flow velocity is no longer in the toroidal direction -- see Fig. 2. The
net flow direction is roughly along contours of constant B in the Pfirsch-

Schluter regime. This can be understood by putting the parallel viscosity

<§-$-Fa> in the Pfirsch-Schluter regime into form
>
- ~ oo U-VB
<§-§-na> = 3p, T u,y<N B . (82)

To obtain Eq. (82), we have neglected the heat flux term. Thus, <§o§~¥i> =0
implies roughly UsVB = 0, which means the flow velocity u lies on contours of
constant mod B to avoid viscous damping. When the toroidal bumpiness is so
large that the system is virtually poloidally symmetric, plasma can flow
freely in the poloidal direction without viscous dissipation. In a manner
analogous to that in the toroidally symmetric system, the toroidal component
of the parallel plasma flow cancels the toroidal diamagnetic flow and the net
flow is in the poloidal direction, as shown in Fig. 3. From Figs. 1 and 3, we
see that the parallel flow speed in a poloidally symmetric system is a factor
of (Bp/Bt)2 smaller than that in a toroidally symmetric system, and oppositely
directed. Thus, as the bumpiness in the toroidal direction is increased,

parallel plasma flows and the bootstrap current are reduced. Note that Figs.
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1, 2, and 3 are valid only if there is no heat flux. If the heat flux is
present, there is a residual flow in the asymmetry direction which is propor-
tional to the temperature gradient.

IX. Relaxation of Toroidal Rotation

For a general nonaxisymmetric torus, the plasma can still rotate or flow
in the toroidal direction (see Fig. 2). This rotation can be slowed down by
the nonambipolar flux Fia (Refs. 6, 9). The force that acts on the toroidal
rotation is the jxB force induced by the nonambipolar flux. Taking the

toroidal component of Eq. (4), we obtain

(83)

Due to conservation of momentum, quasi-neutrality, and ambipolarity Eq. (83)

can be simplified after averaging over a flux surface to yield on1y6
>
u-§ ex'
] a t, _ . “a a
5 <Z nm _$T——> L Tp - (84)

a a

Equation (84) is the governing equation of the toroidal rotation. In the

steady state, we obtain the usual criterion9

Iert =0, (85)

which is used to determine the radial electric field o'.
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X. Concluding Remarks

We have generalized the moment equation approach to nonaxisymmetric to-
roidal systems under the assumption that magnetic flux surfaces exist for such
a system. To simplify the calculation, we employ the usual Hamada coordi-
nates. In that coordinate system, the first order plasma flows are straight
lines. The flux-friction relationships are derived from the momentum and heat
flux balance equations. We find that the major difference between axisym-
metric and nonaxisymmetric systems is that there are nonaxisymmetric (and non-
ambipolar) particle (Fﬁa) and heat (qza) fluxes, which are driven by the
toroidal viscosities. The nonambipolar particle flux rza will slow down the
toroidal rotation and determine the radial electric field.

With the expressions of particle and heat fluxes given in Eqs. (23) and
(26), the radial electric field determined by Eq. (85), and the Ohm's law Eq.
(77), a three-dimensional transport calculation for a nonaxisymmetric torus
can be carried out with the usual set of flux surface averaged particle and

1,14 45 long as an equilibrium is given. Of

energy conservation equations,
course, we still need to calculate the parallel viscosities in the plateau
regime in the future.

We have calculated the parallel viscosities in both the Pfirsch-Schluter
and banana regimes and determined the parallel plasma flow speeds and boot-
strap current in a general nonaxisymmetric torus. The bootstrap current is
driven by the parallel viscosities. We find that both paraliel plasma flows
and the bootstrap current can be reduced if we increase the toroidal bumpiness

of the system. These results may provide theoretical explanations for the

experimental observations that the toroidal rotation is reduced as the toroid-
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al ripple strength is increased in the ISX-B experiment3 and the fact that no
bootstrap current is observed in the PROTO-CLEO stellarator.2?®

The bootstrap current in a stellarator has also been calculated in Ref.
27. In Ref. 27, the current is estimated by the conventional “"kinetic" ap-
proach,28 and the parallel momentum balance is not taken into account. Thus
it leads to a slightly different result from ours, both in the numerical coef-
ficients and in the form of the result. Also, whereas the work in Ref. 27 is
restricted to the banana regime, here we have given calculations of the flows

and bootstrap currents in both the banana and Pfirsch-Schluter regimes.
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Figure 1. Flow patterns in a toroidally symmetric system.
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Figure 2. Flow patterns in a nonsymmetric system.
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4 POLOIDAL SYMMETRY
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Figure 3. Flow patterns in a poloidally symmetric system.
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