Thermal Effects and Erosion Rates Resulting from
Intense Deposition of Energy in Fusion Reactor
First Walls

Ahmed M. Hassanein

March 1982

UWFDM-465

Ph.D. Thesis.

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN



Ph.D. Thesis.

Thermal Effects and Erosion Rates Resulting
from Intense Deposition of Energy in Fusion
Reactor First Walls

Ahmed M. Hassanein

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

March 1982

UWFDM-465


http://fti.neep.wisc.edu/

THERMAL EFFECTS AND EROSION RATES RESULTING FROM INTENSE

DEPOSITION OF ENERGY IN FUSION REACTOR FIRST WALLS
BY

AHMED MOUSSA HASSANEIN

A thesis submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

(Nuclear Engineering)

at the
UNIVERSITY OF WISCONSIN-MADISON

1982
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DEPOSITION OF ENERGY IN FUSION REACTOR FIRST WALLS
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Under the Supervision of Professor Gerald L. Kulcinski

This research is devoted to the development of more precise
models to calculate thermal effects and erosion rates due to energy
deposition from different radiation species in fusion reactor first
walls. These species may include laser light, x—rays, and light or
heavy ions in Inertial Confinement Fusion (ICF) reactors. The re-
sponse of first walls during the deposition of high energy densities
resulting from plasma disruptions in magnetic fusion reactors is also
included.

Previous models to calculate thermal response and erosion rates
ignored many factors that this study showed to be of great import—
ance. Models are developed in this thesis to calculate the tempera-
ture rise in fusion first walls with both finite difference tech-
niques and Green's function methods. The heat conduction equation is
solved including possible phase changes and two moving boundaries;
one for the melt—-solid interface, and one for the receding surface
due to evaporation. Variations of thermal properties with tempera-
ture for both liquid and solid phases are included.

Models to calculate the evaporative erosion of first walls with
time dependent kinetics based on transport theory are developed. A

model is developed to study the effect of "self-shielding”, i.e. the



shielding of the first wall from the incoming plasma ions by the
vapor layer produced in front of the surface.

All models developed in this thesls were incorporated into a
general computer code (A*THERMAL). Parametric studies with large
variations in characteristic spectral parameters for different kinds
of radiation in ICF reactors are performed with this code. In ad-
dition, the response of the wall to a complete set of spectra inci-
dent simultaneously could be examined.

Parametric analyses are also performed with the code to study
the response of magnetic fusion first walls during plasma dis—
ruptions. The materials considered for the calculations were stain-
less steel, carbon, and the refractory metal, Mo. The effect of
vapor shielding, various disruption times, and different pulse shapes
on the amoﬁnt of melted and evaporated material were also examined.

Results of these analyses showed the importance of developing
accurate models to calculate energy depositions, thermal effects and
erosion rates. Substantial differences do result between the models
developed in this thesis and previous models which ignore many of the

factors ¢onsidered in this work.
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CHAPTER 1

INTRODUCTION

The prospects for obtaining energy from thermonuclear fusion re—
actions has become quite optimistic. The early approach (1950's) was
to develop a magnetically confined system capable of holding the
deuterium~tritium (D-T) plasma long enough and at high enough temper-
atures and particle densities, to release substantially greater
amounts of energy than that required to promote the reaction. This
approach is still being actively pursued, mainly in tokamak and
mirror machine devices. Another approach to the fusion reactor de-
sign, based on the inertial confinement concept was proposed in the
1960's. The basic concept of Inertial Confinement Fusion (ICF) is to
compress and heat a small target of D-T fuel to thermonuclear con-—
ditions. These conditions must then be maintained for a time long
enough to allow the energy from thermonuclear reactions to exceed the
energy expended in initiating the reaction.

One of the main obstacles to the successful operation of a
fusion power reactor is the ability of its structural components to
withstand the severe radiation damage environment and to maintain
structural integrity over an extended period of time. Such a severe
radiation environment can cause considerable degradation in mechani-—
cal properties and erosion of the first wall. This normally means
that the first wall will probably have to be replaced before the

design lifetime of the plant has been achieved. Such a replacement




not only will complicate the design but also be very expensive and

the principle of cheap fusion energy sources will no longer be true.
The research in this thesis is concerned with the thermal and

damage response of materials exposed to radiation from thermonuclear
burn in ICF reactors or deposition of plasma ions during instabili-
ties in magnetic confinement fusion reactors. The main objectives of
this thesis are to:

(1) Develop more precise models to calculate the temperature increase
(including possible phase changes) produced by ICF target debris
or by plasma disruptions in magnetic fusion reactors.

(2) Develop more precise evaporation models, with time dependent
kinetics, based on transport theory results.

(3) Analyze and study the effect of "self-shielding” or the stopping
of incoming ions by the wvapor on the net evaporation and melting
zone thickness.

(4) Simulate and parametrically study the plasma disruptions in mag-
netic fusion reactors. Investigate and test different first wall
materials during the disruption process.

(5) Develop and compare methods of solution of the above problems
using the Green's function methods developed in this research, as
well as the finite difference techniques.

(6) Investigate methods to simulate the fusion first wall environment
in a fission reactor. Models for heat flux, sputtering rate,

implantation and damage rate are developed.



(7) Develop a computer code (A*THERMAL) in which these models are
incorporated.
A more detailed description of the nature of the problems associated
with fusion reactors is given in Chapter II. Chapter III is a review
of previous work in the area of deposition and interaction of target
debris with reactor first walls (including some modifications made in
this study). The use of the Green's function to solve the transient
heat conduction problem (with perturbation techniques developed in
this work to account for the thermal variation of thermal properties)
is illustrated in Chapter IV. Chapter V is devoted to the develop-
ment of first wall response models to the incoming radiation. Phase
change, evaporation, and vapor shielding models are also discussed.
A description of the computer code A*THERMAL developed for this kind
of work is given in Chapter VI, Finally, Chapter VII is devoted to
examples of the application of the code to typical problems associ-
ated with inertial and magnetic fusion reactors. A simulation of
fusion first wall environment in fission reactors and other appli-
cations is also given in that chapter.

Some of the work presented here has been published during its
development either as a journal publication or in University of
Wisconsin Fusion Engineering Design Reports (UWFDM's). However, a
considerable amount of work has not been published elsewhere and will
be presented for the first time in this thesis. A summary of the

related publications by the author is presented in Table I-1.
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CHAPTER II

FIRST WALL ENVIRONMENTS IN FUSION REACTORS

Currently proposed inertial confinement fusion reactor concepts
have several design and operational features in common. First, each
concept employs a blast chamber in which the thermonuclear micro-—
explosion occurs and is contained. Laser light, or ion beams, which
provide the heating and compression of the fuel pellet to ignition
temperatures, is beamed into the blast chamber from final mirrors or
focusing elements through ports located on the periphery of the cavi-
ty. The number and location of these ports varies among the designs.
The fuel pellet is injected into the blast chamber to a predetermined
location where the laser light or the ion beam is focused and the
thermonuclear reaction occurs. As a result of the reaction, various
fusion products are emitted and they could impinge upon the blast
chamber wall if the chamber is pumped to a hard vacuum. The thermo-—
nuclear burn of the fuel and the subsequent emission of fusion
products which strike the first wall occurs over a very short time
scale (less than 10 nsec). As a result, large amounts of energy are
deposited in the wall in very short times and hydrodynamic stress
waves are produced. One effect of the rapidly repeated micro-
explosions is to quickly deteriorate any unprotected solid blast
chamber surfaces. Therefore, some type of first wall protection is
needed to maintain the structural integrity of the blast chamber.
However, the main objective is to convert the heat, which is gener-

ated in the blast chamber and surrounding blanket, efficiently into



usable energy. Therefore, in addition to shielding the blast chamber
first wall, the protection system must permit rapid recovery of the
energy in a form which is suitable for utilization in the energy con-
version cycle. Thus, the first wall protection method establishes
many of the reactor design characteristics. Most CTR designs also
provide possible means of breeding tritium which is used in the fuel
for the fusion process. The tritium may be bre& in a lithium blanket
surrounding the blast chamber, or as in some designs, directly in the
lithium used as the first wall protection device (see for example the
HYLIFE or HIBALL concept).(1'3)

Most current ICFR designs assume that the fuel pellet will
contain a deuterium (D) and tritium (T) mixture, and as well as some
low Z ablator (e.g., C, 0) and high Z (e.g., Fe, Ta, Pb) elements.
The DT fuel is compressed to the required conditions of temperature
and density by the beam. The surface of the target (usually low Z
material) with an inner layer of frozen DT is violently heated and
boiled off (ablated) by intense beams. Very high pressures are
generated, accelerating the ablatively cooled DT inward. The high Z
material (pusher) serves as a carrier of kinetic energy away from the
microexplosion as well as a moderator for the alpha particles emitted
as a product of the reaction. Ignition occurs when the rapidly
moving inner region of the DT is suddenly braked by the pressure
generated in the compressed matter and ignition temperatures are
reached. The time scale of events for laser CTR pellet fusion pulse

are concisely illustrated in Fig. 11-1¢4) and Table 11-1.¢5) Time
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Table II-1.

Time Scale of Events for LCTR Pellet Fusion Pulse

Time

Primary Events

Secondary Events

-20 to =5 ms
-150 ns

-10 ns

+10 ps

+6 ns

+30 ns

+20 to +100 ns

+60 ns

+0.3 to +1.2 us

+1 ms

+0.01 to +10 s

Pellet enters cavity
Laser pulsed fired

Laser pulse arrives
at pellet surface

Thermonuclear burn
begins

Thermonuclear burn
complete

X-rays strike first
wall

X-rays strike last
optical surface

Neutrons deposited in
reactor vessel

Neutrons strike last
optical surface

Pellet debris strikes
first wall

Cavity blowdow begins

Restoration of ori-
ginal cavity condi-
tions complete

Ablative material begins
expansion from first wall

Shock wave induced in
lithium

Ablative material and
pellet debris interact

Cavity atmosphere
equilibriated

Wetted-wall blowdown
complete, lithium vortex
restored, turbulence in
rarefied dry-wall cavity
dissipated
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scale of events for other ICF reactor designs using ion beams as
drivers will be similar to that given in Table II-1.

First, the DT fuel pellet enters the blast chamber and a high
intensity laser light pulse (or ion beam) is fired and focused on the
pellet. The surface of the DT pellet is instantly vaporized into a
low density plasma. This ablated outer mass accelerates out into the
blast chamber and generates an equal and opposite force which forces
the remainder of the DT pellet inward toward its center. This effect
greatly increases the density of the fuel in the pellet and as a re-
sult of the compressive work, the pellet temperature also increases
greatly. Provided that suitable conditions exists, ignition of the
fuel at the center of the highly compressed, high temperatures oc-
curs. The thermonuclear burn wave then propagates outward due to the
energy deposition of the alpha particles in the "cold"” pellet. The
thermonuclear reaction will continue until the temperature and/or the
density of the remaining fuel decreases to a point, where there will
no longer be any net generation of energy. The total elapsed time to
this point 1s approximately 10 picoseconds. Typically, approximately
25% of the DT in the original fuel pellet will be consumed, while the
remainder becomes part of the blast debris.(4’5)

For a simple, bare DT pellet microexplosion, the energy released
is partitioned among four species: x-rays, alpha particles which
have escaped the plasma, plasma debris, and neutrons. The primary
fusion reaction which has occurred and gives rise to the neutrons and

alpha particles is:
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pZ + 13 5 He® (3.5 MeV) + n (14.1) MeV) .

The plasma debris consists of alpha particles which were unable
to escape the plasma, deuterons, and tritons. Also, in case of a
laser driven system, the laser light will contribute to the total
energy release through reflection mechanism. A theoretical energy
release and energy partition for a 100 MJ microexplosion is shown in
Fig. II—Z.(S) The energy spectrum for the x-rays which are emitted
from the 100 MJ microexplosion can vary over a wide range. One study
shows that for a bare DT pellet, the average x-ray energy is around 4
keV (see Fig. II—3(6)). Softer x—ray energy spectra than that given
in Fig. II-3 could result from structured targets.(3’7) The bulk of
these x—rays are produced during the 10 picosecond thermonuclear
burn, part of these x—rays are emitted promptly.

The 14.1 MeV neutrons which contain about 77.1% of the thermo-—
nuclear energy yield (Fig. II-2) are also released during the short
burn time. Figure II-4 shows a typical spectrum of the fusion
neutrons which remains virtually unchanged until the neutrons reach
the first shield and blanket region.(6’8) The pellet debris, inc¢lud-
ing the thermalized alpha particles and unburned D and T, could
possess about 15% of the total thermonuclear energy yield. In ad-
dition, the alpha particles that escape may contain about 7% of the
total energy yield and have an average energy of about 2 MeV.(A’S)
These previous results were estimated for a solid DT sphere. If,

however, the compressed pellet density-radius product is approxi-
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mately 3, the 3.5 MeV alpha particles wili deposit nearly all their
energy in the plasma to assist the thermonuclear fusion. In this
case, approximately 227 of the thermonuclear energy yield will be in
the form of plasma debris. The energy of this debris is nearly a
Maxwellian distribution with an average energy equal to the energy
deposited in the pellet from the laser or ion beam plus the fraction
of the thermonuclear reaction energy divided by the number of pellet
particles. Thus, the energy partition and energy spectrum are quite
dependent upon the pellet design.

Energy deposition by x—rays, alpha particles, and particles from
the target debris occurs, or very near, free surfaces of incidence in
structural and coolant materials; whereas the kinetic energy of 14
MeV neutrons is deposited throughout relatively large material
volumes. A bare cavity wall (e.g., a bare refractory metal) would be
the simplest reactor cavity enclosure. However, the interior surface
of such a cavity wall would have to withstand repeated energy depo—
sition amounting to about 23% of the thermonuclear yield within a few
microns of its surface, and unless extremely large cavities were
used, very high surface temperature increases would result.(g)
Tolerable surface-temperature increases of such structural components
have not been established either theoretically or experimentally.

There are several reactor cavity concepts that employ evapo—
rative or ablative materials to protect interior cavity wall
surfaces. For such concepts, it 1s necessary that the protective

material be renewable between target microexplosions, otherwise
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cavity-wall lifetimes would be uneconomically short. Protection of
exposed surfaces by a liquid metal such as lithium has many attrac-—
tive features and is utilized in the wetted-wall concept proposed by

(10,11) and the suppressed ablation

the Los Alamos National Laboratory
concept proposed by the Lawrence Livermore Laboratory.(lz) Another
protection method using an array of porous SiC tubes through which a
liquid lithium lead (Pb83Lil7) is flowing was recently proposed.(3)
Externally applied magnetic fields in a c¢ylindrical cavity could
be used to divert the alpha particles and ionized plasma debris out
the ends of the c¢ylinder leaving only the x—~ray energy to be accommo—
dated by the cavity wall surface. This approach was also proposed by
the Los Alamos National Laboratory.(13’14)
A gas—filled chamber concept to protect the wall was investi-

(15) 15 this design a low pressure (a

gated by the Wisconsin group.
few torr) inert gas was maintained in the chamber during micro-
explosions to absorb and modify target debris and x—rays energy
spectra.(16) The gas pressure was kept low so that it would not
interfere with the propagation of the driver beam to the target and

also so that the target trajectory would not be significantly

altered.
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CHAPTER III
INTERACTION AND DEPOSITION OF RADIATION

IN FUSION FIRST WALL MATERIALS

This chapter is divided into two main parts. The first part is
to briefly review the basic theory available for the primary inter-—
action of ICF microexplosion outputs, i.e. photons, ion debris, and
neutrons, with materials. The 10 to 14 MeV neutrons produced as a
result of the thermonuclear burn have a large mean free path compared
to the first wall thickness, will pass through without depositing a
significant amount of energy, and will not be considered in this
thesis. The second part of this chapter is devoted to a brief review
of the previous work in the area of energy deposition and a compari-
son with the modifications made in this thesis. Examples for com-
parison of the modified deposition methods and previous calculations
are also given. Discussion of energy deposition will be restricted
to those energy ranges of interest in fusion reactors. Emphasis is
made on those models which can be used to reproduce deposition
function cross sections in a numerically efficient form. Strain
energies resulting from thermal expansion and ablation of the wall
are very small and will be neglected in this thesis.

A. Photon Interactions With Materials

As a result of the thermonuclear burn in ICF reactors, the first
wall could be exposed to photon radiation with energies ranging from
a few electron volts to hundreds of kilo—-electron volts. The primary

interactions of photons with materials in these energy ranges are:
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a. photoelectric effect;

b. coherent scattering;

cs incoherent or Compton scattering;
d. pair production.

At low photon energies the total photon cross section is domi-
nated by the photoelectric cross section in which a photon transfers
all its energy to an electron in the vicinity of a nucleus. The ener-
gy of the electron emitted is equal to the photon energy minus the
electron's binding energy. The cross section for this interaction
shows a very strong material and spectral dependence. Simple approxi-
mations for these dependencies are given by Evans.(l) A convenient
form for fitting the photoelectric cross section has been proposed by
Biggs and Lighthill(z) in which a set of parameters are used to fit
the data within discrete energy intervals. These discrete intervals
are necessary to properly account for absorption edges.

The pair production process is a photon—matter interaction in
which the incident photon is annihilated and a positron—negatron pair
is created. This reaction occurs at high energy, where the incident
photon energy is equal or greater than 1.02 MeV. The interaction
rate is dependent on the nuclear cross section and is therefore pro-
portional to the atomic number square of the absorbing material.

Both the differential and the total cross section have analytic
expressions and accurate approximations.(2’3)
Incoherent or Compton scattering occurs at intermediate photon

energies. In this process, energy is given by an incident photon to
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an electron and results in a scattered photon. The portion of the
incident photon energy which is deposited as kinetic energy of the
electrons can be expressed in terms of an energy absorption cross
section. Exact analytical expression of the differential scattering
cross section is given by Evans(l) but it is not convenient for
numerical approximation. Convenient formulae for efficient numerical
calculations is again given by Biggs.<4)

Coherent scattering occurs when the energy of the incident
photon is reduced to low enough frequencies where the momentum can be
ignored. Because coherent scattering is elastic, it does not result
in any net loss of photon energy and consequently there is no signi-
ficant local deposition of photon energy.

B. Ion Interactions

The interaction of charged particles with materials is primarily
due to two processes. The first interaction is between the electric
fields of the ion and the electrons in the material which is an
inelastic collision. The second interaction is between the collision
of the ions with material nucleil which is an elastic interaction.

The dominant mechanism of ions slowing down in materials is dependent
upon the instantaneous energy of the ion. The energy loss associated
with each mechanism can be determined upon specifying appropriate
interaction potentials.

B.l. Electronic Energy Loss

The slowing down of a charged particle due to interaction with

the electrons in a material is usually divided into three energy
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regimes, i.e. high, intermediate, and low energy regimes. The high
energy regime is one in which the velocity of the particle much ex-—
ceeds the velocities of the orbital electrons. An intermediate ener-
gy regime is one in which these velocities are of the same order. In
the low energy regime the velocity of the particle is much smaller
than the orbital velocities of the material electrons.

The Bethe—Block(s) formula, which is a quantum mechanical deri-
vation of the original classical result by Bohr,(6) is widely used to

describe the interaction in the high energy region. This formula is

given by:
4ﬂ22e4NZ 2m v2
(.(E) = ! 0 In 0 ( 1 )
dx’e 2 1
m v

where Z; = particle charge number

e = electron charge

N = atom density

Z, = material atomic number

m, = electron mass

v = particle velocity

I = mean ionization potential.

The formula given in Eq. (1) is only valid for nonrelativistic
velocities which is the energy range of interest in fusion reactors.
A general treatment of fast particles with relativistic velocities is

given by Fermi.(7) Relativistic treatments might be important in
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case of a heavy ion beam fusion reactor in which the driver beam
misses the target and deposits its energy directly in the first wall.
At low particle energies, where the particle velocities are
below the orbital velocity of the target electrons, the interaction
with these electrons can be modeled by treatments developed by
Lindhard and coworkers (LSS).(8) In this model the particle energy
loss is proportional to its velocity and is usually presented in non-

dimensional form as:

- (2)

where: € = reduced energy = E/Ep

p = reduced length = R/RL
0.0793 227321121 + a)>/?
k_ =
2/3 2/3.3/4 _1/2
(z1 +zZ, ) M,
where: 2Zje = particle charge
Zoe = target charge
A = ratio of target mass to particle mass
My = target mass (amu)
2
Z.Z,e
14+ Ay 7172
and B = ( \ ) = (ergs)
2
RL _ @+ 4 (em)
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a = 0,4683 x 10_8 (25/3 + 25/3)“1/2 {cm)
N = target atom density .

The intermediate energy regime between the upper limit of LSS
theory and the lower limit of the Bethe-Block has no basic theoreti-
cal treatment at the present time. In this region the particle is
partially ionized. Modifications made to account for an effective
charge for the incident particle in the Bethe-Block model usually
predicts greater stopping power than observed experimentally.

A semi-empirical model based on adjustable parameters determined
from experiments has been proposed by Brice.(g) This model can pre-
dict the electronic stopping for all three energy regimes. Three ad-
justable parameters are needed. One parameter is necessary for the
low energy region and the other two are used for extrapolating to
higher energies. A tabulation for these parameters of a large number
of calculations for various ion—target combinations is given in Ref.
(10).

Another tabulation of stopping powers and range data have been
published by Ziegler and Anderson.(ll) Experimental and theoretical
data for hydrogen, helium, and heavier ions are also given. Other
tabulation of stopping powers for different materials are given by
Northcliffe and Schilling.(l2)

B.2. Nuclear Energy Loss

The second mechanism of slowing down a charged particle is the
elastic collision of these particles with material nuclei. The rate

of interaction will be determined through the nuclear cross sections.
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Accurate theoretical values for nuclear cross sections are determined
by the interatomic potential chosen between the nuclei and the parti-
cle.

A relatively simple analytic expression for the nuclear cross
section derived by Lindhard(s) using a shielded Coulomb interaction

with a Thomas~Fermi atomic model. The differential ¢ross section is

given by:(lo)
2
do(E,T) = Ei—is%liyi (3)
t
where: E = particle energy
T = kinetic energy of the struck atom after the collision
a = ggreening parameter given by
0.8853 a_(z2/3 + 72/3y71/2
o1 2
aq = Bohr radius.

f(t) = a tabulated scattering function (Ref. 10)

t = E/E VT/T
o m
Eo = lezez(ml + myp)/amy
4m;myE
172
and T, = maximum energy transfer = — 3
(m; + m,)

The total elastic cross section is obtained by integrating Eq.
(3) over all possible energy transfers. An approximation for a non-—

dimensional nuclear cross section is given by Oen and Robinson

as: (13)

(&), = g2 {imlu + A + D2 - + &) )
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where: € = E/EL
p = R/RL
u = (2X)1/3 E4/9
A = 1,309,

For high energy particles the nuclear energy deposition is
negligible compared to the electronic energy loss. This can be seen
from Fig. III-1 which shows the relative loss for both mechanism
electronic versus nuclear as a function of helium energy into a
carbon target.(lo) The domination of the electronic energy loss
continues down to a few keV.

C. Energy Deposition

C.l. Laser Light Deposition

Laser light absorption, especially for high intensity beams, has
limited coverage in the open literature. A simple model for laser
deposition into materials based on experimental results is presented.
The discussion for laser light interaction with materials is not only
applicable for ICF reactor first walls but also for laser annealing
of materials by laser pulses several nanoseconds long.(14) This
model will be coupled with the models developed in Chapter V to solve
the heat conduction equation with moving boundaries and to calculate
the dynamics of melting and evaporation. Most of the recent existing
models for materials annealing with lasers do not account for the two
moving boundaries, the variations of thermal properties with tempera-

ture or take into account the thermal radiation losses.(14—l7)
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The deposition function for the laser radiation absorption in

materials can be written as:

i(x,t) = aP(x,t) (5)

where: a the absorption coefficient of the material
P(x,t) = the power absorbed at time t in the material per unit

volume due to the laser pulse passing through it.

The power absorbed can be written as

P(x,t) = (1 - R(£))F(t)e 2(E)X 6)

where: TF(t) = the incident power density

the reflection coefficient.

R(t)

Then the laser deposition function is given by
q(x,t) = a(t)(1 = R(£)F(t)e d(BIX 7

The absorption coefficient in some materials, like the reflec—
tivity, is found to be strongly dependent on the melting of the near-
surface layer.(17) As a result, in this thesis work, the absorption
coefficient as well as the reflection coefficient are allowed to be a
function of time (i.e. whether the material is in solid or liquid
phase) for a certain depth from the front surface. This depth de-

pends on the absorption length of the material.
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C.2. Photon Deposition

The photoelectric cross sections library developed by Hunter(ls)

which is based on the work of Biggs(z) has been incorporated into
this study. Incoherent cross sections are also developed by Biggs
based on the representation of the Klein-Nishina formula.(l) For
high energy photons the photoelectric c¢cross sections are negligible
compared to the cross sections from the incoherent scattering. The
total incoherent cross sections are used in this case. Examples of
the sum of the photoelectric and incoherent total c¢ross section for
C, Cu, Mo, and Ta are shown in Fig. III—Z.(IS)

C.3. Ion Deposition

C.3.1. Introduction

The energy deposited from incident ions into a material can be
calculated upon the knowledge of the energy loss mechanism. Recently
a model was developed by Hunter(ls) to use the Brice(g) formulation
to generate electronic energy loss data for light ions and a fitted
deposition function for heavy ions. The Brice formulation consists
of semi-empirical relations which can reproduce the experimental data
with reasonable accuracy. In this research different fitting
functions are used for the Brice formulation which satisfy the con-
servation of energy between the incident ion spectrum and the total
deposited energy into the material. In this way, a more accurate
representation of the deposited energy inside the material is ob—
tained. Hence, a more accurate temperature and displacement response

is obtained. The fitting functions developed in this research are
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compared with Hunter's model through two examples of ion spectra

incident on an aluminum first wall.

C.3.2, Light Ions (Z < 2)

Incident light ions, with energies higher than a few keV, lose
their kinetic energy in materials mainly by electronic interaction
(see Fig. III-1). This is true for light ions that are present in
ICF reactors, mainly helium, deuterium, and tritium. The ions re-
sulting from the thermonuclear burn have energies ranging from a low
energy region, through intermediate, and high energy regions as dis-—
cussed in Section B.l.

Hunter(18) developed a set of analytic forms for the spatial
distribution which could be evaluated by knowing the electronic ener-
gy loss data which could be obtained from Brice. The stopping power
data were divided into three regions similar to those energy regions
as shown in Fig. III-3. In each region, a function was found which
could reproduce the data.

The following functions were found:(lg)

%%-(E) = - S0 (%;)1/2 (Region 1) (8)

-B,E
dE . _ 1
E;'(E) = Al(l e )

} (Region 2) (9)
& . _ 2 2. 2
E;'(E) = [D P(E - B,) ]
-E/B

L gy =-pe (Region 3) (10)

dx
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where S, E , Ay, By, D, P, By, A3, B3, are all constants. These
constants for each reglon can be determined by selecting reference
points, as shown in Fig. III-3, from the stopping power curve which
in turn could be determined from the Brice formulation. As a result
of determining the energy loss functions the deposition and local
mean ion energy were determined in terms of a standard set of
functions of space.

C.3.3. Heavy Ions (Z > 2)

For heavy ions, the energy deposition must account for the
nuclear energy loss and the transport equation must be solved taking
into account the energy dependent nuclear interaction cross sections.
Among the various approximate solution methods for such calculations
are those of Brice,(lg) Winterbon,(zo) and Manning and Mueller.(ZI)
Hunter's idea was to use the computer codes or published data de-
veloped by Brice(lg) and then develop a method which could produce
the deposition distribution for a wide range of incident ion ener-
gies. This method is based on a set of deposition functions which
consisted of polynomials to reproduce the spatial profile of the
deposition distributions. In this research different deposition
functions are used for the Brice deposition calculation in which the
conservation of energy between the incident ion spectrum and the
total deposited energy into the material is satisfied. Such conser-—
vation of energy assures a more accurate representation of the energy
deposited and consequently more accurate temperature and displacement

responses inside the material. The coefficients for each ion—target
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combination deposition function are stored in a separate file which
could be accessed easily for the deposition calculations.

C.3.4. Comparison of Results

Two examples are considered here to compare the energy depo-—
sition rate and the total integrated energy deposition using the
deposition functions developed in this thesis and the one developed
by Hunter. The solution for the deposition functions developed in
this work is contained in the computer code A*THERMAL.(ZZ) This code
will be briefly described in Chapter VI. Hunter's model is contained
in the computer code T*DAMEN.(23) In the first example tantalum ions
are incident having a Maxwellian spectrum with 905 keV characteristic
energy on an aluminum first wall.(24) Figure III-4 shows the total
energy deposited as a function of distance into aluminum. In the
A*THERMAL calculation the energy deposited is found to be conserved
within less than 2% of the incident ion energy content. Apparently
T*DAMEN overestimates the total energy contained in Ta ions by about
15%. The energy deposition rate at the end time of the spectrum is
shown in Fig. III-5. This deposition rate as given by T*DAMEN ex-—
tends further into the material. In the second example where carbon
ions are incident on aluminum with a 60 keV Maxwelliam spectrum,(24)
these differences are more noticable. Figure III-6 shows about 507%
higher total energy deposited given by T*DAMEN than that given by
A*THERMAL., In this éase the energy deposited was conserved in

A*THERMAL within less than 1%. Again T*DAMEN overestimates the ener-

gy deposition of carbon ions by over 507% compared to that contained
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in the ions. The deposition rate as a function of space is much
different and has much larger depth into aluminum than the one de-
veloped in this thesis as shown in Fig. III-7. These differences
could have large effects on the accuracy of the thermal and displace-

ment response calculations which require knowledge of the deposition

function.
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CHAPTER IV
NUMERICAL METHODS FOR CALCULATING THE

TEMPERATURE INCREASE USING THE GREEN'S FUNCTION

A. Introduction

The temperature response of a material exposed to thermonuclear
radiation may be determined when the time and space dependent energy
deposition functions are known. Typically, the Green's function is
used to determine the thermal response of the first wall material.(l)
The object of this chapter is to discuss a new method of using the
Green's function to solve the heat conduction equation which avoids
the singularities unique to this problem. A comparison is made be-
tween this calculation and a previous one,(z) which did not treat the
singularities, and corrections to the previous calculation will be
presented. Finally, an approximate analytical solution for the non—
linear heat—-conduction equation using the perturbation theory, in

which thermal properties vary with temperature, will be discussed.

B. Direct Deposition Model

The general heat-transfer equation is given by(3)

oc —g% - VekVT = §(x,t) (1)
where: p is the density of the material;
c is the specific heat;

k is the thermal conductivity.

All of the above properties vary with temperature. For the case of
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constant thermal properties, this equation reduces to:

aT 2 L4
o . = 2
PoCo BE k vV T q(x,t) (2)

k_  are independent of temperature.

where Por Cor K,

The general solution for the temperature rise due to any depo-
sition function can be obtained from the theory of Green's functions
providing that the thermal properties do not vary with temperature

and assuming that the Green's function is known:

T(x,t) = [ | l—ci(x',t') G(x,t,x",t') dx'dt' (3

£ x! pc

where: q(x,t) is the volumetric energy deposition rate
G(x,t,x",t') is the Green's function.

For a semi—infinite medium, with insulated boundary, the Green's

function is given by(3)
_ (x-x')2 _ (x+x')2
G(x,t,x',t') = 1 e bo(t-t") e ba(t-t )} %)

2/malt - t')

where o is the thermal diffusivity.

Unfortunately, problems arise when we try to perform the last
integral in Eq. (3) either analytically or numerically. The Green's
function possesses a singularity at t' » t and x' + x. A method will
be discussed to avoid these singularities when the integration is

done analytically or numerically.
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First, if we want to integrate analytically, then

t o©
T(x,t) = | / l—-q(x',t') G(x,t,x',t') dx'dt' .
£'=0 x'=0 P¢

At t' > t the Green's function has a singularity. To avoid that we

-€
integrate from ? + j and take the limit when € > 0, i.e.

t'=0 t—e
t—¢€ 1 .
T(x,t) = Lim [ [ — q(x',t") G(x,t,x",t') dx'dt'
1 PC
e*0 0 x
(3)
t 1 .
+ [ [ —aq@&x',t") G(x,t,x',t") dx'dt' .
t-e x' P°
It can be shown that
_ (x-x")*
Lim 1 e hae §(x - x") (see Appendix A) .
e+0 2V/mae
Equation (5) can then be written as
t—¢€ 1 .
T(x,t) = [ [ == q(x',t") G(x,t,x',t') dx'dt’
0 x! pe
(6)
t 1
+ [ [ —q(x",t") Lim G(x,t,x",t") dx'dt' .
t-€ x! pe >0
The second part of the last form can be written as:
t © 0,
[ oder [ — q(x',t") [8(x - x') + 8(x + x")] dx' (7)
t-€ 0 P
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or

7 at' [qlx,t") + q(-x,t")] (8)
t-e

where: q(-x,t') = 0.

Equation (8) then becomes
t t

[ dt' qx,t") = q(x,t) [ dt = eq(x,t) =0
t—€ t—€

as € * 0, Substituting this result into Eq. (6) we find
t-¢€ «© 1 .
T(x,t) = [ de' [ — q(x",t") G(x,x",t,t") dx' . 9)
0 0 pc

The last integral can be performed analytically for reasonable depo-
sition functions q(x,t), and we can then take the limit when € + O.
In most practical cases, it is difficult to find an easy ana-
lytic deposition function so that it is very difficult to perform
this integration analytically. This usually means that in order to
accommodate different energy spectra and consequently different
deposition functions, it is necessary to do the integration numeri-
cally. Assuming that we divide space and time into many divisions,

the solution for the temperature increase is given by:

t
n oo
= l ° T 1 ] T 1
T(xn,tn) t§= wiAti g-ag q(x ’ti) G(xn,tn,x ’ti) dx (10)
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where: T(xn,tn) is the temperature at any point x, and time t,

wy is a weighting factor depending on the method of
integration
Aty incremental time.

In this last integral the Green's function possesses a singu~

larity at ti > tn' To avoid this singularity, first we integrate

from ty = 0 up to t; = t,-1 and the last term in this integration

will be treated separately, i.e.,

tn--l
T(x ,t ) = I
n’ n

oo 1 .
A 1 1 1 |
I WiAti g dx e q(x ’ti) G(xn,tn,x ’ti)
i

1

+ w At Lim [ l—-é(x',t!) (11)
Teae 0PC Y o2/male - ty)
i n n i
2 2
! '
_ (xn x") _ (xn+x )
ba(t ~t,) bo(t_-t,)
. {e n i + e not } ax' .
As before,
tn"']. I . .
= r L gt 1 1
T(Xn’tn) 'E WiAti [ dx s q(x ’ti) G(xn,tn,x ’ti)
t'=0 0
i
(12)

00 1 .
+ wnAtn é dx!' Bz-q(x',tn) {G(Xn -x') + 6(xn + x")}

which can also be expressed as,
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tn—l

= p l_ b 1 ' 1 '
T(x ,t ) t'io w, At, é s q(x ,ti) G(xn,tn,x ,ti) dx
1 (13)

1 .
+ —w At q(x ,t ) .
pc n n n’ n

Care should be taken in choosing the time increments. For more accu-
rate results the last time increment should be very small and should

give a stable solution for small changes around it, i.e.

At << Aty , 1#nm

and

so that the approximation of the Green's function by a §-function is
reasonable.

Thus, by this method we avoided the Green's function singulari-
ties and for any given deposition function we can calculate the
temperature increase at any point and at any time.

The solution of the last equation (13) is contained in the com-
puter code A*THERMAL(4). When the deposition function, a(x,t), is
directly used in the solution it is called the direct deposition
method. Since the solutions for different models of the energy depo-
sition discussed by Hunter(s) in the computer code T*DAMEN(G) did not
contain corrections for these singularities, we have included the

complete and correct solution for any deposition function in the
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code, A*THERMAL.(A) The modified methods will be discussed here and
the difference in the results obtained directly from the deposition
function will also be illustrated.

C. Simple Deposition Model

For low energy ions, where the energy loss can be expressed with
a modified Lindhard model, the volumetric energy deposition rate can

be written as,(z)

q(x,t) = £(t) glx) (14)
and
Ay
g(x) = (E—-— A2x) x < X ox
} (15)
=0 XV X
max

where f(t) 1s the incident particle flux
Xnax is the maximum range of the ions
Al, Ag are constants.
The temperature rise due to this deposition function can be

obtained by performing the integral,

A
T(x,t) = [ £(£') [ (- - Ax') Glx,t,x',t') dx'de’ . (16)
t' x"

To solve this integral by methods developed in this paper, the

temperature at any point X, and time ty is given by
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t X
n-1 max Al
T = —_— (— = ' vt '
(xn,tn) .E wif(ti)Ati 'I s (t, Ayx') G(x ,t x',t') dx
t —ti x'=0
(17)
Xmax 1 Al
+ (e - ' ' 1 '
wnAtnf(tn) Pim | s (t' AZX ) G(xn,tn,x ,t') dx' .
t'>t O
n
The second integral can be reduced to
1 Xmax A1
= — - 1) - 1 L4 1
s LAt £t ) é = = Ayx') {6(xn x') +8(x +x )} dx
where 8(x + x') = 0 since x' > O
1 Ay
= _—w At f(t )(— =~ A x ) x < x
pc n n n tn 2°n n max
} (18)
=0 X VX
n max

t X
n-1 max A1
T = (e - ' oLt 1
(xn,tn) ?_ wif(ti)Ati 'I o (t' A,x ) G(xn,tn,x ,t') dx
t'= i x'=0
(19)
1 A
Bz-wnAtnf(tn)(E;'_ AZXn) *n < Xnax
+ {
0 X VX
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D. Uniform Deposition Model

The work of Frank et al.,(6) considered the response of an infi-
nite half space subject to a uniform spatial and temporal energy
deposition as shown in Fig. IV-1l. The solution was only given for
the resulting surface temperature as a function of time.

Hovingh(7’8) used the same deposition assumption, but evaluated the
temperature numerically with the Chart-D Code.(g) The response at
any time and position was derived by Hunter,(lo) but the numerical
solution for the time integral used in the T*DAMEN code did not treat
the singularities correctly. In this study, the complete solution
using numerical integration for the time integral to allow different
spectra is derived below. The deposition function is given by

. _F(t) 1
q(x,t) = (Sx(t) 'K'

where: F(t) incident energy/unit area

8x(t)

deposition region

K

deposition duration.

The temperature rise is then give by

1 0x

f ! L ] L} L
T(x,t) = EE'{. Egi%zgs-dt g G(x,t,x',t') dx . (20)

3)

The spatial integral can be reduced to

§x
[ 6(x,t,x',t') dx' = % [erf(—E "X 3y ¢ ere(— 21X 51 21)

0 2va(t - t') 27o(t - t")
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Fig. IV-1, Uniform energy deposition profile.
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where: erf = error function.
Then,
11 £(£' ) §x - x §x + x
T(x,t) = o — | lerf(—X "% ) + erf( )] de'
Z pc 4 Rx(ED) 2/a(t = €t7) 2/alt = tN)
(22)

where 0 < t' € K. Now to integrate numerically with respect to time

1 n~-1 1 f(ti) §x - X )
T(x ,t ) = I — w, At erf
n’ n -Zt.=0 pc 1 iKSthij Zm
i n i
8x + x f£(t_)
11 n
+ erf( 1 + s — w_At (23)
Wolt =ty 2 pc KSthnS n n
n i
§x - X §x + X
* Lim {erf( ) + erf( ]}
Jalt -t ) Sl = 1+ )
£t 2o, = ty) 2/ale - t))
since
Sx - x erf(=) =1 if x < $
Lim erf ( 1) = {
ti+tn 2'/Ol(tn - ti) erf(-») = -1 if X > 8
and
§x + x
Lim erf ( I ) = erf(») =1
Jolt - t.)
£t 2 a(tn ti)

and the last term reduces to
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f(tn)

- A §
pc Wn tn Kox tn Xn <

This result could also be obtained directly from the Green's function

since
§ §
Lim [ G(x_,t_,x",t!) dx' = [ {6(x_ - x") + 8(x_ + x")} dx' =1 .
ti+tn 0 n’ n i 0 n n

Then, the temperature rise is given by

t
11 ol £(ty) x - x
T(x ,t ) =% — I 1w, At, erf
n’ n 2 pc £ =0 i i KSXZtiS [ (ZVIE(T_—‘_—E—)—)
i n i
Lo S 88
pc n -n Kéx(t ) n
§x - x n
+ erf( _____:1__)] + {
2Va(t - t,)
no1 0 x > .

E. General Deposition Model

In this model, first developed by Hunter,(z) the deposition
function is transformed into the general form of a polynomial with

coefficients determined by the energy of the ion, i.e.,

q(x,t) = £(t) g(x) (25)

where
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4 i
glx) = I Ci X (26)
i=0
and C; are in general functions of time. The solution for the
temperature will be given by
1k 1
T(x,t) = [ £(t") [ —= (I ¢, x'7) G(x,t,x',t") dx' dt' . (27)
) $
! X' P =0 i

The spatial integral becomes the evaluation of the following

sequence
i 2 <1 A2 (28)

where: A = 2¥a(t-t") .
The solutions for these S; integrals are given in reference (9).

The complete solution for the temperature rise is then

= [ f(t') 1 1
T(x,t) = [ dt' 2282 - 5 ¢ S, | evaluated at limits of x' . (29)
pc ﬁ ii

The spatial contribution is contained in the evaluation of the
function I CN SN at the limits of the deposition region while the
temporal contribution can be done numerically to allow for arbitrary
spectra.

In the general deposition profile, the deposition function 1is

divided into three regions as shown in Fig. IV-2. Each region has
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different coefficients C;'s. The temperature rise can be written as

4 4
T(x,t) = [ dt' e 1 {2 ¢, sl + & c,,S,|
’ pe 4 Yoo W CLTIIT L T247i 11

(30)

where: C;, = the coefficient of the deposition function in region
S;l1 = the value of the function S; at the limits of region
I.

It is now possible to integrate numerically over time by the

methods developed in this paper. The temperature rise at any point

X, and time t, is given by

tn"l 4
1 X ae£(e.) { £ c,.s, | (31)
T(x_,t ) = w. At £(c, . =
n’ n /T ti=0 i i i 1=0 3i71i 'x Xy
4 4
+ I c2,5,| N cl,s_l e 1t w At £(t )
i=0 1 1 X XH. i=0 1 1 X XL pcﬁr- n n n

e Lim [ g(x") G(xn,tn,x',t') dx'
ti+tn

where: =Xy, xy, x;, are the three limits of the deposition region.

The second integral can be written as:

% o )
- 1 ]
wnAtnf(tn) {d ? Cqyx'" + / ? Cy X%
pe/m 0 i Xy i
X .
1 L} L
+ i f Clix ) §(x —xn) dx }

H
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4 .
i
izo C3ixn 0 < X < Xy
- w At £(t ) [{ } G2
pe/T 0 otherwise
i
i CZan XM < Xn < Xy
+ { }
0 otherwise
i
f Clixn X < xn < XL
+ { H o
0 otherwise

F. Results and Conclusions

In this section, we compare the differences between the methods
developed in this paper with previous calculations.(l’z) Two
examples are considered in this study. In these examples we calcu-
late the thermal response of a material, for example a first wall in
an inertial confinement fusion reactor, due to a given spectrum of
incident ions.

In the first example we considered hydrogen ions with a 5 keV
Maxwellian spectrum incident on an aluminum wall. Figure IV-3 shows
the energy deposition rate of hydrogen ions into aluminum. It can be
seen that the range of hydrogen is about 0.3 micron. Figure IV-4
shows a comparison of the time dependent temperature response of the
Al surface as predicted by the A*THERMAL and T*DAMEN codes. The same

deposition function given in Fig. IV-1 was used by the two codes.
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The difference between the two codes with respect to the peak temper-—
ature rise at the surface is about 30%, being lower for the T*DAMEN
code. The direct deposition model, developed earlier in this paper,
was used to compare with the general deposition model of T#*DAMEN.

Figure IV-5 shows a comparison between the codes A*THERMAL and
T*DAMEN both using the simple deposition model discussed before.
A*THERMAL, using the correct solution of the simple deposition model,
yields almost the same result as the direct deposition model shown in
Fig. IV-4. Again the T*DAMEN estimation is about 30% lower than that
predicted by the A*THERMAL code. As mentioned before, these differ-
ences arise from the improper treatment of the Green's function
singularities when integrating numerically over time.

Figure IV-6 shows a comparison between the direct deposition
model and the correct solution of the simple and the general depo-

- sition models, developed in this paper. The agreement among these
different models is fairly good except that the simple deposition
model underestimates the temperature rise at later times because of
the simple representation of the deposition function.

A comparison between the codes A*THERMAL and T*DAMEN in calcu-
lating the temperature rise at 0.5 micron (beyond the end of range of
the hydrogen) from the Al surface is shown in Fig. IV-7. The com~
parison is made using the same model, i.e. the simple deposition
model. It is noted that at x = 0.5 micron, both codes agree fairly
well. This can be explained by noting from Fig. IV-3 that there is

no deposition at x = 0.5 micron and all hydrogen ions are stopped
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within a distance of 0.3 micron. This means that

q (x = 0.5 micron, t) =0

and the correction due to the Green's function singularity goes to
Zero.

Another example to illustrate these differences uses Ta ions
incident on an Al wall. The tantalum spectrum is assumed to be 905
keV Maxwellian. Figure IV-8 shows the energy deposition rate as a
function of distance into Al wall at 5.11 microseconds and Fig. IV-9
shows the deposition rate as a function of time. In this calculation
of the temperature rise of Al, it 1s assumed that no phase change
takes place, i.e., as if Al were to stay as a solid; phase change and
vaporization are considered in the next chapters. Figure IV-10
represents the temperature rise of an Al first wall surface as calcu-
lated from the codes A*THERMAL and T*DAMEN. In these cases T*DAMEN
overestimates the temperature rise by about 207%, compared to an
underestimation of about 30% due to incident hydrogen ions. This is
again because of the improper treatment of the Green's function
singularities. Figure IV-11 shows a comparison between the direct
deposition model and the modified general deposition model in the

A*THERMAL code. The agreement is very good.
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G. Approximate Solution for the Nonlinear Heat Conduction Equation

Using the Methods of Green's Function

In this section, we consider the case where the thermal proper—
ties vary with temperature. In most cases, it is a good approxi-
mation to assume that the thermal properties, i.e. thermal conduc-

tivity and specific heat vary linearly with temperature,

o~
]

ko(l + bT) (33)

(¢}
1]

Co(l + aT) (34)

where a, b are constants. If the density p also varles with tempera-

ture, we can use

pC = poCo(l + alT) .

Substituting Eqs. (33) and (34) into Eq. (1) yields

oT .
+ —— . + =
pCo(l aT) ST kOV (1 bT)VT = q(x,t)

pC, X = K VT = d(x,t) + [bk V+(TVD) - apC T 2
or
oT 2 .
pCo 5 kOV T = q(x,t) + bfl(x,t) - afz(x,t) (35)
where

£ G t) = k Ve (T9D) = k_[TVT + (VD)2] (36)
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S ¥
fz(x,t) pCoT T pCoTT . (37)

Using first order perturbation methods(ll’lz)

the solution of
Eq. (35) can be obtained by analogy to the solution of Eq. (2). That

is

Tl(x,t) = T(x,t) + bFl(x,t) - an(x,t) (38)

where T(x,t) is the solution for the heat conduction equation with

constant thermal properties, i.e.

T(x,t) = [ [ MG(x,t,x',t') dx'dt' (39)
t' x' pCo
Filx,t) = a {' )f(' Ve (T VT;) G(x,t,x',t') dx'dt’ (40)
Fz(x,t) =[ f Tl(x',t') Tl(x',t') G(x,t,x',t') dx'dt' (41)
t' x'
_ o
where ao = EE_ .
o)

Since F1(§st) and Fy(x,t) are functions of Ty(x,t) which is not
known, these integrals cannot be performed. However, it is a good
approximation to set Ty(x,t) = T(x,t) in these integrals, i.e. the
solution for the same equation but for constant properties. This
solution T(x,t) is usually known exactly for many cases in heat

conduction.
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So, substituting Tj(x,t) = T(x,t) in Eqs. (40), (41) yields

Fl(x,t) = a [ [ Ve(TVT) G(x,t,x',t") dx'dt'
t' x'

Fo(x,t) = [ [ T, e') T(x',t") Glx,t,x',t') dx'dt'

t' x'

(42)

. (43)

To simplify the term V*(TVT) in Eq. (42), we make use of the

vector relations(13)
Voq)a = aovq) + ’q)v-a
i.e.

GV+ (TVT) = V+(GIVT) - TVT+VG .

Also
J GVe(TVT) dx' = [ Ve(GTVT) dx' - [ TVIVG dx'
vol. vol. vol.
but
J Ve(GTVT) av = §  GTVT ds .
vol. surface

Assuming that we have an insulated face, i.e. VI(O,t)

J Ve(GIVT) dv = ¢ GTVI ds = 0 .
vol.

So, the function Fy(x,t) reduces to

Fi(x,t) = - o /
t

b

= 0, then,

[ T(x',t') VI(x',t')*VG(x,t,x't') dx'dt' (44)
X'
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which is now easier to calculate. Substituting in Eq. (38), the
first order solution to account for variation of thermal properties

with temperature is given by

T, (x,t) = T(x,t) - bo {'i'T(x"t') VT(x',t') VG(x,t,x',t') dx'dt’
(45)
-a [ [ T(x',t') T(x',t") G(x,t,x',t') dx'dt' .
t' x'
Now to solve the last equation numerically using the techniques
discussed earlier, we will integrate both integrals numerically over

time from t; = 0 to t; = t,_], and the last term will be treated

separately, i.e.

t
n-1
Fi(x,t ) =o I wAt, j' T(x',t') VI(x',t') VG(x,t,x',t') dx'
t, =0 X
is
+a Lim w At [ T(x',t") VIVG dx’ (46)
ti-*tn x!

= vee. +aw At [ T(x',t") VT Lim VG dx'
on n X'

t, >t
i ™n

from the theory of &-functions:

Lim VG » V&(x 0 x")
t,?>t
i n



72
Fl(xn’tn) = Le.. + aownAtn f T(x',t') VT(x',t')*VG(xn - x") dx'
since
[ £(x') V8(x - x') dx' = VE(x)
Then the last integral could be written as:
Fl(xn,tn) = eee. tow At V(T(xn,tn) VT(xn,tn)) (47)
from vector relationships(13)

V(a*b) = (a*V)b + (beV)a + ax(Vxb) + bx(Vxa)

last two terms equal O for one dimensional geometry, i.e.

V(T+VYT) = T+VYVT + VT+VT
= 19%T + (vr)?
and
vlr = L'.E(x,t) - q(x,t)/k .
0.0 (o]

Substituting in Fj(x,t), yields
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t
n—-1
Fl(xn’tn) = I wiAti [ T(x',t")VI(x',t')VG(x,t,x",t') dx'
t,=0 x'
i
] q(x_,t )T(x ,t )
+w e {[—T(x_,t M(x ,t ) - —DBn ‘0’ % (48)
n n ol n’ n n’ n k0

2
+ (VT(xn,tn)) }o.
And for the second integral, i.e.

FpGeyt) = [ [ TCx', e )Ex',£)6Gx 6,0, dx'de!
t'x

\J

n—-1
FZ(xn’tn) B E

w, Aty f'T(x',t')f(x',t')G(x,t,x',t') dx'
t X

.=0
* (49)

+ Lim w At / T(x',t')f(x,t)G(x,t,x',t') dx'
t,>t x'

i ™n
£ -1 .
= ]
Fz(xn,tn) . EO wiAt, i T(xi’ti)T(xi’ti)G(Xn’tn’xi’ti) axg
i i

+ Lim w At f'T(x',t')T(x',t')G(xn,tn,x',t') dx’
ti+tn X

= teee + w At ilT(x',t')f(x',t')G(xn - x') dx'

FZ(xn’tn) = sees Tt wnAtnT(xn,tn)T(xn,tn) . (50)
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And finally the temperature at any point X,, and time t, for linear

variations of thermal properties can be given by
Tl(xn’tn) = T(xn’tn) - bFl(Xn’tn) - an(xn,tn) . (51)

However, in the solution for T{(x,t) we do not have to evaluate
both functions Fy(x,t) and Fy(x,t). It can be shown that the sum of
these two functions, i.e. Fj(x,t) + Fy(x,t) is a solution for a
medium in which the thermal properties, specific heat and thermal
conductivity, vary in the same way. That is, this is the solution
for constant thermal diffusivity a.

The solution for constant thermal diffusivity, but with C and k,
varying with temperature in the same way, can be shown(3) to be of
the same form as that for constant thermal diffusivity where both C
and k are constants. The initial and boundary conditions will be
changed.

Suppose Eq. (2),

3T 2

pC o = k VT = q(x,t) (2)

has the solution, T(x,t), with the boundary conditions,

T(L,t) =

|
ja =]

T(x,0) =

|
=2

To get the solution for the equation
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pC %%-— VekVT = q(x,t) (L
where
C/CO = k/ko =1+ uT (where u is either a or b)

Co and ko are calculated at any arbitrary temperature To‘ If we

write

T
T' =/ (1 +yT) dT (52)
T
o
where T0 is any arbitrary temperature, one can easily show that the
equation satisfied by T' is obtained from (2) on replacing T by T',
providing that the initial and boundary values of T', say h' and H',
are obtained by setting h and H as the upper limits of the integral.

So, the solution T'(x,t) also is equal to:
T'(x,t) = Fl(x,t) + Fz(x,t) . (53)

Since the values of T'(x,t) are easily obtained, it is only necessary
to perform one integral F;(x,t) or Fo(x,t) to get the solution

T;(x,t) that we are looking for, i.e.
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Tl(x,t) = T(x,t) - bFl(x,t) - an(x,t)

T(x,t) b[T'(x,t) - Fz(x,t)] - an(x,t)

Tl(x,t) = T(x,t) = bI'(x,t) = (a = b) F,(x,t) (54)

or

Tl(x,t) = T(x,t) - aT'(x,t) + (a-b) Fl(x,t) . (55)

Now, only Fy(x,t) or Fp(x,t) need to be evaluated. This is use-
ful especially when one of these functions gets complicated as in the
case of a non-insulating face of the first wall.

In some cases, the variations of thermal properties with temper—
ature may be very large over the range from room temperature up to
the melting point and these variations must be taken into account.
Problems involving phase transformations might account for large
variations since, most of the time, the thermal properties undergo a
wide variation at the transformation temperature.

As an example to illustrate the methods discussed in this paper,
consider the case of hydrogen ions incident on Al as a first wall.
The thermal properties of Al, i.e. specific heat and thermal conduc-
tivity, are fitted linearly with temperature. Figure IV-12 shows the
temperature rise in the Al surface with and without the variation of
thermal properties with temperature; there is about a 10% decrease in
the maximum temperature when considering the variation of thermal

properties with temperature. At lower temperatures, the differences
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are very small, and the variations of thermal properties with temper-
ature can be neglected (Fig. IV-13). At higher temperatures the
differences become larger and the variations of thermal properties
must be included.

H. Conclusion

The temperature rise due to ion energy deposition into a first
wall material has been calculated using the method of Green's
function. A new method has been developed to avoid the singularities
associated with the Green's function. Several models for calculating
the temperature increase are discussed using this new method. A
large difference in the temperature rise in the regions where there
is an energy deposition is noticed between the present model calcu-
lation and a previous similar calculation which did not treat the
singularities of the Green's function. An approximate solution for
the non—-linear heat—conduction equation using perturbation theory in
which the specific heat and the thermal conductivity vary linearly
with temperature is discussed. The effect of the variation of the
thermal properties over wide temperature fluctuations could be sub—
stantial and should be included for accurate solution.

A comparison between finite difference techniques in calculating
the thermal response of fusion first walls and these developed

Green's function methods is given in the next chapters.
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Appendix A
To show that the Green's function for the thermal response of a
semi-infinite medium behaves like a §-function, consider the function

1 —xz/b

Ax) = e , b=4a(t - t') .
y1b

We want to show that

Lim A(x) = 8§(x)

b0
i.e.
2
Lim-fé: e ¥ /b §(x) .
b+0 Vb

To evaluate the total area under the curve of this function, i.e.

[ a(x) dx = [ -_}—_e
—oo - /b
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substitute y

dx = 2— gy .
2/ by

Substitute



T 1 -y /b -1/2 17 -y -1/2
Ax) dx =2 [ —e 7 22 dy =— [ eV y
I b 2 ey
11
~ 2

(14)

where I' = gamma function
1
P(f) =y
i.e.

f AMx) dx =1

00

or

2
XD gy =1

T 1
L5

which is equivalent to [ &(x) dx = 1. We conclude that

-0

_ (x=x")
— !
Lim 1 o bo(t-t')

t>t' Vamalt - t')

= §(x - x") .
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CHAPTER V

THERMAL RESPONSE MODELS FOR FUSION FIRST WALLS

A. Introduction

The rapid heating of fusion first wall components either due to
x~ray and ion debris deposition in ICF reactors or during a plasma
dump in magnetic fusion reactors may lead to melting and subsequently
to intense evaporation.(l_z) As a result, an accurate analysis of
this heat conduction problem requires the solution of two moving
boundaries problem. A moving face where vaporization occurs becomes
one boundary in addition to the moving internal boundary between the
liquid and solid. Because of the moving boundaries and the differ-
ence between the properties of the liquid and solid states of the
same material, the distribution is nonlinear.

This chapter will discuss models developed in this thesis using
finite difference techniques to solve the boundary—-value problems of
heat conduction. The two moving boundaries problem is solved includ-
ing phase changes (melting and resolidification). Evaporation models
for first walls, with time dependent kinetics, based on transport
theory are also developed. Finally, a model is developed for "self-
shielding” or the stopping of plasma ions by the vapor species of the
vaporized first wall and the effect of this shielding on the net
amount of evaporation is analyzed.

B. Heat Conduction with Moving Boundaries

Moving boundary problems are difficult to solve, and they pre-—

sent challenging mathematical and numerical questions. Although an
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extensive literature exists on moving boundary problems, the present
one, to be formulated explicitly below, has apparently not been
solved before. Analytical and approximate solutions to simple
classical Stefan problems of melting and solidification are treated
at an introductory level in the recent book by Oziski.(B) An exten-
sive literature review up to 1964 has been given by Muehlbauer and
Sunderland.(4) In the meantime, many more articles have appeared in
the literature as a result of the inereasing interest in laser and
electron beam processing of semiconductor microcircuits and materi-
als.(5’6) The advances made in the mathematical and numerical treat-
ment of moving boundary problems have also been the subject of recent
conferenees.(7’8)

Whereas most moving boundary problems (also called Stefan
problems) deal with melting, solidification, and slow evaporation
where the interface is mathematically characterized by a fixed value
of the temperature whose value is known in advance {suech as the melt-
ing and the boiling point), problems involving intense evaporation or
ablation must satisfy a moving boundary condition that is derived
from energy and mass balances. As a result, these moving boundary
conditions yield highly nonlinear equations whose determination is
now an integral part of the solution for the entire problem.

In order to avoid this added complication, previous treatments
of intense evaporation were based on various simplifying assumptions
for the condition at the moving boundary. Ready(g), in evaluating

laser—-induced evaporation, assumed that evaporation begins and
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proceeds at a constant boiling temperature when the laser pulse
duration 1s large compared to the pre-heat time required to reach the
boiling point. On the other hand, for irradiations with Q-switched
lasers, Ready(lo) assumes that the vapor will be superheated to the
critical point, and that the evaporation rate is determined by the
thickness of the material heated beyond the eritical point.

Andrews and Atthey(ll) developed a convenient analytiecal so-
lution to the evaporation problem when 1t ean be assumed that vapori-
zation oceurs at a constant boiling temperature. Their analytieal
solution is based on a perturbation approaeh in which the ratio of
heat loss by conduction to that by evaporation is considered as a
small parameter. This ratio, the so—ecalled Stefan number, is indeed
of the order of 0.2 or less for most materials.

The solution by Andrews and Atthey has been used by Loebel and
Wolfer(lz) to estimate the erosion by vaporization of various first
wall materials. However, melting has been negleected in this ap-
proach, and the thermophysical properties of both solid and liquid
were assumed to be the same and independent of temperature. Further-
more, the boiling temperature was determined by setting the ambient
pressure equal to the saturation vapor pressure. Although the latter
assumption may be justified when the ambient pressure is large, it
becomes untenable for ambient pressures existing either in an ICF re-
actor chamber\or in the plasma chamber of a magnetic fusion device.

The above principles can be easily demonstrated by considering

evaporation into a vacuum. Here, the rate of evaporation and the
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associated surface temperature are entirely determined by the kinetic
processes involved in the vaporization and by the energy partitioning
between heat conduction, melting, evaporation, recondensation, and
radiation. As a result, the surface temperature will change as a
function of the heat input.

Few attempts have been made to solve the problem of evaporation
into a vacuum. Osadin and Shapovalov(13) derived an integral
equation for the surface temperature as a function of the heat input.
However, they neglected the motion of the surface as a result of the
evaporation and the presence of a melt layer. Furthermore, constant
thermophysical properties were assumed, and no allowance was made for
recondensation.

(14) also treated pulse evaporation into

Golodenki and Kuz'michev
a vacuum under the same assumptions as in Ref. (13), except that the
motion of the surface boundary was included approximately in the

analysis of heat conduction.

C. Formulation of the Heat Conduction Problem

C.l. Before Melting

Consider the first wall as a semi-infinite medium. This is

reasonable in view of the short heat penetration depth during a

plasma disruption or target debris deposition in ICF reactors.(ls)

Under a heat flux F(t), the temperature distribution Tg(x,t) in the

solid phase must then satisfy the heat conduction equation:

aT
s ‘ L]
pSCS = v kSVTS = q(x,t) (1)
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where Pg = density
CS = gpecific heat
ks = thermal conductivity
&(x,t) = volumetric energy deposition rate.

All these thermophysical properties are functions of the local
temperature. The boundary conditions are that Ts(x,t) *> Tb =

constant for large depth distances x, and that on the surface x = 0,

Ty L 4
F(t) = - ks(Tv) e + pS(TV)va(Tv) + o(Tv - To) (2)

where T (t) = T4(0,t), L, is the heat of vaporization, and v(Tv) is
the velocity of the receding surface. This velocity is a function of
the instantaneous surface temperature and other materials parameters.
Furthermore, the radiative heat transfer term contains the Stefan—

Boltzmann constant, o, and the surface temperature, T of the cold

o’
portion of the first wall. For the radiative heat loss, it is as—
sumed that parts of the first wall (mainly in magnetic fusion re-
actors) not struck by the plasma dump remain at the steady state
temperature To' In ICF reactors this term goes to zero since micro-
explosion reaction 1s assumed to be symmetrical. The second term in
Eq. (2), which will be discussed shortly in connection with the

evaporation energy loss, is negligible for temperatures below the

melting pointe.



88

C.2. During and After Melting

Once melting occurs, the condensed phase consists of two

regions:
a. s(t) € x < m(t) for the melt layer
b. m(t) € x for the solid phase

where: s(t) is the instantaneous location of the melted surface
m(t) is the distance of the melted layer from the surface
(as shown in Fig. V-1).
Equation (1) applies again to the solid phase, but the boundary

conditions at the solid liquid interface x = m(t) is given by

Ts(x,t) = Tx(x,t) =T at x = m(t) (3)
where Ts(x,t) and Tz(x,t) are the temperatures of the solid and the
liquid phases, respectively, and T, is the melting (or solidifi-
cation) temperature which is constant for a given substance.

The energy equation at the solid-liquid interface is given by

-k BTRI = -k 3Ts| +poL dm(t) (4)
£ 9x 'm(t) s ox m(t) s £ dt

where Lg is the latent heat of fusion.
We note that in Eq. (4) the quantity dm(t)/dt is the velocity of
the melt-solid interface. If we denote this velocity by w(t), we can

write
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dne) = wee) . (5)

Then Eq. (4) is written as

BTS 3T£
ks'§§_ - k2A§§~ = pSwa(t) at x = m(t) . (6)

In the melt layer, the heat conduction equation is given by

aT )
poZ-gf— - V°k2VT2 = q(x,t) . (7)

The solution in this melt layer must satisfy the boundary conditions
(3) and (4) on x = m(t) and the condition

oT
L 4)

- - 4 _
F(t) = - k, §§_'s(t) + 0 (T L v(t) + o(T = T~ (8)

on the surface x = s(t).

C.3. Evaporation Moving Boundary

If the heating is continued long enough and at a sufficiently
high rate, significant vaporization may occur from the surface assum—
ing that the melting material stays in place. It is necessary to ac-—
count for the receding surface at the interface between vapor and
solid or liquid. This can be done by introducing a moving coordinate

system:

z(t) = x - s(t) (9
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for which the surface always remains at z = 0. Transforming the heat

conduction Eqs. (1) and (7) to this moving coordinate frame gives

9T dT , dzy _ g, )
pC (’J’t‘+3? dt) VekVT = q(z,t) (10)
where
dz _ _ ds(t) _ _
e at V(t) (11)
v(t) = velocity of the receding surface. Substituting Eq. (11) into

Eq. (10) gives
oC 2T — oev(t) 2L - VekVT = §(z,t) (12)
It 3z a2, :

The main difference in this equation is that it includes the convec-
tive term v(t)‘%g. This term is important in the cases of intensive
evaporation if we are to obtain accurate calculations of the tempera-
ture. The velocity of the receding surface, i.e. v(t) is highly non-
linear function of temperature as will be shown later. This heat
conduction equation along with boundary conditions given by Egs. (2)
or (8) has not been solved before. A complete solution of this
problem has been developed and it exists in the computer code

A*THERMAL in both finite difference and Green's function methods.
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D. Numerical Methods

The solution of the transient heat transfer problems involving
melting or solidification 1is inherently difficult because the inter-—
face Between the solid and liquid phases 1is moving as the latent heat
is absorbed or released at the interface. Furthermore, the solution
is more complicated in case of additional moving boundary at the sur—
face between vapor and solid or liquid. Exact analytic methods for
solving these kind of boundary-value problems of heat conduction are
very limited.(16) Numerical methods are useful and may be the only
accurate solution for handling problems involving nonlinearities,
complex geometries, complicated boundary conditions or a system of
coupled partial differential equatiomns.

D.1. Finite Difference Approximations

In numerical solution of heat conduction problems with the
method of finite difference, the partial differential equation is ap-
proximated with finite difference expressions at each nodal point.
Each node is associated with a small volume. In order to define the
nodes, a system of orthogonal planes is superimposed on the problem.
The planes may be unequally spaced, but they must extend to the outer
boundaries. Variable zone thickness is very important in both
achieving good accuracy and saving computer time. Good accuracy near
the surface (in order to calculate the evaporation and melting thick-
ness) requires a smaller zone thickness than that far away from the
surface. By choosing the increments between nodal lattice points and

time steps to be small enough, the solution to the system of
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equations yields an accurate approximation to the appropriate differ-
ential equation.

D.2. Space and Time Increments

Increments on the space and time grids can be chosen to give
satisfactory results for a variety of different problems. These
problems may involve x—~ray and laser radiation, light and heavy ions
with volumetric energy deposition, and surface heat flux. Each of
these problems may have large differences in the time domain ranging
from nanoseconds to milliseconds. The choice of space and time grids
almost always involve a compromise between accuracy and computer
time.

D.3. Methods of Solutiomn

There are several schemes available to express the time depend-
ent heat conduction equation in finite difference form. These
schemes, ranging from the so-called explicit form to the fully
implicit form, for finite differencing of the one—dimensional time
dependent heat conduction equation is listed in Ref. (17). Each of
these differencing schemes has its advantages and limitations. The
modified implicit method of Crank and Nicolson(lg) is used in this
analysis. The advantage of this method is that for given values of
the space and time steps, the resulting solution is stable and in-
volves less truncation error due to the time step than the other
explicit and the implicit forms. On the other hand the Crank-

Nicolson form involves additional computation. If there are N
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internal mesh points over the region, this method involves the so—
lution of N simultaneous algebraic equations for each time step.

Of the many possible methods for solving a system of simultane-
ous equations, an implicit alternating direction method suggested by
Peaceman and Rachford(lg) is selected. Although this method is only
valid for linear equations, it may be used here by transforming the
nonlinear system (material properties may be temperature dependent
and moving boundary conditions) into quasi-linear system in which the
nonlinear factors are frequently re-evaluated.

Other forms of the alternating—direction implicit method include
the Douglas—Rachford implicit scheme,(zo) its modification by

(22) Barakat

Brian,(lz) and the alternative form given by D'Yakonov.
and Clark(23) describe an explicit scheme that is unconditionally
stable for the solution of the time dependent, multi—-dimensional heat

conduction equation.

D.4. Variations of the Thermal Properties With Temperature

In the solution of Eq. (2), all the thermophysical properties
are allowed to vary with the temperature. This variation can take

the form

f(t) = a + beT + co'rz + d°T3

where f(t) density or specific heat or thermal diffusivity
a,b,c,d = coefficients of variation of these properties

T

temperature.
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These coefficients may be different for both solid and liquid
phases. Other functions for the variation of thermal properties with
temperature could be incorporated easily in the computer code
A*THERMAL.

D.5. Phase Change (Melting and Resolidifcation)

Materials are allowed to undergo a phase change during the
transient heat conduction calculations. This is done by checking the
node's temperature at every time step and compared to the melting
temperature of the material used. If the material is ready to under-
go a change of phase, the node's temperature is maintained at the
transition temperature until the net heat content exceeds the total
heat needed to complete the phase change for this node. After the
phase change, the node's temperature is again determined by the con-
ductive heat transfer equation. During resolidification the tempera-
ture of the node is also held at the transition temperature due to
the production of heat until the conductive cooling of the node
exceeds the latent heat, then the temperature is again determined by
the conductive heat transfer equation.

Only pure substances are allowed to change phase in this re-
search where the melting (or solidification) takes place at a unique
temperature, and the solid and liquid phases are separated by a sharp
moving interface. On the other hand,