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ABSTRACT

An analytic expression for the trapping current in the thermal barrier
cell of a tandem mirror due to pitch-angle scattering has been obtained. The
overall system is assumed to be maintained in steady state by particle in-
jection in the central cell and charge exchange pumping is assumed in the
barrier cell. Trapping of ions in the thermal barrier due to Coulomb inter-
actions sets an irreducible minimum against which any pumping mechanism must
compete. A series of boundary value problems in the various regions of phase
space is obtained based on the smallness of the bounce time with respect to
the collision time. A high barrier mirror ratio, long central cell and deep
barrier electrostatic potential are implicit in the analysis. For conditions
of interest a Lorentz collision operator describes reasonably well the kinetic
problem which we have solved using a square-well approximation. Analytic re-
sults agree with numerical results within expected 1imits on the order of the
inverse of the barrier mirror ratio (~ 10 to 20%). A boundary layer mechanism
has been proposed which limits the trapping current value as the pumping rate
is increased.

1. INTRODUCTION

The thermal barrier of a tandem mirror [1] is a region of depressed mag-
netic field and electrostatic potential (Fig. 1) that provides thermal iso-
lation between the electrons in the central cell and the electrons in the
plugs, thereby making selective heating of the plug electrons possible. An
extra coil placed between the central cell and plug expands the magnetic field
lines in the barrier region, which decreases the density of particles and
creates a potential well. The passing particles streaming from the central

cell are trapped in this magnetic and electrostatic well by Coulomb scattering
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and this process occurs at the classical rate, at least at low density [2].

If such a scattering and filling of the thermal barrier proceeds unimpeded,
the density between the mirrors fills to the ambient density and the potential
variation disappears. Maintenance of the potential profile therefore requires
removal of those ions that become trapped. An effective thermal barrier
implies a large barrier mirror ratio (R, = B,..,/By) and a rapid pumpout of
the trapped ions [1]. A basic question, then, is to know the trapping rate
against which any pumping scheme must compete.

Numerical studies using Fokker-Planck and Monte Carlo codes have been
performed and empirical expressions have been obtained [3-5] for the trapping
rate. In this paper we derive an analytic expression for the trapping rate in
the thermal barrier of a tandem mirror using a Lorentz collision operator in a
square well approximation. The result is found to agree with the numerical
results [4,5] within ~ 10 to 20%, which is the anticipated accuracy of the
analytical calculations. In the analysis it is assumed that the thermal
barrier configuration [3] is stable and also that the particles remain on the
“same flux tube throughout the history of their containment [3]. Therefore,
our calculation sets an irreducible minimum for the trapping current, namely,
that due to Coulomb interactions.

The basic problem that we need to solve is one in which a long central
cell with density n., temperature Tc, magnetic field BC and electrostatic po-
tential ¢, s maintained in steady state by a source of particles Sc and adja-
cent thermal barrier cells with density ny, temperature Ty, magnetic field
depression By and electrostatic potential dip ¢p are maintained in steady
state by neutral beam charge exchange of frequency Vex (Fig. 1). Magnetic

field peaks (B = Bmaxb) separate the barrier regions from the central cell.



We wish to obtain the trapping current into the thermal barriers. This is
defined as the number of ions that are trapped per second.

It is convenient to define two parameters which will determine the so-
Tution to the problem: n is the ratio of the number of particles in the
barrier region to the number of particles in the central cell (typically
n~ 1072 « 1, i.e., "long" central cell) and Ay = Vg/“cx is the ratio be-
tween the collisional and charge exchange frequencies in the barrier region
(typically, Acx <1 and it decreases as the pumping rate is increased).

In Section 2 we will introduce the kinetic equation that we solve in
Section 3 in the various phase space regions of the tandem mirror. In Section
4 we obtain an expression for the trapping current and present some results.

In Section 5 we summarize the conclusions of this work.

2. KINETIC EQUATION

The distribution function of particles in the plasma is given by the
solution of the kinetic equation df/dt = C(f) + S, where d/dt is the deriva-
tive along particle trajectories, C(f) is the Coulomb collision operator and S
is a source of particles. Since the gyrofrequency (Q) of the particles is
very large compared to any other frequency characterizing the problem, we can

average the kinetic equation over the gyrophase angle (expansion in 0(wy/0),

wy, = bounce frequency), to obtain the drift kinetic equation which for low B
(8 = particle pressure/magnetic pressure) in an axisymmetric plasma can be
written as

of

ﬁ+T/"-’\71=-q174>-(V||+\*/D)§§=t‘,(f)+s , (1)



where, consistent with the guiding center picture of particle motion,
f = f(E,u,s,t) (we suppress a parametric field line dependence (r,6) and con-
sider azimuthal symmetry in velocity space after the gyrophase average);
vy = [2/m(E - uB(s) - qé(s))11/2, B(s) and ¢(s) are the magnetic field and
electrostatic potential at the position s along a field 1ine, E and u are the
energy and magnetic moment adiabatic invariants; and Vb is the drift velocity.
Further, we can expand the drift kinetic equation (1) in O(vs/wb) [6], except
in a thin boundary layer region around the loss boundary in phase space (in
which the effective collision frequency is of the order of the bounce fre-
quency), whose treatment will not be considered here. The lowest order
distribution function satisfies the Vlasov equation whose characteristics are
the trajectories of the collisionless particle motion. That is, the distri-
bution function when expressed in terms of constants of motion does not change
along a field line. In a steady state situation the bounce average of the
first order equation yields the consistency condition 99ds/vIl [C(f) +S] =0,
where the integral extends to the quasi-periodic orbit of a particle and the
integrand is evaluated at the velocity space mid-plane variables v and
z=(VeB)/B = v“/v at s = 0, which is the point of minimum B(s) through
which all particles pass; alternatively it could be evaluated using the
quantities E = 1/2 mv2 and p = mvi/ZB.

Assuming that the magnetic field and electrostatic potential change oc-

curs abruptly at the ends of the cell ("square-well" approximation) the last

condition reduces to

C(f) = -5 , (2)



where S represents any source or sink introduced to maintain a steady state
situation. The two mentioned conditions for the lowest order distribution
function determine the boundary value problem to be solved in Section 3.

If near and many-body collisions can be neglected (accuracy of 0(1/1n A),
In A = Coulomb Togarithm), the Fokker-Planck collision operator for Coulomb
interactions [7] is appropriate. This operator predicts that significant
changes in the distribution function of the charged particles will occur in
times of the order of vgv/nr where v, 1s the average speed of the particles
of interest, n is the local density, I = 41rq4 1nA/m2, q = electric charge and
m = particle mass [6]. A Fokker-Planck operator valid for distribution
functions azimuthally symmetric in velocity space is given in Ref. [7]; it can
be expressed in terms of the Rosenbluth potential g(Vv) = [V (VO |V - v'|
(Ref. [7]), which is the mean value of the relative velocity between the test
and field particles of velocities v and V', respectively. This operator is
nonlinear and integro-differential. For an analytic treatment of it, a
"known" background distribution function is usually assumed so that it becomes
a differential operator. Assuming that the distribution function of field
particles is separable [6,8] in the form f(v,z) = f(v)M(z) and piecewise dif-
ferentiable in the interval ze[-1,+1], we can express it as a series expansion
of Legendre polynomials in the form [7]

@«

F(x,z) = n=0an(x) Pn(c) ,

with

@

M(z) = ¥

) 0MnPn(c) s

6



an(x) = MnF(x) ,

+1
/ M(c)Pn(c) dz
-1

n - +1 2 ’
f PL(z) dt
-1

and where x = v/vy and F = fvi/n are dimensionless quantities. After substi-
tuting this expansion into the definition of g(V) and integration of the
series term by term [7], the dimensionless Rosenbluth potential y = g/nvy

takes the form

-]

yix,z) = -}

i 0Cnyn(x)Pn(c) , (3)

M

where C_ = ——zﬂ———- s
N 4nc -1

yn(x) = [ dx' Gn(x,x')F(x') R

n 2
oL & X<
Gn(X,X ) = -1 (1 - dn —-2—) s
Xy Xy
d = n-1/2
n n+ 3/2 °

and x. (x,) is the smaller (larger) of x and x'. If f(v) is a Maxwellian
distribution then we obtain
2

1- 3 2 5 .2
ylx) = Gplxaxt > = = {x v ,x)-x—;y("; X))

+x"r(2 - 5, 8) - d P - 3 8]},
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where <A(x)> = [ dx Froax (XA(X) (4)

2
with F e~X /n3/2 is an energy average of the function A(x) and y(a,x)

max(X) =

and TI'(a,x) are the incomplete gamma functions [9]. For n = 0, yg is
¢I
.YO(X) = <G0(szl)> = ¥ +'2_ ) (5)

where ¢(x) = erfx and y(x) = x + 1/2x.

The particle confinement time of the ions in the central cell of a tandem
mirror is much greater than the collision time (for n << 1 and due to the good
electrostatic plugging) and therefore the distribution function for the ions
in the central cell is nearly Maxwellian and we can take y = yg in 0(n). For
a central cell plasma consisting of singly-charged ions of one atomic species
with a separable distribution function of the form F(x,z) = Fp.. (x)M(z) and
Yy =Yg, the Fokker-Planck collision operator reduces to a pitch-angle operator

whose dimensionless form is

C(F) = lig-LF . (6)
2X

where C(F) = (vi/nvs) c(f), Ve = nr/vi, vy = particle thermal velocity and

y' = dy/3x is
Yooy = '+ ¢l (6')
.y .Yo ‘P ¢ ZX ]

or alternatively, y'(x) = ¢(x) - G(x) where G(x) = (¢ - x¢')/2x2 is the
Chandrasekhar function tabulated by Spitzer [10] and L = 3/3z [(1 - 52) 3/93z]



is the Legendre differential operator. The collision operator describing the
barrier passing particles, which are those particles entering into the barrier
region from the central cell (Fig. 2), is within O(n) the same used for the
central cell passing particles, with y' =1 for a typical xg = ¢b/Tp > 1 (¢b

= barrier electrostatic dip defined as a positive quantity in energy units;

Tp = passing particle temperature), i.e., the barrier passing distribution
function is imposed by the central cell passing particles.

For a more general situation, such as that in the barrier trapped region,
we proceed as follows. Since y(x,z) is an integral function of F(x,z), it is
much less anisotropic than F(x,z) (C, ~ Mn/n2 in Eq. (3)). Otherwise the
barrier mirror ratio Ry = Bpaxp/Bp 1S typically much greater than unity.
Therefore, y(X) is within O(Rgl) nearly isotropic in the populated barrier

region and we can write the Fokker-Planck operator in the form [8]

C(F) = 4nF? e Lo e Lo
X 2x
—X2
The first term can be neglected within O(e °). Besides, due to the effect of

the charge exchange pumping in a barrier with R, >> 1, the angular derivatives
of the distribution function are much larger than the speed derivatives for
most of the particles which are those with x > x,. Thus C(F) = (y'/2x3) LF
for x > x5 > 1.

Next, we consider some typical functional forms for y(x,z). The barrier
distribution function is centered about the vertices of the two-sheets
hyperboloid surface representing the boundary contour in velocity space (Fig.

2). For a background distribution function of the form
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Figure 2 Velocity space in the thermal barrier cell
(the plug potential has been assumed much
greater than the barrier potential).
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FR =5 ToXek) ,
+ -

where ) means the sum of the (+) term and the (-) term and X = tfo are the
+,-
hyperboloid vertices in velocity space (X = V/vt) , we obtain

2 /2

> 1 2 1
y(x) = §-+2_(x * Xyt 20xx )

On the v, axis its first derivative is y'(x, £ 1) =1 for x > Xo and this is

1

also approximately true within a region of width ~ RB around the v, axis in

velocity space. For a background of the form

> > 2
N 1 -(x£x )

F(X)=2—37-2— Ze s

i +,-

the Rosenbluth potential y(i) and its first derivative can be obtained by sub-
stituting x for s, = |X + §0| in the expressions given in Eqs. (5) and (6')

for a Maxwellian centered at X = 0 [11], yielding

(X)) =i zwu)-eu)]iigi
4 2 L M5 1 s,

On the v, axis y'(x, £ 1} =1 for x > Xo > 1 (for a narrow Maxwellian back-

-1
b )

region (where typically Ry >> 1 and x > x, > 1) y' = 1.

ground of width ~ R Thus, we will assume that for the case of the barrier

In summary, we will describe the diffusion in velocity space by a Fokker-

Planck collision operator which in the central cell takes the form (in 0(n))

C(F) =¥ LF , (7)
2

11



with y' given in Eq. (6') and in the thermal barrier region takes the form
C(F) = 25 LF (7)
2X

which is approximately correct within O(n, Rgl) for x > x5 > 1. For a high
barrier mirror ratio the barrier passing particles have a small perpendicular
velocity so that a relatively small change in pitch-angle (8 = cos™! (vy/v))
of the velocity vector can cause them to become trapped. Thus, the primary
effect of collisions is pitch-angle scattering and pitch-angle trapping will
dominate energy trapping. This is what leads us to the simplification of the
collision operator to the Lorentz form.

We consider a Tow B plasma with two components (electrons and ions). The
electron speed is assumed to be very large compared to the ion speed so that
the electrons contribute negligibly to the ion collision operator. However,
electrons cancel the ion space charge making possible the vanishing of the
electric field in the central regions of the central cell and barrier cells
and creating an electric field in the mirror regions to preserve quasi-

neutrality in both cells.

3. BULK ANALYSIS

The particle distribution function will be determined in each of the
various phase space regions (Fig. 3) by solving the kinetic equation (2) with
pitch-angle collision operators given in Eqs. (7) and (7'). Those particles
which bounce between the plugs are called passing particles and those con-
strained to move in either the central cell or the barrier region are called
trapped particles. Particle injection maintains a steady-state collisional

distribution function in the central cell and in the barrier passing region.

12
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The distribution function of particles trapped in the barrier region is deter-
mined by the competition between collisional filling-in and the pumping
process due to charge exchange off the neutral beams.
The distribution function will be the solution of the following set of
boundary value problems:
Central cell trapped particles:
ve ¥

;LFCt(X,C) = -Sct(X,C) ’ (8)

#Ct(c=0) =0 . Foplt=z,) = F,

Central cell passing particles:

732
N‘J%
x -

[}

LFCp(x,c) -Scp(x,c) , (9)

Fcp(c=1) =0 . Fcp(c=cc) =F .

Barrier passing particles:

<

w o
N“J‘<
>

LFbp(x,c) -pr(x,c) , (10)
Fbp(;=1) =0 o Fbp(c=cb) = Fo .

Barrier trapped particles:

by _
Ve T LFbt(x,c) = vchbt(x,c) R (11)

14



Fbt(c=0) =0 , Foe(5=5,) = Fy

b

C
H v v
ere, s and s

are the collision frequencies in the central cell and barri-
er, respectively, and Vex is the charge exchange pumping rate in the barrier
region. The dimensionless distribution functions Fct’ Fcp, Fpt and Fbp corre-
spond to the trapped and passing regions of the central cell and barrier,
respectively. The condition F = 3F/36 = 0 at 6 = ©/2 is due to the symmetry
of the angular distribution function of trapped particles. Otherwise, since
the distribution function is azimuthally symmetric in velocity space (after
the gyrophase average), the condition of symmetry at 6 = 0 and 6 = = must also
be imposed on the passing particle distribution function (3F/36 » -aF/av'l vsin®
as 6 approaches the v, axis). The remaining free constants of the problem are
obtained by matching the value of the distribution function at the loss bound-
ary with the isotropic level existent throughout the machine [12] and that
will be determined by the continuity conditions given below. This matching is
consistent with our O(vs/wb) analysis, which neglects the effects of the col-
lisional boundary layer around the contours between the various regions in

velocity space. The values ¢. and ¢, are defined by the equations of con-

servation of the energy (E) and magnetic moment (u). In the central cell,

2

1 - ;C

= Rzl where Re = Bpaxp/Be and the central cell electrostatic potential
has been chosen as the reference potential (¢. = 0). Equating the (E,u)
values of the central cell particles entering the barrier region with mean
energy Tp at the barrier peak (B = Bmaxb) to those of these particles at the
bottom of the barrier region (B = B,) we obtain 1 - ;g = Rgl(l + xg)_l, where
Rp = Bmaxb/Bb and xg = ¢b/Tp. Thus, we can define an effective mirror ratio

for the barrier particles as Rb(l + xg) which permits consideration of the

15



barrier ambipolar effects in velocity space while assuming a separable bound-
ary contour [13,14]. Otherwise, the ambipolar effects can be taken into ac-
count by the more rigorous method of solving the collision operator using

hyperbolic coordinates like

X = (V2 + 0('2)1/2 ,
- Vg
y = 7 s
(VZ + a2)1/2

with az = v(z)/(Rb - 1) and vg = 2q¢b/m so that the loss boundary contour

vi - (R - l)vi = v§ maps into the coordinate surface y = ¢

The boundary conditions imposed in Eq. (11) are those describing the

co

barrier trapped particles with v > v We will not consider a small fraction

o
of barrier trapped particles with v < Vo Which are close to the loss boundary
vertices and whose main effect is to provide for a speed gradient of the
distribution function that produces some trapping due to energy scattering
which is neglected in our analysis (O(Rgl) correction). The dimensionless
particle sources (S(x,z) = S(v,z) vi/n) Sct» Scp’ and pr maintain in steady
state the trapped and passing regions of the central cell and the barrier
passing region, respectively.

We will search for solutions of the form F(x,z) = Frax(®) M(z) in the
central cell and of the form F(x,z) = Fmax(x) exp (xg) M(x,z), x > X, in the
barrier region. We will also consider separable source functions of the form
S(x,z) = S(x) o(z). In considering a general function o(z) we introduce a
trivial factor in the denominator of the normalization coefficients A's

(defined below) of the form

16



c z g
[Cde [ 2% 17 4p o(z)

0 1-z% o
_ g, 1-¢
o'_.
t z ’
c 1_CZ
[ dg an (———72)
0 1-;C

in the case of trapped particles [15] and

1 z dz 1
[ dt [ —% [ dt olz)

— % g -2 ¢
g = 1 s
+
[ dm (115
g, c

in the case of passing particles, as can be seen by going through the analysis

below for a general o(z). Therefore, we will consider isotropic sources

(o(z) =1, @ = 1), distributed as EEE-= ;;ﬁl-= S_ = central cell source (an
L) 3 CC _CC C y

other source distribution introduces again an unimportant factor in the A's
defined below). We will also assume that the charge exchange pumping fre-

quency v__ is constant over the phase space of the trapped barrier region.

cX
The charge exchange process does not alter significantly the passing distri-
bution function since on the one hand those particles charge exchanged in the
trapped region of the barrier are a source for the passing region and this is
an 0(n) effect on the particles over the entire machine and, on the other
hand, with regard to those particles charge exchanged in the passing region we
note that in an analysis of O(vs/wb) the collisional response and the charge
exchange pumping are much slower processes than the bouncing of particles in
the barrier region. The sources and sinks which maintain the system in

steady-state are localized in real space. This fact does not influence the

solution to the problem due to the rapid bouncing of the barrier particles.
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In the subsequent velocity space integrations we will set the central cell
electrostatic potential equal to zero and we will assume that the plug po-
tential is much greater than the barrier potential.

The distribution function of particles trapped in the central cell, which

is the solution to Eq. (8), takes the form

i

f . (v,z) = [n A an (1“‘2) st f () o -lz]) (12)
ct'Vs® ct ‘ct l_ci Ze max Semlet
c
2,2
VIV 32 3
where fmax = e /T Vis 8(x > 0) =1 and 8(x < 0) = 0 (Heaviside step
function); the density superscripts "a" and "i" refer to the anisotropic and

isotropic density components, respectively; Agi = ¢n [(1 + ;c)/(l - ;c)] - 2cc;

a
+
ct

central cell. In the passing region of the central cell the solution to Eq.

(9) is

> 3 i . : .
and | dv fot (vyz) = n Net = Mo = density of trapped particles in the

i

_ra 1+ ]zl "ep .
fcp (v,z) = [ncp Acp (1 z, )+ l-cc] foax (V) © (el ) (13)
with ACp =240 (2/1+¢)-1+¢ and [dv fcp (v,z) Nep * Nep = Nep

density of passing particles in the central cell. In the barrier passing

region the solution to Eq. (10) is

i
1+ l;l) + nbp ]

- a
fbp (VsC) - [nbp Abp Rn (1 + Cb 1-Cb
¢ 0/ T
H D) frax (V) @2 Poolle] - g) o(v-v,) , (14)
P

with A;é (cb) =2 2an (2/1 + cb) -1l+g and Hol = <1>* s given in Eq. (A.2)

18



where

2
X
<A(x)>* = [ dx oo (x) e % Alx) (15)

XO

xg = 9p,/T; %—m vg = ¢ps for x5 = 0, <A(x)>* = <A(x)> (cf. Eq.(4)); and
¥ - | i _ . . .
[ dv fbp (v,z) = nbp + nbp = nbp = density of passing particles at the bottom

of the barrier electrostatic well:

_r.a A(0) i H(0)

b H(xo)
where ngp(o) and n;p(o) are densities at the barrier peak (B = By, ). Since

ngp (o) ~ 0(n), (cf., Eq. (24)), we can write My in the form

ni
no=—C _[1+0 (n x2 R X1, (15')
bp /F-Rb X 0 b "o
0

where n; = nlp + nit = isotropic central cell density. The confinement time
of the passing ions is typically much longer than the collision time in the
central cell and then their distribution function is approximately Maxwellian
[in 0(n)] with temperature determined by the central cell.

The distribution function of particles trapped in the barrier region is
the solution of a Legendre boundary value problem with complex eigenvalues
where the differential equation has the form (cf. Eq. (11))

9

2, 3 - y' 4-1
= (1 -5 a—C-M(x,c) = Dy ;;5] M(x,z) .

A real and bounded general solution satisfying the boundary conditions is

19



KT(C) + LT(C) ¢b

f . (v,c) = n G(y—) f (v) e
bt bt KT(Cb)+LT(Cb) T;' max

8 /T

t
] (cb-lcl) e(v-vo) , (16)
where KT(C) and LT(c) are Conical functions [16] of index t such that
]
R LA (17)

The Conical functions KT(C) and L_(z) coincide with the Spherical Harmonics
P-(1/2)+11(C) and P-(1/2)+ir(-C) for real t [17,18], respectively. The
functions KT(c) and LT(c) are linearly independent solutions of the Legendre
differential equation [19] and effectively correspond to first and second kind
Legendre functions P_(1/2)+it(z) and Q-(1/2)+ir(2)' They are regular
functions in the complex plane cut along |arg (1 + z)| < = and they also are
entire and even functions of the index 7. These functions are real functions
(representable by real hypergeometric series) for real t [16]. At very low
energies 12 + %—= 0 and the Conical functions become very close to a constant,
i.e., low energy particles are so collisional that they "fi11" the barrier
trapped region. An equivalent situation is attained if the pumping rate is

decreased (ch + 0). The normalization factor G is defined as

-1 *b K (2) + L (z)

G =< dg >* ,
o KT

(18)

and it is evaluated in Appendix A. Also [ dv fbt(v,c) = ny, = density of

t
trapped particles at the bottom of the barrier electrostatic well. The
distribution function of the particles trapped in the barrier cell becomes

localized to a narrow region near the loss boundary in velocity space when the

20



charge exchange pumping rate is fairly strong (cf. Eq. (A.5), Fig. 4), decay-
ing exponentially as

1/2
-alzg -z} /A
M) ~e D CX (19)

(cf. Eq. (A.6)), where a = (2x3/(1 - c%)y')l/2 is typically much greater than
unity so that the angular characteristic width of the trapped barrier distri-
bution function is Az << 1. A convenient measure of the smallness of this
width is Aiiz(A; ~ Aéiz, Acx ~ v;i). The trapped distribution function gradi-
ent near the loss boundary becomes very steep as indicated explicitly in Eq.
(A.7). Since our analysis is collisionless in a bounce time [O(vs/wb)], the
derivative of the distribution function solution in the barrier cell has a
discontinuity at the loss boundary which otherwise will be smoothed out by
boundary layer effects [20]. In a bulk analysis the normal derivative of the
barrier distribution function is not continuous at the loss boundary because
the flow of particles through it is not conservative (particles that become
trapped in the barrier region are pumped out by charge exchange). When the
pumping rate is large this discontinuity introduces a significant error in the
trapping current evaluation.

The unknown density levels of the distribution function expressions given
in Eqs. (12)-(14), (16) are determined by the following relations. Since we
are assuming that the effects of collisions in a single period of the particle
motion are small enough to be neglected and that a quasi-steady-state exists,
the distribution function is a constant along field lines. The distribution
function depends only on the constants of motion which in the adiabatic theory

of a cylindrically symmetric system are: the magnetic moment, u = mvi/ZB, the
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energy, E = mv2/2 + ¢, and the magnetic flux, y = nrzB. There is an implicit
radial dependence in the distribution function which has been omitted in our
analysis. We can write the statements of energy and magnetic moment conser-

vation as

2 2
Vee “ Ve " Vo 0
2 2
I-ge _ -2
l-cg 1-§E

where the subscripts CC and BC stand for central cell and barrier cell,
respectively, and Vor b and Zc define the boundary contours as stated before.

Then we impose the conditions

Fop (0250) = fi (veug) (20)

which ensures the continuity of the distribution function at the barrier peak
(B = Bmaxb)' Also, from the continuity of the distribution function at the

boundary contours of the central cell and barrier cell phase spaces we have

Fer(0u5g) = Fp(0,20) (20')

fbp(vo,cb) = fo(Vostp) -

The distribution function in the barrier passing region, which is determined

by the distribution function in the central cell passing region, provides a
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boundary condition for the barrier trapped distribution function at the
boundary contour.

In steady-state the particle currents satisfy
Jet * 9ep * Ipp * It = 0 s (21)

where J = %%-= [ dy ¢ E&-j with [ dy ¢ §&-= V = cell volume (V. = central cell
volume, Vy = barrier volume); here N is the number of particles in the cell;
dy is the differential magnetic flux; d2 is the field line differential
length; j = - [ dv C(f) = [ d§v-f is the loss of particles per second and per
cm3 where C(f) = - §v-f, the volume integral extends over the region of
velocity space occupied by the particles of interest and the surface integral
is defined on the surface surrounding that volume. Although the arguments
presented here are rigorously valid only for individual force tubes we will
assume that the conditions are sufficiently uniform over the cross-section of
the cells so that we can refer the calculations to the cells as a whole. Then

we obtain

e = Act T %e Moy Ve (22)

A
. _ ¢ _ a ¢
Jcp - "ZB 1@ Cc) ncp Vs »
Ay a b
Jp =2 L - gp) mpy Ve
jbt =7 Mht Yex
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&>/<1> = 1.388 [15] Yo ——3——2—”0’)(‘2’) (

where I = <1> = 1. and I* = <% /KI>* = y' =1 1in the

X X r(23xo)

barrier region) with I'(a,x) being the incomplete gamma function [9]. Since we
are considering a collisional and stable plasma in which an equilibrium situ-

ation has been reached by particle injection and charge exchange pumping, the

condition given in Eq. (21) can be equivalently formulated as
S,.,+S _+S =S5 (23)

where S = [ dy § %ﬁ-f dv S(v,z) = particle source (the velocity space integral
extends over the region of velocity space occupied by the particles of inter-
est) and S, = [ dy ¢ gf-f v Vex Tpt = charge exchange sink. With uniform
conditions in the radial and axial directions the charge exchange sink takes
the form Vex bt Vb' We analyze those particles which are well confined by
the plug electrostatic potential and assume that other losses different from
the ones considered here (e.g., Pastukhov losses, radial losses, etc.) are
balanced otherwise.

Substituting the distribution functions of Eqs. (12)-(14), (16) and the
currents of Eq. (22) into the continuity conditions given in Eqs. (20), (20')

and (21) and solving, we obtain

n

a bt 2
n%, = n+ 0(n°) , (24)
ct ACt I Acx

ni = G n

ct ™ % ® Mt

2n

a bt
Nep = x—T5— " * 0(n%) ,
cp cp cX



where D = gn(2/(1 + ;C))/zn(Z/(l + ;b)); Ne = N + Nep is the central cell

T S | -1
density; Ac Act + 2Acp

; and terms of O(nz) have been neglected. For
simplicity we have assumed that the plasma is isothermal with a temperature
determined otherwise by energy balance throughout the machine. The parameter
n = (Vb/VC)(vg/v:) is, then, the ratio of the total number of particles in the
barrier region to the number of particles in the central cell.

In the case of a long central cell (n << 1) the distribution functions in
the central cell and barrier passing region are nearly isotropic, cf. Eq.
(24). Figure 5 shows the distribution function in the barrier region when the
pumping rate is increased (ACX + 0). Then the distribution function contours
wrap around the loss boundary in velocity space and the trapped density in the
barrier region decreases. For some level of pumping (defined in the next
section) the trapped distribution function in the barrier is localized to a
boundary layer region in which our analysis of O(vs/wb) is no longer valid.

In that case a boundary layer analysis is required [20] and a half-range
boundary value problem needs to be solved with inhomogeneous asymptotic con-
ditions given by our "bulk" analysis (Eqs. (14,16)), which is valid far away

from the boundary layer. As a consequence of a boundary layer analysis the
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derivative of the distribution function in the barrier region will be continu-
ous at the loss boundary and boundary layer effects will bound the otherwise
unbounded growth of the barrier trapping current (as discussed below and noted
in Refs. [4,5]) by 1imiting the steepening of the barrier distribution
function near the loss boundary.

4. TRAPPING CURRENT

As a result of the analysis carried out in the preceding section, the

various density levels throughout the machine have been determined and we can
Q

write the barrier passing density as nbp = i;; bt where
2
G(x%)
2D 2
2=(1-¢g.) A S+ n+ 0(n°) . (25)
b’ “cx H(iz) Abp I H

Since the barrier trapping current is jt = My Vex [-jbt in Eq. (22)], we

obtain

n, v
§y = %, (26)
1+
cX

Q . e . . .
where 1 + 7;;-= §§T and g = "b/"bp is the filling ratio as defined in Ref.
[1]. In the limit of a long central cell (n << 1) we can write

Q= (A A* )1/2

ox ex + 0(n) . (27)

Then the barrier trapping current (partic]es/cm3/sec) is given by the

expression

= CcX (28)




valid for n << 1; here n, is the barrier density (cm’3); v
1y, ,* 2
IR Ay ® x0/2Rb (for X

cx 18 the charge ex-

. 2 = .
> 1), cf. Eq. (A.4); x ¢b/Tp, 28

change frequency (sec” 5

barrier electrostatic dip; Tp = passing particle temperature; Ry = Bmaxb/Bp

barrier mirror ratio; 1 _ = vb/v ; W o= Ny r/vi; T = 4x q4

2
cx s Vex’ Vs £nA/m~  and

Tp = %—m vi . Finite n corrections are discussed in Appendix B.

Fokker-Planck studies have been carried out in Refs. [4,5] for situations
comparable to those described by Eq. (28). In Figs. 6 and 7 we give a com-
parison between the numerical results obtained for J¢ in these references and
the analytical results obtained using Eq. (28). Input data for the calcu-

lation are Rb’ s Nps V and T.. We have evaluated the collisional time

b?* “cx P
from the expression l/vb = §-=-g-21(—1-(—)E-T3/2 with 2nA = 34.9 - 2n nb as
P S ny &nA ) ) Eile

calculated in the Fokker-Planck studies [4,5] (T, = electron temperature and
E; = average ion energy in the bottom of the barrier cell). As expected, our
analytic expression provides an estimate of the trapping current that is lower
than that obtained from numerical results since we have evaluated only the
trapping due to pitch-angle scattering neglecting the energy scattering
contribution. The average errors obtained in the cases represented in Figs. 6
and 7, which correspond to high and low barrier mirror ratios, are -6.4% and
-18.6%, respectively. High barrier mirror ratios are necessary for reasonable
thermal barrier cells [1] and, therefore, we expect that the trapping current
due to energy scattering will be an O(Rgl) ~ 10% effect in the trapping
current calculation.

We can define a trapping frequency v, as

t

Jt = Mpp V¢ »
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Figure 6 Comparison of numerical( ) and analytical results for the
barrier trapping current. High barrier mirror ratio cases.
(*) Results taken from Refs. [4] and [5].
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Figure 7 Comparison of numerica1( ) and analytical results for the
barrier trapping current. Low barrier mirror ratio cases.
(*) Results taken from Refs. [4] and [5].
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that is, Ve is an effective frequency for replenishing with passing particles

the trapped particles that have been pumped out. Since jt = Mot Vex and

A
_ ex
bt = o nbp , then
vb
v, = __S.
t Q °
and using Eq. (27) we obtain
AL 1/2
cX
Ve Ve () (29)
cX

Boundary layer effects are expected to be important when Vex > v, or, from Eq.

t
1/2 ( \*1/2,

(29), when Acx cx 3 this condition corresponds to g < 2 according to the

expression for g given in Eq. (26). In the barrier trapped region, collision-

al effects compete with charge exchange to establish a distribution function

1/2

ox (cf. Eq. (19)). This

profile which has a typical angular width Az ~ A
result can be also obtained as the solution to a boundary layer kinetic

equation of the form

2
by' 2, 3°f
v (1 -z) =v . f,
S 2x3 b ac? CcX

whose O(vs/wb) solution for |g| < Ty with boundary conditions given in Eq.
(11), is that obtained in Eq. (19). This equation describes the velocity
space diffusion of the particles trapped in the barrier region when they are

very localized near the loss boundary, i.e., for 1 >> 1 and 6 = eb as was as-

1/2

as
X

*
sumed in obtaining the expression (19). Therefore, we can visualize A

corresponding to a critical boundary layer width Az* such that if the barrier
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S8 < ape (a0

trapped distribution function is localized within it, Az(~ Acx cx )

boundary layer effects become significant. Alternatively, we can write

A v

cx _ s eff
*x ") s
A

X CcX

where

Vs eff

b b

Vs vs(vo)
*"ebzs
cX (;an?)

is an effective collision frequency for particles of velocity about v, to

(29')
A

pitch-angle scatter out of the passing barrier region, Az ~ 1 - Ty o= coseb

(by a random walk process). Then, from Eq. (29), we obtain

V¢ T (vcx Vs ei’f)l/2 : (30)

Therefore, the following statements are equivalent

vt vs eff °

*1/2 3 ,1/2

CX cX

A

In general Ve * Vs off due to the effect that the charge exchange pumping in
the trapped region has on the gradient of the distribution function at the

boundary contour. Only when Vex = Vs off is Vi = Vo off (cf. Eq. (30)).
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The trapping current expression (28) obtained from a bulk analysis grows
unboundedly as the pumping rate is increased since jt ~ viiz. This is because
the angular gradient of the trapped distribution function in the barrier
region becomes arbitrarily large at the loss boundary. An unbounded behavior
has also been observed in numerical studies [4]. In order for the trapping
current to remain finite as the pumping rate is increased the derivative of
the barrier distribution function must be continuous across the loss boundary

in velocity space. When the pumping rate is increased the characteristic

1/2

width Az ~ Acx

decreases and boundary layer effects become important imposing
an upper bound to the barrier trapping current and removing any sharp gradient
formed near the loss boundary. We note that Azx increases as ¢y increases or
R, decreases. In both cases a lower Vo off is expected so that the condition
Vex Ve is more easily achieved or, in other words, boundary layer effects
will be more important, which is equivalent to the initial statement of

*
greater Aoyt

The expression (28) can also be written in the following way. Using the

relation "bt/"bp = (ACX/AZX)l/z + 0(n) we obtain
n2 A* 1/2
. _ b 1 CcX
K. T A CcX
i'p cX

where nbp = nb/[l + (A /A* )1/2] = barrier passing density and

cx’ “ex
1/an42nA (K.T3/2 = nt

_ 172
Ky = min/2 iTp i1 T4

; = jon-ion 90° scattering time). Since

Ny = né//? Ry X, (cf. Eq. (15')) the barrier passing density decreases as

ions accelerate in the electrostatic well and the magnetic field lines expand

*-1

in the magnetic well. Otherwise Vo off ~ Acx

~ Ry /X, (cf. Eqs. (29', A.4))

so that Vo off increases as the angular width of the barrier passing region of
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velocity space is reduced and decreases as the barrier passing particles are

1/2 1/2

A*
>>
CcX CcX

accelerated. Therefore, for Tow pumping rate (A or g > 1) the

trapping current behaves 1ike g ~ ¢B3/2 Rgl

for a given central cell density.
Finally, we note that as Vex * 0 the trapping current vanishes (cf. Eq. (28))
since then the barrier trapped region becomes "filled".

5. CONCLUSION

An analytic expression for the trapping current in the thermal barrier
region of a tandem mirror due to pitch-angle scattering has been obtained.
The expression compares well (~ - 10%) with Fokker-Planck numerical studies
for barrier mirror ratios of interest. Boundary layer effects in the phase
space of the thermal barrier cell might be significant for filling ratios
g < 2.
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APPENDIX A

In this Appendix we derive some of the mathematical results referred to
in the text. First we want to evaluate @ = (1 - Zp) Aoy G(xﬁ)/H(xg) + 0(n)
defined in Eq. (25) and where xg = ¢b/Tp, Tt <1>* and G is given in Eq.
(18). The angular integration can be performed by using standard recurrence

relations for Legendre functions (identities 7.8.4 of Ref. [19] and 8.735.2 of
Ref. [9]) obtaining

Bk Lo - i) - gy

KT T+ L (5T ° ° %_+ 2 LlgT+X )’

0

where the Conical functions Kl(c) and Li(c) coincide with the Spherical

. 1 1 .
Harmonics P_(1/2)+1T(c) and P_(1/2)+1T(-c), respectively [18]. Then Q reduces

to the form
_W1/72 *1/2
8= Aex Aex
where
G(x ) o,
*1/2 _ 1/2 _ -
Ay (1 ;b) -]:35; 2 tg ?—-f(x ), (A.1)
with
2, _ .-1/2 <1>*
f(xo) = Aex

1 1 ’
S L: (;b) - KL (;b)\*
3 '

L. (cb) + Ko (cb)

36



2
X x2

0
<1>* = gﬁ:?'r(g3 xg) =-§: Xo * e 0 erfex (A.2)
m ™

and y' and t have been defined in Eqs. (6',17), respectively. The denominator

1 1
LT(;b) - KT(cb) ..
LT(cb) + KT(cb7

2

of f(xg) can be evaluated for a typical Xg > 1 by approximating

(relations 7.1 and 13.4 of Ref. [18]) and t = (—2—)1/2 x 3/2 ¢4 yield
ALy
CX

r(3/2, x%)
o 2, 2

and asymptotically (relation 6.5.32 of Ref. [21]) we obtain

X3/2

2y .0 -2
flxg) = —— 1+ 00D . (A.3)

*
Then, the parameter Aex takes the form

*

X
.o -2 -1
Aoy = ZRE-[1 +0 (xo s Ry ¥1 . (A.4)

It is also of interest to evaluate the asymptotic behavior (t + =) of the

angular distribution function in the barrier trapped region

KT(c) + Lt(c)

M(z) = M .
(o} Kr(c) + LT(cb)

-1/2
cX

the pumping rate in the barrier region. At the origin

Since T ~ A » the asymptotic behavior t + « corresponds to an increase of
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M
2/
M(z=0) = 9 ,
K (g, b+ L (g7 Ir(%Jr j ér_)|2

where T(z) is the Gamma function [9] and use has been made of identities 7.6.7

of Ref. [19] and 6.1.32 of Ref. [21]. The asymptotic behavior of M(z) at the
origin is then

-(F -8 )t
M(O) ~e 2 DT (A.5)

where 6, = cos'1 z

(10) of Ref. [17]. Also, from the relation (10) of Ref. [17] we obtain
-(6 - eb)'r
M(z) ~ e

b and we have used the relations 6.1.45 of Ref. [21] and

and near the loss boundary (6 = eb)

M(z) {- ( 2x° )1/2 ( )} (A.6)
z) ~exp [~ (—5— g, - &)} . .
Acx(l—cb)y

The derivative of M(z) at the loss boundary can be written as

1 1
M Mo Lalgy) - Kol
(1 - Cg)l/z LT(cb) + KT(Cb) ’

where we have used the relation 2.7 of Ref. [18], and asymptotically behaves
as

M,
wle=g)~1, (A.7)

according to the relations 7.1 and 13.4 of Ref. [18].
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APPENDIX B

In this Appendix we discuss the effects of having a finite n < 1, i.e.,

"short" central cell. In this case the results given in Eq. (24) become

n

a bt

n., = T " (B.1)
9

ct ct Acx

i
et © %¢ G b »

a 2nbt

n._ = n
A Tx_B"'°
cp Acp Acx

‘i =

nCp (1 - Cb) G nbt ’
a 2D bt .
bp ~ Ry, TH A B

where B=1+

jt = Q £} (B.Z)

with
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2D

_ G
2= (1 -1z, Acxﬁ"A;p—rTEf“-

In 0(n) the source of particles that become trapped in the barrier region is
the isotropic level which is an infinite source of particles (n + 0). Cor-
rections of 0(n) to J¢ are due to the trapping of the non-Maxwellian part
(Toss-cone type) of the barrier passing distribution function. 1In the hypo-
thetical situation where the pumping drain would dominate the flow of central
cell particles into the barrier, the isotropic level throughout the machine
would be lowered as Aex * 0 (n~1, "very short" central cell). In this

case G << n/ACIACXB even though G ~ Aéi/z, (cf. Eqs. (A.1, A.4)); therefore,

from Eq. (B.1) we see that Mot ~ Aoy
i 1/2

. . 0
~ Ay and the trapping current Jg ~ Vex (cf. Eq. (B.2)).
Usually this will not be the case but instead, with a large volume central

1/2 n? 1/2
bt cx °? cx °?

as obtained from Eqs. (B.l, B.2).

a

the anisotropic level n® ~ Agx, the iso-

tropic level n

cell, n., ~ G'l ~ A ~n o, ni ~ Agx and the trapping current jt ~ v
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