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Abstract

Previous void nucleation theories allow the void size to change only by
one atomic volume through vacancy or interstitial absorption or through vacan-
cy emission. To include the absorption of divacancies, the classical nucle-
ation theory is extended to include double-step transitions between clusters.
The new nucleation theory is applied to study the effect of divacancies on
void formation. It is found that the steady state void nucleation rate is
enhanced by several orders of magnitude compared to results with previous void
nucleation theories. However, in order to obtain void nucleation rates com-
parable to measured ones, the effect of impurities, segregation, and insoluble

gases must still be invoked.



§1. INTRODUCTION

Previous treatments of homogeneous void nucleation (Katz and Wiedersich
1971, Russell 1971) in irradiated materials were based on the assumption that
only the monatomic point defects, namely vacancies and interstitials, need to
be considered as mobile species. Presumably, the greater concentration of the
monodefects, as compared to the dimer populations, served as the justification
for this assumption. However, a closer examination of the previous void
nucleation theories reveals that the nucleation rate does not only depend on
the supersaturations of the mobile point defects, but also on the products of
their concentrations and their corresponding diffusion coefficients. This
type of dependence is in fact well known from the rate theory for void growth
(Brailsford and Bullough 1972).

[f the monodefects have also the highest mobility in addition to the
highest concentration, it is indeed justified to neglect mobile multi-defects
such as divacancies. This appears to be the case for interstitial-type point
defects. For example, Johnson (1966) and Schober (1977) found by computer
simulation that the migration energies for diffusion of di-, tri-, and tetra-
interstitials are all slightly larger than the migration energy of mono-
interstitials. On the other hand, Ehrhardt and Schlagheck (1974) have con-
cluded from experiments that the migration energy of di-interstitials in
copper could be slightly less than the one of mono-interstitials. Neverthe-
less, the difference is not sufficiently large to make the products of
concentration and diffusivity for di-interstitials and mono-interstitials of
comparable magnitude.

In the case of vacancies, the situation is different. As the reader is

well aware, the migration energy of divacancies can be significantly lower



than the one of monovacancies for many cubic metals. Furthermore, the binding
energy of divacancies is sufficiently large so that a significant fraction of

them remains bound even at high temperatures. As a result, the product of di-
vacancy concentration and diffusion coefficient can be as large as the corre-

sponding product for monovacancies. This has been demonstrated by Yoo (1979)

in the case of void and dislocation loop growth in irradiated metals.

In spite of the recognition that divacancies play a role in void and loop
growth, their effect on the nucleation process has not yet been investigated.
Whereas the incorporation of divacancies in the rate theories for void and
loop growth is accomplished by a simple extension of the classical rate theory
(Brailsford and Bullough 1972), previous void nucleation theories cannot be
simply modified to include divacancies. The reason is that all homogeneous
nucleation theories as presently formulated require that a cluster can change
its size by only one unit at a time. Therefore, to allow multi-step processes
to occur requires a substantial extension of previous nucleation theories.

Such an extension is presented in §3 and applied to void nucleation in
the presence of mono-interstitials, and mono- and divacancies. The rate
equations which determine their concentrations are given in §2. The results
of numerical evaluation of the new void nucleation theory and comparison with
the old theory are presented in §4.

We note that the present extension of the homogeneous void nucleation
theory can also be applied to other nucleation phenomena which involve nearest
and next-nearest neighbor transitions between clusters. Furthermore, the
method developed here can be extended to any more distant neighbor transi-
tions, and can therefore provide a formalism to incorporate coagulation re-

actions into the nucleation theory.



§2. RATE EQUATIONS FOR POINT DEFECTS AND CLUSTERS

Let f(x,t) denote the number of vacancy clusters containing x vacancies.
This number may change with time as a result of vacancy capture, divacancy
capture, interstitial capture, or vacancy re-emission. The rates for these
reactions are denoted by the symbols listed in Table 1, and they are assumed
to depend on the size x of the cluster.

The detailed dependence will be given later in §4. By inspection of Fig.
1 it is easy to derive the following rate equation for the change in the

cluster density f(x,t), namely

df(x,t)/dt = v(x - 2)f(x-2,t) + B(x - 1)f(x-1,t) - [alx) + B(x) + y(x)
(1)

+ v(x)If(x,t) + [a(x + 1) + y(x + 1)If(x+1,t) .

The change in the cluster density may also be derived from a cluster
current advancing clusters smaller than x to clusters larger or equal to x,
minus a cluster current promoting clusters with x vacancies. The former is
the net reaction I(x-1,t) crossing the dashed 1line in Fig. 1 just below the
cluster size level x, whereas the latter is the net reaction I(x,t) crossing
the dashed lined just above the size x.

This cluster current is given by

I{x,t) = v(x - 1)f(x-1,t) + a(x)f(x,t) - b(x + 1)f(x+1,t) . (2)

The forward and backward reaction rates, a(x) and b(x), are defined in Table 1.

By changing x to x - 1 one obtains I(x-1,t), and one can then write for Eq. (1)



Table 1. Notation for Reaction Rate Coefficients

Symbol Reaction Rate

a(l) Recombination rate per mono-interstitial capture at all mobile
monovacancies

a{x) Capture rate of mono-interstitials at a cluster containing x
vacancies

B(x) Capture rate of monovacancies at a cluster containing x vacancies

v(2) Dissociation rate of divacancies

y(x) Re-emission rate of monovacancies from a cluster containing x
vacancies

v(x) Capture rate of divacancies at a cluster containing x vacancies

a(x) = B(x) + v(x), forward reaction rate

b{x) = a(x) + y(x), backward reaction rate
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df(x,t)/dt = I(x-1,t) - I(x,t) . (3)

Equations (1) to (3) hold for the immobile vacancy clusters, i.e. for x > 3.

The rate equations for the monovacancy concentration f(l,t) = Cy is given by
df(1,t)/dt = Pv - La(1) + 8(1) + v(1)1f(1,t) + [a(2) + 2v(2)]1f(2,t)

(4)
- ) B(X)f(x,t) + ¥ v(x)f(x,t) - Ly -
x=2 x=3

The first term represents the rate of monovacancy formation, Py, by radiation-
induced displacements, the second term is the sum of all the capture rates for
mobile point defects by monovacancies, and the third term contains the dis-
sociation reaction and interstitial capture by divacancies. The third and
last term represent the loss of monovacancies captured at vacancy clusters and
other sinks, respectively. Finally, the fifth term gives the rate of re-
emission of vacancies from all immobile clusters. Thermal vacancy re-emission
takes place also at sinks other than vacancy clusters. Therefore, LV is the
net absorption rate for monovacancies at these sinks, and can be written as a
difference of two terms, namely vacancy capture minus thermal emission rate.

The rate equation for the divacancy concentration f(2,t) = Coy can be

expressed as
df(2,t)/dt = P2V + 8(1)f(1,t) - [a(2) + 8(2) + y(2) + v(2)]f(2,t)

(5)

+ [a(3) + v(3)If(3,t) - ) v{x)f(x,t) - L,

x=3 v



The production term Poy allows for the possible generation of divacancies by
the radiation-induced displacements so that (PV + 2P2V) is the total pro-
duction rate of Frenkel pairs. The second term in Eq. (5) represents the di-
vacancy formation by the reaction of two monovacancies. All the other terms
carry a similar meaning as those in Eq. (4). However, there are no terms in
Eq. (5) which represents the thermally activated re-emission of divacancies
from vacancy clusters or any other sink. Although such terms could be
included in principle, we can neglect them because of the large formation
energy of divacancies which is equal to twice the formation energy of mono-
vacancies minus the binding energy of divacancies.

To complete the set of rate equations, we must finally specify the one
for the mono-interstitial concentration C;. As discussed in the introduction,

we may neglect the presence of mobile interstitial clusters, and write

o

dy/dt = Py - (DALY - T alxIfxt) - L (6)
x:

where

P. =P, + 2P (7)

I v AN

and Ly is the capture rate of interstitials at sinks other than vacancies and
vacancy clusters.
§3. STEADY STATE NUCLEATION
Nucleation phenomena are characterized by three stages. During the first
stage a supersaturation of the mobile species is established by external

means. The supersaturation drives then the evolution of a subcritical cluster



distribution which reaches a quasi-stationary distribution during the second
stage. In this stage, clusters may grow due to fluctuations beyond the criti-
cal size and become stabilized and members of the supercritical cluster popu-
lation. In the third and final stage, the further nucleation of supercritical
clusters ceases because the supersaturation drops or is depleted, or because
the large population of the supercritical clusters competes more effectively
for the mobile species to sustain their continued growth.

Nucleation theory deals with the second stage where a stationary sub-
critical cluster population fg(x) is assumed to exist. The cluster current
I(x,t) becomes then also independent of time, and independent of x as will be
shown below.

Let us introduce first two formal definitions for the sake of con-
venience. Although v(o) and fg(o) are devoid of any physical meaning we shall

assume that

v(o) = fs(o) =0 . (8)

Next we introduce a constraint cluster size distribution of the first kind by

the recursive relationship

b(x + 1)n{x + 1) = a(x)n(x) + v(x - V)n(x - 1) , x>1 (9)
and set
n(l) = Cy » (10)



i.e. equal to the monovacancy concentration. For the stationary distribution
fs(x) it follows then from Eq. (3) that Ig(x - 1) = Ig(x) for x > 2, and hence
Ig(x) = Ig = constant. With the definition for I, Eq. (2), and the relation-

ship (9), we can then derive

Ig = vix - n(x - 1)[(fc(x - 1)/n(x - 1)) - (fglx + 1)/n(x + 1))]

(11)
+abadn() [(f(x)/n(x)) - (flx + 1)/n(x + 1))] .
Let us further introduce the quantity
A(x) = (fs(x)/n(x)) - (fs(x + 1)/n(x + 1)) (12)
and write
Ig = v(ix - 1)n(x - 1)a(x - 1) + [a(x)n(x) + v(x - 1)n(x - 1)]a(x)
(13)

vix = 1)n(x - 1)a(x = 1) + b(x + 1)n(x + 1)a(x) .

Equation (13) is of the same form as in the nucleation theory with only near-
neighbor transitions between clusters.
The case Ig = 0 defines now a constrained distribution N(x) of the second

kind by the recursive relationship

[(a,x)n{x) + v(x - 1)n(x - 1)IN(x) = v(x - 1)n(x - 1)N(x - 1) (14)

valid for x » 2, and normalized for convenience such that N(1) = 1.



In terms of the functions A(x) and N(x) we may write for the stationary

nucleation current
Ig = [alx)n(x) + v(x - 1)n(x - 1)I[(alx - 1)/N(x - 1)) - (a(x)/N(x))] . (15)

In the usual manner, this equation is divided by the first factor and then
summed over x. If a sufficiently large xy exist for which A(xy) becomes zero,

then the steady state nucleation rate is given by

X
M
T La(x)n(x) + v(x - Lnlx - 1)17}] (16)

g = [1 - fs@m@/[ ]

where we used the fact that

fs(l) = CV = n(1) . (17)

Equation (16) reproduces the result of previous nucleation theories when no

divacancies are assumed to exist. In this case
fS(Z) = C2V (18)
is zero and all v(x) vanish.

It is possible to define in a formal sense an activation energy for

nucleation of a cluster of size x by

n{x) = n(1l) exp[-aG(x)/kT] . (19)

10



With the recursive relationship (9) we obtain then

x-1
AG(x) = -kT len[[a(y)/b(y + 1)) + (vly - 1)/bly + 1))(nly - 1)/n(y))] . (20)
y:

The maximum of the activation energy for nucleation AG(x) determines now the

critical cluster size x*. Around this maximum

AG(x* - 1) = AG(x*) = AG(x* + 1) .
This condition is equivalent to

a(x*) + v(x* - 1) = b(x* +1) . (21)

To satisfy this equation precisely will in general give a non-integer number
for the critical size. Therefore x* is the integer which satisfies the re-
lationship (21) as closely as possible.

With the solution for Ig we can finally obtain the stationary subcritical

cluster size distribution from the relationship

fglx + 1)/n{x + 1) = f(x)/n(x) + [(fS(Z)/n(Z)) - 1][1 -

(22)
X
X 1,0 -1
L LalyIn(y) + vy - Linly - 1177/ ] [aly)nly) + vly - L)nly - 1)]7"]
y=2 y=2
valid for x > 2. The above equations must be solved in a recursive manner.

First, the steady state rate equations for mono-interstitials, monovacancies

and divacancies are solved. Then fg(1) = Cy, fg(2) = Cyy, and n(1) = Cy.

11



Equation (9) gives then n(2) so that

£(2)/n(2) = Cpy/n(2) = (C,y/C, ) [[al2) + v(2))/[8(1) + w(1)]] . (23)

A11 the parameters are now known to start the recursive iterations to obtain
n(x) and fg(x) for increasing x.
§4. RESULTS
To evaluate the void nucleation rate Ig, the reaction rate coefficients
must be specified. Assuming that these reactions are diffusion controlled,

they are given by

alx) = (4123 3010 €, 23 (x) (24)
B(x) = (4n) 233201, €, 20 (x) (25)
Y(x) = (4123 (322130, c0(x)20(x) (26)
vix) = @m0 P, ¢, 29 () ‘ (27)

when x > 2. The above results are obtained by treating the vacancy cluster of
size x as a spherical cavity of volume xQ2. The bias factors Z?, 23, and ng
take into account the effect of the interaction of the migrating point defect
with the void. These factors have been obtained previously (Wolfer and Mansur
1980) for interstitials and vacancies. We assume in the following that

o _ 50
Z2V = Zvn

12



The rate coefficient for vacancy emission depends on the vacancy concen-
tration in thermal equilibrium with the cluster of size x. This concentration

is given by

Cy(x) = oy (A°(x - DZP(x - 1)/AY(x)Z°(x)) exp{[w(x) - w(x - 1)/kT} (28)

where

AO(x) = (4m)2/3(3ax)1/3 (29)
and

w(x) = (4n)1/3(39x)2/3e(x,T) (30)

is the energy of the spherical void. The surface energy o(x,T) contains cor-
rections for small cluster sizes and varying temperatures, as discussed previ-

ously (Si-Ahmed and Wolfer 1982), and it can be written into the form
o(x,T) = OO(T)(I - (0.8/x + 2)) (31)

where ©,(T) is the plane surface energy.
For the reaction rates among the mobile species, the following expres-
sions are used. The recombination rate can be written as

a(l)fs(l) = 41rRIV(DI + DV)CIC (32)

v ’

13



the divacancy formation rate as

2

B(I)fs(l) = 41rRVV ZDVCV s (33)
and the trivacancy rate as
v(l)fs(l) = 41rRV2V(DV + DZV)CVCZV . (34)

The formation rate of vacancies by the reaction of interstitials and di-

vacancies is given by
a(2)fs(2) = 4"R12V(DI + DZV)CIC2V . (35)

The recombination radius Riy has recently been evaluated by Wolfer and

Si-Ahmed (1981) and found to be about equal to twice the lattice parameter a,

at elevated temperatures. Estimates for the other reaction radii have been

obtained by Si-Ahmed (1981), and the appropriate values are listed in Table 2.
The divacancy dissociation rate coefficient y(2) is obtained by consider-

ing thermal equilibrium. In this case, detailed balance requires that

(c2%)?

eq _

where (Seeger and Mehrer 1970)

eq _ eq,2 b
Coy = 62(Cy™)" expL(E,y + TaS,y)/kT]

14



Table 2

Parameter Definition Value
e fraction of displaced atoms 0.25
escaping the collision cascade
Py interstitial production rate e*dpa/s
Py vacancy production rate Pr(l - eqy)
Pay divacancy production rate Preoy/2
oy fraction of vacancies escaping 0 to 0.2
the collision cascade as di-
vacancies
Ryy recombination radius 2 ag
Rioy reaction radius between an 2 a,
interstitial and a divacancy
Ryy reaction radius between 1.5 a,
vacancies
DVf vacancy migration coefficient 1.53 x 107° exp[-Ev/kT] mz/s
+ . . . . . -7 m 2
Doy divacancy migration coefficient 1.0 x 10 exp[-Ezv/kT] m/s
DI* interstitial migration coef- 8.0 x 10~/ exp[—ET/kT] mzs
ficient
gn vacancy migrati 2.24 x 10719 3 (1.4 ev)
v y migration energy .24 x A e
m o+ , . . -19
E2v divacancy migration energy 1.31 x 10 J (0.82 eV)
m % . . . . -20
EI interstitial migration energy 2.4 x 10 J (0.15 eV)
c8a t equilibri [1.5 - Ef/kT]
v quilibrium vacancy concen- expll.5 - V/ /Q
tration
E€ T vacancy formation energy 2.56 x 10719 g (1.6 ev)

15



Table 2. (Continued)

Parameter Definition Value

¢] atomic volume ag/4

a, lattice parameter 0.352 nm

GO(T) § surface energy for austenitic 1+ (773 -T) * 1.8 x 1073 J
stainless steel

Egv * divacancy binding energy 4.8 x 10720 g (0.3 eV)

ASZV T entropy change upon divacancy 1.8

formation

t Seeger and Mehrer (1970)
+ Yoo (1979)
§ Murr (1975); Si-Ahmed and Wolfer (1982)

16



is the equilibrium divacancy concentration. Hence, with Ryy = 1.5 ay, we

obtain
v(2) =187 b expl-(ED, + Tas,.)/KT] (36)
3—a’2vp 2V 2V .

For the loss of the mobile point defects to dislocations, a sink strength
of 2 x 1013 m2 was chosen together with a bias factor of 1.2 for preferential
interstitial absorption.

Equations (4), (5), and (6) were solved numerically for the steady state
concentrations Cv, sz, and CI assuming that the loss to the subcritical
cluster population is negligible. This was confirmed subsequently after
having obtained the steady state nucleation rate and the subcritical distri-
bution.

Figures 2 and 3 show the steady state nucleation rates for bare voids,
i.e. without the formation of a segregation shell. The parameters used and
listed in Table 2 are applicable to nickel alloys and austenitic stainless
steels. The solid lines are based on the new void nucleation theory, whereas
the dashed curves are results of the previous nucleation theory in which di-
vacancies are neglected. We note first that the inclusion of divacancies in
the nucleation process increases the void nucleation rate by 3 to 6 orders of
magnitude depending on temperature and displacement rate. If a certain
fraction of vacancies becomes already clustered as divacancies during the
short-term annealing processes in the collision cascade, this has a noticeable
but secondary effect on the void nucleation rate.

In spite of the substantial enhancement of the void nucleation rate due

to divacancies, the computed rates for bare voids are still too low to be

17



VOID NUCLEATION RATE m3s!

o
(61

S
o

O
)

PREFORMED

300

| DIVACANCIES |
\ 0%
_'\\ 10% B
i 20% i
- \ o
i \ )
\
| \ ]
\
! \ _
| \ —
| DISPLACEMENT \ ]
RATE 10 dpa/s \\
i \ i
| \ _
\
N \ _
| | \ |
400 500 600
TEMPERATURE,°C

Fig. 2. Void Nucleation Rate Without Segregation at 10-6 dpa/s.

18



VOID NUCLEATION RATE m3s’

o,
O,

Q
o

T | [ I |
PREFORMED
DIVACANCIES ]
AN 4
i \ 0%  _
AN 10%
u AN 20%
N\
B \
\
\
B \
\
| DISPLACEMENT
RATE O0.001 dpa/s \
| | |
400 500 600 700

TEMPERATURE,®°C

Fig. 3. Void Nucleation Rate Without Segregation at 10-3 dpa/s.

19



comparable to experimentally observed rates. Therefore, it is still necessary
to invoke the presence of impurities which segregate to the subcritical
clusters. As described in previous publications (Wolfer and Mansur 1980,
Si-Ahmed and Wolfer 1982) we may model the effect of segregation by assuming,
for example, that the region of segregation forms a shell with an elastic
modulus slightly larger than the surrounding matrix. Other changes of lattice
properties may also be assumed. For the present study, however, it was
assumed that the relative shear modulus difference between shell and matrix is
1 - g =0.02. The computed nucleation rates are shown in Figs. 4 and 5 for
displacement rates of 10-6 dpa/s and 10-3 dpa/s, respectively. Again, the
inclusion of divacancies in the nucleation theory results in an increase in
void formation rate. However, the enhancement relative to the previous nucle-
ation theory is only one to three orders of magnitude. Segregation, on the
other hand, increases the rate of void nucleation by about 6 to 8 orders of
magnitude.
§5. DISCUSSION

Mobile divacancies were previously shown (Yoo 1979) to increase the void

growth rate in the lower temperature range of swelling. This increase can be

explained by the behavior of the effective vacancy diffusion coefficient

eff

Dy

= (DVCV + 2D2VC2V)/(CV + ZCZV) (37)

as a function of temperature. As shown in Fig. 6, it is seen that the di-
vacancies with their higher mobility enhance the effective diffusion at lower
temperatures. This situation is similar to the effect of fast-diffusing

solute atoms which also increase the effective vacancy diffusion. A recent

20
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study by Garner and Wolfer (1981) has however shown that when solute atoms
increase the vacancy diffusion, the void nucleation rate is reduced. The
reason for this result is that the vacancy supersaturation drops as the
vacancies become more mobile.

One must therefore conclude that the effect of divacancies on void nucle-
ation cannot simply be explained on the basis of an effective vacancy dif-
fusion coefficient alone.

The nucleation rate can also be increased when the fluctuations in the
growth rate of critical clusters are enhanced. In order to explore this
possibility we assume that the critical size x* >> 1. Therefore, in the
vicinity of the critical size, we may consider the cluster distribution
function f(x,t) and the reaction rates to be continuous functions of x. We
expand then all functions of (x - 2), (x - 1), and (x + 1) in Eq. (1) into
Taylor series, and obtain the so-called Kramers-Moyal expansion for the Eq.

(1). Truncation after the second derivative leads to the Fokker-Planck

equation

3f(x,t)/at = -3/ax {F(x) - (3/0x)D(x)}f(x,t) (38)
where

F(x) = 8(x) + 2v(x) - a(x) - y(x) (39)

is proportional to the average net growth of clusters with size x, and

Bix) = 5 [8(x) + 4v(x) + alx) + v(x)] (40)

24



is the diffusion coefficient for the random walk of clusters in the size
space. For the critical size x = x*, it is seen that Eq. (39) is almost

identical to Eq. (21), particularly when x* >> 1. Therefore, the critical

size can also be determined by the alternate equation F(x*) = 0.
In the vicinity of the critical size
Bix*) = 80x%) + 3v(x*) = (4122 (3 /3280 DD\ Cy + 30,,00,] - (a1)

If C& = CV + 2C2V denotes the total vacancy concentration, we can write

_ neff.t
2v = Dy Gy + Dy L

D 2vCay

CV + 3D,,C

v 2V

which shows that D(x*) is greater than what would be expected based on the
concept of effective vacancy diffusion alone.

We can therefore conclude that divacancies increase the void nucleation
rate because their absorption enhances the growth fluctuations of critical
clusters, and hence, their chance to pass from the subcritical to the super-
critical size range. This effect more than compensates the opposite reduction
of void nucleation by the increased vacancy mobility, as our numerical results
demonstrate.

That the role of divacancies on nucleation differs from their role of
void growth is further illustrated by the effect of preformed divacancies.
These divacancies are thought to be formed following the temperature decay in
the collision cascades. Since little information is available, various pre-
formed fractions were considered in this paper and by Yoo (1979). Whereas

their effect on void growth is pronounced, void nucleation is insensitive to
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preformed divacancies. Si-Ahmed (1981) has also investigated the effect of
larger, immobile vacancy clusters formed during the short term annealing in
collision cascades. It was found that their effect on void nucleation is
negligible. The present result is therefore a further indication that differ-
ences in the primary defect production obtained in different radiation

environments is not an important factor in void nucleation.
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