

A User's Guide to the BRICE Code

H. Attaya

August 1982

UWFDM-454

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A User's Guide to the BRICE Code

H. Attaya

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

August 1982

UWFDM-454

A USER'S GUIDE FOR THE BRICE CODE

H. Attaya

Fusion Engineering Program

Nuclear Engineering Department

University of Wisconsin

Madison, Wisconsin 53706

August 1982

I. Introduction

This report describes the use of Brice's codes⁽¹⁾ COREL, RASE4 and DAMG2 on the NMFECC (National Magnetic Fusion Energy Computer Center) computers. The report should not be considered a substitute for the original reference⁽¹⁾ of these codes. Understanding of that reference is essential to be familiar with the functions of these codes, the theory on which they are based and the meanings of their input variables. The three codes constitute now only one code, henceforth named as the BRICE code, which has slightly different forms of input from that described in ref. 1.

An interactive program, HELPBR, was written to prepare the input for BRICE, to run the code, do the graphics and more importantly to perform the iteration procedure which is required for the case of compound targets. All that is required from the user is to know how to log in to the CRAY computers of NMFECC and to answer the questions of HELPBR. The resulting input for BRICE will obey all the required accuracy restrictions.

The next section of this report, Sec. II, will explain the constructions of the BRICE code and the input variables. Section III gives the input and the output for the sample problem described in ref. 1. Section IV describes briefly HELPBR and shows the iteration procedure to obtain the partition function of the compound target used in the same sample problem of ref. 1, and the obtained results. Section V describes how to obtain the codes and execute them.

II.1. BRICE Code

The BRICE code consists of three major routines, COREL, RASE4 and DAMG2. The main routine in the code MAIN controls the execution of each of the three subroutines according to the input instructions. Almost all of the input variables are read from the same entry in MAIN and remain unchanged until they are redefined by a new read.

MAIN reads one ASCII record, one namelist record and, depending on the value of a certain variable in the namelist record, might read another ASCII record. The namelist record read by MAIN should contain all the information of the target and the ion masses and charges and the composition of the target. This information is local in MAIN and is provided to other subroutines through common areas.

Following that an instruction card is read which instructs MAIN to perform specific tasks. This instruction card has one of the following forms: COREL, RASE, DAMG, NEW and END. Following this card the code expects a namelist record in its input which might define or redefine the namelist variables. In case of compound targets another title card (dummy title) and a namelist record are needed after reading the RASE instruction and the namelist record following it. After the "DAMG" instruction, a namelist record is read from the subroutine DAMG2. In the following is a description of the namelist variables and the sequence of the input records.

II.2. Inputs to BRICE Code

There are three different types of inputs to the BRICE code. These are: control instructions, namelist inputs and a maximum of two input cards which are read as text image; one is read at the very beginning and contains the name of the target and the other is read when the variable FRMT is set to nonzero values.

II.3. Control Instructions

These input instructions are:

a) corel m

This is to direct MAIN to call COREL. If there is nothing after "COREL" then MAIN will call COREL "NCOMP" times to calculate the range data for all the components in the target where NCOMP is the number of components in the target. In this case the maximum energy and the energy interval used in COREL will be the same for all the components and either LSS or Firsov theoretical expression for the electronic stopping power should be used for all the components. The program will read only one namelist record in this case.

On the other hand, if m is a number between 1 and NCOMP, i.e. (1 < m < NCOMP), COREL will be called to calculate the range data for the \underline{m}_{th} Components, and one has the choice in this case to have whatever electronic stopping formula for the mth component with the target components. In this case the values of NE, NMULT and NDIV can be different from one recoil to another, but NE(NMULT/NDIV) for a particular component should be > the maximum recoil energy that component would have in a collision with an incident ion. Finally, if "corel" is followed by "0" or "ion", then corel will be called to calculate the ranges for the incident ion. In this case no information will be written on TAPE10.

b) rase

This instruction record will cause MAIN to call RASE4. If a number "M" follows, e.g., "rase M", so that $1 \le M \le NCOMP$, then RASE4 will consider the mth component as the incident ion. This is used in the iteration procedure to evaluate the partition function of a component in a compound target.

c) damg.

This is exactly as for b) (rase).

e) end

To terminate the program.

f) new

To start from the beginning for a new case.

II.4. Namelist Inputs

II.4.1. Namelist Read by MAIN, COREL and RASE4

*ION Default (none): contains the name of the incident ion and should be quoted, e.g., ion = "nickel". The name can contain up to eight characters. This variable as well as all the marked variables mentioned below should be set in the first read by MAIN.

*PI Default (none): is the atomic mass (amu) of the incident ion.

*ZI Default (none): is the atomic number of the ion.

*NCOMP Default (1): the number of the components of atomic species in the target. In case of ncomp > 4, the BRICE code should be recompiled and reloaded. This is described in section V.

HELPBR will do that automatically.

*ALAT Default (none): as in ref. (1) is the value in A of the cube root of the volume of a unit cell of the target material. This is used together with NFORM to evaluate the atomic density of each species in the target. However, other options exist; see ALATA and ALATD.

*ALATA Default (0.0): the atomic density (atoms/cm³) of the target is an alternative to ALAT or ALATD.

- *ALATD Default (0.0): the gram density (gm/cm^3) of the target, and is an alternative to ALAT or ALATA.
- *NFORM(I), I=1, NCOMP depending on which of the three variables ALAT, ALATD or ALATA is used.
 - In case ALAT is used NFORM(I) is the number of atoms of the \underline{i}_{th} component in the unit cell of the target.
 - In case ALATA is used. NFORM(I) is the atomic fraction or percent of the \underline{i}_{th} component in the target.
 - In case that ALATD is used NFORM(I) is the weight fraction or percent of the \underline{i}_{th} component in the target.
- *TARGET(I), I=1, NCOMP is the name of the ith component of the target; up to eight characters can be used and should be quoted.
- *P2(I), I=1, NCOMP is the atomic mass (amu) of the \underline{i}_{th} component of the target.
- *Z2(I), I=1, NCOMP is the atomic number of the i_{th} component of the target.

 ED Default (0.0): displacement energy in keV.
- NQTI Default (4): this variable sets the minimum value of the integration variable $u^{1/2}$. This should be increased to a larger value to avoid execution error in cases of very low energy (see p. 29, ref. 1).
- NQTX Default (2): to allow for the change of the integration interval used in COREL and RASE4 (see p. 29, ref. 1).
- program will read (after the namelist record) a new ASCII record which is used as an output format in COREL and RASE4. The default form of this format is: (1X, 2 (2F8.2, F9.2, 3F12.2, 4X)).

LIB10 Default (0): this variable should be set to 1 if there is information on TAPE10 (COREL output) needed to be saved, otherwise, writing on TAPE10 will start at its beginning.

LIB20 Default (0): does the same thing as LIB10, but with respect to TAPE20 (RASE4 output).

LIB30 Default (0): as LIB20, but with respect to TAPE30 (DAMG2 output).

Default (1): the code writes the damage distribution and some other information on an output file which could be used later by the graphic program XPLOT (see Sec. V). To suppress this output set ipltd=0.

IPRNTC Default (1): this variable was used for debugging to suppress the output from COREL if it is set to zero. If iprntc is set to a negative value, COREL will print | iprntc | lines at the beginning and at the end.

IPRNTR Default (1): set IPRNTR=0 to suppress all the print outputs of the averages of deposited energy (damage and electronic) in RASE4.

IPRNTD Default (1): if IPRNTD=0, no energy distribution will be output from DAMG2, only the headings will be output.

MODR

Default (1): this variable is used to control the displacement model used in RASE4; if MODR=0 the original model is used, but for compound target execution error is expected in case that displacement energy > 0.0. If MODR=1 the model will be exactly as what was explained in ref. 1, p. 39. MODR=2 neglects any recoil energy less than the displacement energy.

NEXP(I), I=1, NCOMP: see ref. 1, p. 24.

II.4.2 Namelist Read by RASE4 and Only for Compound Targets

The BRICE code now allows for different energy intervals for the recoils partition functions.

- DE(I) is the energy interval in keV at which the partition function of the \underline{i}_{th} component is given.
- NDAM(I) is the number of intervals DE(I) in the partition function of the \underline{i}_{th} component (NDAM(I) x DE(I)) should be greater than or equal to the maximum recoil energy of the \underline{i}_{th} component.
- PART(2,I) is the partition function of the $i_{\underline{th}}$ component in this target. Note before this namelist there should be an identification card (it could be a blank card).

II.4.3 Namelist Read by DAMG2

NTYPE Default (1): NTYPE=1 gives damage distribution and NTYPE=2 gives electronic energy.

Default (0): if contour plot outputs are needed, BRICE should be recompiled and loaded. The default is no-contour plot outputs are produced (to save computer storage).

III. Sample Problem

In this section the case solved in ref. 1 for silicon ions incident on silicon dioxide is repeated to illustrate the new format of the input.

The following printed output shows the input for this case. The first line contains the name of the target line 2 to line 5 in the first namelist record. Line 6 is a central instruction "corel" followed by namelist record (lines 7 and 8). Line 9 is control instruction rase, and since the same parameters Ne, etc. are used for both COREL and RASE4 (and also LSS is used for both components), the namelist record line 10 does not define or redefine any parameter (note that the \$ should be used to terminate the namelist record).

Line number 11 is a dummy title which is read and output to the user terminal to indicate that the program has reached this point. Lines 12-15 are the namelist record for the partition function. Line 16 is a control instruction "damg" followed by the namelist record read by DAMG2 (lines 17 and 18).

```
silicon dioxide sio2
     ion="silicon" pi=28. zi=14.
ncomp=2 tarqet="silicon","oxuqen"
 3
     alat=3.566 p2=28.16. z2=14.8. nform=12
 4
 5
     Send main
 6
     corel
     ne=30 nstp=10
                         ndiv=1 ndive=1 nmult=1 ndskp=1
     Send corel
Q
     rase
10
     Send rase
     the following record is used for compound targets only ????
11
12
     ndam=10 10 de=10. 10.
     part(2,1)=.6616 .6539 .6385 .6162 .5945 .5742 .5555 .5382 .5221 .5072 part(2,2)=.6246 .5974 .5529 .5135 .4797 .4507 .4253 .4030 .3831 .3653
13
14
15
     Sond partition
16
     dama
17
     ntupe=1 |sto=50
18
     Send dama2 namelist record
19
     erid
```

The output is given in Appendix A, and the results show complete agreement with those given in ref. 1. Note that in ref. 1 the results of COREL for the silicon recoils were not given. Here the complete results are presented.

In the next section, the same case will be considered again, but as being prepared by HELPBR, and also will show the iteration scheme necessary to obtain the partition function.

IV. The Interactive Program "HELPBR" and the Iteration Procedure for Compound Targets

The interactive program HELPBR was written to prepare the input for the BRICE code, and to make sure that this input satisfies all the accuracy requirements. The program can run the BRICE code itself, and if necessary compile and load the code if the required case needs more computer storage than the default one (see Section V). HELPBR also can prepare the input required for the graphic program and run it. For compound targets, HELPBR can carry out the iteration procedure to obtain the partition function of each component. In brief HELPBR takes care of everything the user might want as long as the answers of the user to HELPBR's questions are correct. The questions are all obvious and need not be explained.

In this section the case of $Si-SiO_2$ will be considered again to illustrate the procedure. Each iteration consists of two runs, one for Si recoils and one for O_2 recoils. Except for the first run in the first iteration, in each run, RASE4 and DAMG2 will be executed. In the first run COREL will be called first to calculate the ranges of the recoils.

The partition function for oxygen converged after the seventh iteration to an absolute accuracy of 1.E-5. The partition function of silicon converged to the same accuracy after the eighth iteration. The following is an example of an interactive session of HELPBR. See Section V for how to obtain the complete outputs. Partial outputs are given here in Appendices B-D. Appendix B contains the outputs from COREL [the recoil (Si and O_2) ranges]. Appendix C contains partial outputs from RASE4 and DAMG2 (for the damage energy deposition). Finally, Appendix D contains partial output from DAMG2 for the electronic energy deposition.

```
1brice / 1 2
welcome
are you familiar with this program ?(yes or no):yes
details ?(ses or no): no
enter tarset name :sio2 enter number of components :2
             'name', 'atomic number', and 'atomic mass' of each component
enter
       1 :si 14. 28.
COMP.
       2:02 8. 16.
COMP.
enter density option:1 for alat, 2 for alata, 3 for alatd: 1
enter lattice constant in ansstroms : 3.566
enter number of atoms of comp. - 1 (si
                                             ) :1
enter number of atoms of comp. - 2 (o2
                                              ) :2
enter average displacement energy(ev) for the target atoms:0.
now the electronic energy loss data for the recoils,
mark 'x' under one of the followins indicatins your choice
recoil
                         lss
           tarset
                               firsov
                                         brice exper
  si
            si
                          ×
recoil
           tarset
                         lss
                               firsov
                                         brice
                                                exper
  si
            02
                          ×
recoil
           tarset
                         155
                               firsov
                                         brice
                                                exper
  02
            si
                          ×
recoil
           tarset
                         155
                               firsov
                                         brice
                                                exper
  o_2
            02
                          ×
now data relevant to the incident ion:::::::
enter ion name :si
enter atomic number, and atomic mass of the ion :14
enter ions 'enersy', space, unit(e.g. mev kev ev) :30. kev
Г
                     lss max energy (kev) =
                                                 23431.1
now electronic enersy loss for the ion with each comp.
as before mark 'x' under one of the following
ion
           tarset
                         lss
                               firsov
                                         brice exper
si
            si
                          ×
ion
           tarset
                         lss
                               firsov
                                         brice exper
si
            02
                          ×
```

this code suarantees that min. interval of integration is < el/n where n=4 and el is char. energy, you can change the value of n to other value. (n>2) enter value of n :4

do you know the part. func. of the recoil: si in the tarset:sio2 answer yes or no :no do you know the part. func. of the recoil: o2 in the tarset:sio2 answer yes or no :no

```
[ ion=si
                 with enersy
                                 30.000
                                           (kev)
              e-rec-max elss-max char. energy
[ tarset
Г
    si
                30,000
                              23431.
                                             41.043
С
    02
                27.769
                               6349.0
                                             29.632
[ recoil
            tarset
                        char. enersy(kev)
Г
    si
              si
                          41.043
Е
    si
              02
                          29.632
C
    o2
                          16.932
              si
C
    02
              02
                          11.121
enter min % max values of ne(100,1600):100 2000
enter min % max (ne/nstp) (10 30):10 20
enter min & max (nstp/ndive) (10 20):10 20
```

ne=101	nmult=3	ndiv=10	ndive=1	\$	
ne=101	nmult=27769	ndiv=100000	ndive=1	\$	
ne=120 raset\$	nmult=1 iph, itry :	ndiv=4 6 0	nstp=12	ndive=1	ndskp=1\$
ne=120 raset\$	nmult=1 iph, itry :	ndiv=4 6 0	nste=10	ndive=1	ndskp=1\$
ne=120 raset\$	nmult=27769	ndiv=120000 6 0	nstp=12	ndive=1	ndske=1\$
ne=120 raset\$	nmult=27769	ndiv=120000 6 0	nstp=10	ndive=1	ndskp=1\$
ne=120 rasei\$	nmult=1 iph, itry :	ndiv=4 6 0	nstp=12	ndive=1	ndske=1\$
ne=120 rasei\$	nmult=1 iph, itry :	ndiv=4 6 0	nstp=10	ndive=1	ndskp=1\$

run ?(ses or no)ses

```
enter max. numb. of iteration:10
enter abs accurcy value(.001 to 1.e-5):.1e-4
    5.63813e-03
                   9.2763
                                 0.27625
                                                 28
                                                         4
corel
         1
..end of program : corel
                             ..time consumed(seconds).. = 0.388465
corel
         2
..end of program : corel
                            ..time consumed(seconds).. = 0.430218
* partition function <<<<<<<<
..end of program : rase4
                            ..time consumed(seconds).. = 6.56179
dams 1
..end of program : damge2
                            ..time consumed(seconds).. = 1.34447
end brief
     partition function for si
                                     in sio2
                                                        iteration no.
enersy (kev)
                old value
                              new value
                                            difference
    2.50000
                1.0000000
                              0.6555366
                                            0.34446335
    5.00000
                1.0000000
                              0.7767633
                                            0.22323673
    7.50000
                 1.0000000
                              0.8128790
                                            0.18712104
    10.00000
                1.0000000
                              0.8250196
                                            0.17498036
    12.50000
                1.0000000
                              0.8285323
                                            0.17146769
    15.00000
                1.0000000
                              0.8278901
                                            0.17210991
    17.50000
                1.0000000
                              0.8251156
                                            0.17488441
    20,00000
                1.0000000
                              0.8211909
                                            0.17880914
    22.50000
                1.0000000
                              0.8165415
                                            0.18345848
    25,00000
                1.0000000
                              0.8113947
                                            0.18860528
    27.50000
                1.0000000
                              0.8060944
                                            0.19390562
   30.00000
                1.0000000
                              0.8007579
                                            0.19924214
..end of program : rase4
                            ..time consumed(seconds).. =
                                                           7.30901
dams 2
```

c 07/26/82 13:32:58 001450

```
end brief
     partition function for o2
                                       in sio2
                                                          iteration no.
                                                                           1
enersy (kev)
                 old value
                               new value
                                              difference
     2.31408
                 1.0000000
                               0.6728887
                                              0.32711128
     4,62817
                 1.0000000
                               0.7310000
                                              0.26900003
     6.94225
                                0.7335616
                 1.0000000
                                              0.26643844
     9.25633
                 1.0000000
                               0.7255947
                                              0.27440529
    11.57042
                                              0.28552742
                 1.0000000
                               0.7144726
    13.88450
                 1.0000000
                               0.7023941
                                              0.29760591
    16,19858
                 1.0000000
                               0.6900763
                                              0.30992372
    18.51267
                 1.0000000
                               0.6778180
                                              0.32218200
    20.82675
                 1.0000000
                               0.6659007
                                              0.33409925
    23,14083
                 1.0000000
                               0.6543439
                                              0.34565610
    25,45492
                 1.0000000
                               0.6431579
                                              0.35684207
    27,76900
                 1.0000000
                               0.6323540
                                              0.36764600
     16 lines (
                 80a)
rase
       1
..end of program : rase4
                             ..time consumed(seconds).. = 6.56395
dams 1
..end of program : damge2
                             ..time consumed(seconds).. =
                                                             1.34522
end brief
     partition function for si
                                       in sio2
                                                          iteration no.
                                                                           2
enersy (kev)
                 old value
                               new value
                                              difference
     2.50000
                 0.6555366
                               0.6012180
                                              0.05431866
     5.00000
                 0.7767633
                               0.6717381
                                              0.10502516
     7.50000
                 0.8128790
                               0.6843088
                                              0.12857012
    10.00000
                 0.8250196
                               0.6858629
                                              0.13915674
                               0.6829950
    12.50000
                 0.8285323
                                              0.14553727
    15.00000
                 0.8278901
                               0.6791064
                                              0.14878369
    17.50000
                 0.8251156
                               0.6740109
                                              0.15110466
    20.00000
                 0.8211909
                               0.6683162
                                              0.15287470
    22,50000
                 0.8165415
                               0.6624403
                                              0.15410127
    25.00000
                 0.8113947
                               0.6565396
                                              0.15485514
    27.50000
                 0.8060944
                               0.6506571
                                              0.15543725
                               0.6449123
    30.00000
                 0.8007579
                                              0.15584558
     16 lines (
                 80a)
* partition function <<<<<<<<
..end of program : rase4
                             ..time consumed(seconds).. =
                                                             7.31333
dams
    2
```

+.time consumed(seconds).. = 2.03137

..end of program : damge2

..end of program : damge2

..time consumed(seconds).. =

2.03184

```
rase
       1
* partition function <<<<<<<<<
..end of program : rase4
                              ..time consumed(seconds).. = 6.56143
dams 1
..end of program : damse2
                              ..time consumed(seconds).. =
end brief
     partition function for si
                                        in sio2
                                                           iteration no.
                                                                            6
enersy (kev)
                 old value
                                new value
                                               difference
     2.50000
                 0.5933669
                                               0.00001068
                                0.5933562
                 0.6549122
     5.00000
                                0.6548889
                                               0.00002330
     7.50000
                 0.6593943
                                0.6593585
                                               0.00003579
    10.00000
                 0.6545933
                                0.6545462
                                               0.00004719
    12.50000
                 0.6467631
                                0.6467056
                                               0.00005749
    15.00000
                 0.6389854
                                0.6389186
                                               0.00006681
    17.50000
                                               0.00007528
                 0.6307075
                                0.6306322
    20.00000
                 0.6224113
                                0.6223283
                                               0.00008296
    22.50000
                 0.6143957
                                0.6143058
                                               0.00008993
    25.00000
                 0.6066862
                                0.6065899
                                               0.00009628
    27.50000
                 0.5992861
                                0.5991840
                                               0.00010207
    30.00000
                 0.5922594
                                0.5921520
                                               0.00010737
     16 lines (
                 80a)
rase
* partition function <<<<<<<<
..end of program : rase4
                              ..time consumed(seconds).. =
                                                              7.30317
dams 2
..end of prosram : damse2
                              ..time consumed(seconds).. =
                                                              2.03257
end brief
     partition function for o2
                                       in sio2
                                                           iteration no.
enersy (kev)
                 old value
                                new value
                                               difference
     2.31408
                 0.6328951
                                0.6328897
                                               0.00000539
                 0.6585506
     4.62817
                                0.6585401
                                               0.00001055
     6.94225
                 0.6446321
                                0.6446171
                                               0.00001499
     9.25633
                 0.6275234
                                0.6275048
                                               0.00001860
    11.57042
                 0.6107113
                                0.6106897
                                               0.00002158
                 0.5948667
    13.88450
                                0.5948426
                                               0.00002409
    16.19858
                 0.5799769
                                0.5799507
                                               0.00002623
    18.51267
                 0.5660181
                                0.5659901
                                               0.00002805
    20.82675
                 0.5529940
                                0.5529644
                                               0.00002959
    23.14083
                 0.5407564
                                0.5407255
                                               0.00003089
    25.45492
                 0.5292165
                                0.5291845
                                               0.00003200
    27,76900
                 0.5183096
                                0.5182767
                                               0.00003295
```

0.5183096

0.00029218

27,76900

16 lines (

16 lines (

(s08

0.5186018

80a)

..end of program : rase4 ..time consumed(seconds).. = 6.55373 dams 1 ..end of program : damse2 ..time consumed(seconds).. =

1.34601

end brief

end brief

partition function for si in sio2 iteration no. 7 enersy (kev) old value new value difference 2.50000 0.5933562 0.5933550 0.00000120 5.00000 0.6548889 0.6548863 0.00000262 7.50000 0.6593585 0.6593545 0.00000402 10.00000 0.6545462 0.6545408 0.00000531 12.50000 0.6467056 0.6466991 0.00000647 15,00000 0.6389186 0.6389110 0.00000752 17,50000 0.6306322 0.6306237 0.00000848 20,00000 0.6223283 0.6223190 0.00000936 22,50000 0.6143058 0.6142956 0.00001015 25.00000 0.6065899 0.6065790 0.00001088 27.50000 0.5991840 0.5991725 0.00001154 30.00000 0.5921520 0.5921399 0.00001215 16 lines (80a)

* partition function <<<<<<<<

..end of program : rase4 ..time consumed(seconds).. = 7.30936 dams 2

..end of program : damge2 ..time consumed(seconds).. = 2.03098

partition function for o2 in sio2 iteration no. 7 enersy (kev) old value new value difference 2.31408 0.6328897 0.6328891 0.00000060 4.62817 0.6585401 0.6585389 0.00000118 6.94225 0.6446171 0.6446154 0.00000167 9.25633 0.6275048 0.6275027 0.00000208 11.57042 0.6106897 0.6106873 0.00000241 13.88450 0.5948426 0.5948399 0.00000269 16.19858 0.5799507 0.5799478 0.00000293 18.51267 0.5659901 0.5659869 0.00000313 20.82675 0.5529644 0.5529611 0.00000331 23,14083 0.5407255 0.5407220 0.00000345 25.45492 0.5291845 0.5291810 0.00000358 27.76900 0.5182730 0.5182767 0.00000368 16 lines (80a)

```
* partition function <<<<<<<<
..end of program : rase4
                             ..time consumed(seconds).. = 6.56083
dams 1
..end of program : damse2
                             ..time consumed(seconds).. = 1.34448
end brief
     partition function for si
                                       in sio2
                                                          iteration no.
enersy (kev)
                 old value
                               new value
                                              difference
     2.50000
                 0.5933550
                               0.5933549
                                              0.00000013
     5.00000
                 0.6548863
                               0.6548860
                                              0.00000029
     7.50000
                               0.6593540
                 0.6593545
                                              0.00000045
    10.00000
                 0.6545408
                               0.6545402
                                              0.00000059
    12.50000
                 0.6466991
                               0.6466984
                                              0.00000072
    15.00000
                 0.6389110
                               0.6389102
                                              0.00000084
    17.50000
                 0.6306237
                               0.6306227
                                              0.00000095
    20.00000
                 0.6223190
                               0.6223179
                                              0.00000105
    22,50000
                 0.6142956
                               0.6142945
                                              0.00000114
    25,00000
                 0.6065790
                               0.6065778
                                              0.00000122
    27.50000
                 0.5991725
                               0.5991712
                                              0.00000129
    30.00000
                 0.5921399
                               0.5921385
                                              0.00000136
+ +
• •
. .
more iterations (yes or no) ?no
     16 lines ( 80a)
ne=120
           rmult=1
                          ndiv=4
                                         nstp=10
                                                     ndive=1
                                                                  ndskp=1$
partition functions for recoils
..end of program : rase4
                             ..time consumed(seconds).. = 7.11785
dams
..end of program : damge2 ..time consumed(seconds).. = 1.52665
end brief
Plot ? (yes or no):yes
```

8

rase

1

damase energy distribution is done do you want also electronic energy deposition(y or no):yes

ne=120 nmult=1 ndiv=4 nstp=10 ndive=1 ndskp=1\$

..end of program : damse2 ..time consumed(seconds).. = 2.07513

end brief

job done, hopefully correct after this program terminates, type the following to get your outputs netout o* netplot f3* disspla

all done

V. Availability of the Codes

Everything related to the BRICE code is in the directory c-brice in the film space of user 14225. The source "sbrice", the controllee (the executable program) "xbrice" and the controllee of HELPBR "xhelpbr" are all contained in a lib $^{(2)}$ file "lbrice". The library file "lbrice" contains also the files "pbrice" which is a cliche file used by "precomp", $^{(2)}$ "xplot" which is the controllee for the graphics program and "iplot" which is the input for "xplot".

The complete output for the test case of ref. 1 is "orprt $\emptyset\emptyset$. The complete outputs described in Sec. IV are "obrice $\emptyset\emptyset$ ", "obrice \emptyset 1" and "obrice \emptyset 2". Also, the complete graphics outputs are the files "f3brie \emptyset x" and "f3brie \emptyset x".

```
To obtain one of the above file types:
```

filem/

rds 14225 .c-brice "file name"

end

where "file name" is any of the above mentioned files. After reading "lbrice", to obtain any file from it type:

lib lbrice

x "file name"

end.

To execute xbrice type

xbrice i=ifile / t

where "ifile" is the input file and t is the approximate time needed for the run.

Finally, to use HELPBR type:

1brice.

The cliche file "pbrice" is listed below:

```
CLIGHE PBRICE
PARAMETER (KM= 4)
PARAMETER (KM2=KM+4)
PARAMETER (IPNE= 1600)
PARAMETER (IPD= 30)
PARAMETER (IPT=IPD+4)
PARAMETER (IPX= 50)
PARAMETER (IPX= 50)
PARAMETER (IPRC= 4)
PENDCLICHE
```

This file is used to pre-compile the source code "sbrice". The parameters in this file set the dimension of almost all the arrays in the code. The effect of each is:

KM	sets the maximum number of components, i.e., the maximum value
	the variable <u>NCOMP</u> can take.
IPNE	sets the maximum number of the small energy interval
	(NMULT/NDIV), and is the limit of the variable $\underline{\text{NE}}$.
IPD	sets the maximum number of the major energy interval NE/NSTP.
IPX	sets the limit for the value of $NE/NSTP + NSTP/NDIVE + 3$
IPRC	sets one of the three dimensions of the array used to store the
	value of the contour plotting data in DAMG2. Its default value
	was 250 and the array consumed a considerable amount of computer
	storage.

If any of the above underlined variables (or expressions) could take a value greater than the corresponding parameter the user should change that parameter to a value > the desired limit in the file "pbrice" with the aid of any editor [QED or TRIXGL⁽²⁾]. After that compile and load the code type: trixgl o(sbrice) run end.

As mentioned before, HELPBR will do that for the user. If the loader "LDR" fails to load the program because the required storage exceeds the computer capacity switch to the D machine and try again.

Acknowledgment

Support for this work has been provided by the U.S. Department of Energy.

References

- D.K. Brice, "Ion Implantation Range and Energy Deposition Codes COREL, RASE4 and DAMG2", SAND75-0622, July 1977.
- 2. See the online program on the NMFECC "document".

Appendix A

Results of BRICE Code for the Test Case of Reference 1

: 07.27.82 : 07:16:44 (pst) : c rprt00 rpr t 88 rprt00 rpr 100 rprt00 rprt80 rpr 100 rprt00 rpr 100 rpr t 00 rpr (00 rprt00 rprt00 rpr 188 rpr 100 rprt80 rprt00 rprt80 machine brice - brice brice brice .3653 .5072 .5221 .3831 ***** arprigg .6385 .6162 .5945 .5742 .5555 .5382 .4507 .4253 .4838 the following record is used for compound targets only ???? 5 orpri80 rpr t 00 ndiv=1 ndive=1 nmult=1 ndsKp=1 N for nform=1 .5529 .5135 .4797 tape32 ***** input data 13:18:06 a 862swi taraet="silicon", "oxuaen" z2=14. 8. pi=28. zi=14. controller:
at time :
sustem :
account :
0:59 tape30 p2=28. 16. .6239 .5974 de=10. 10 :silicon dioxide sio2 tape20 :part(2,1)=.6616 :part(2,2)=.6246 :ntupe=1 istp=50 :\$end partition :ion="silicon" :ne=30 nstp=10 controllee: xbrice loaded on : 07/22/82 dropfile : +xbricea user # : 001450 program bank(min:sec pool bank(minutes :alat=3.566 :ndam=18 18 :Send corel :Send main :Send rase :ncomb=2 tape 10 Ø :corel rase :dama *** ! ŀ i 1 ! I ļ 1 USGL # i 1 l I 1 i files N M 4 ហ Ö ω Ν. ထ σ Ξ 2 M 7 5 8 $\stackrel{\sim}{\sim}$ 9

orel

taraet silicon ions incident on a/an silicon dioxide range and stragaling data for

initial values

incident ion silicon atomic number(zl) = 14. atomic mass(ml) = 28.80 amu energu maximum = 23431.86kev

densitu char, energy XeV. z-eff. t-f rad. amu amu dioxide a-number silicon components tarast -

28.00 1.375e-09 39.598 41.043 16.00 1.497e-09 30.720 29.632

4.00

silicon oxuqen

@ @

1.000 2.000

2.20524e+22 4.41048e+22

nexp

nform

o characteristic length = 239.04 angstroms

atomic density = 6.61572e+22 atoms/cc

the following electronic stopping cross sections were used in the calculations

silicon - thomas-fermi atomic model cse = 1.23221e-03

cxuqen thomas-fermi atomic model

					spread in rp-perp	9.76 26.33 39.36 52.33 62.83 74.97 105.77 127.64 127.64 158.94 169.27
					r(e,ep)	33.91 68.98 188.96 151.81 162.06 191.97 221.34 288.95 348.24 369.95 429.59 459.75
					spread in rp-para	28.65 38.53 48.66 58.64 78.16 78.16 187.88 117.18 155.25 153.33
	from 1ss				(də.ə)	31.86 58.92 84.39 188.97 133.19 157.25 285.38 253.68 257.92 326.91 351.58 376.37
	function –				9 0 0	# # # # # # # # # # # # # # # # # # #
	thomas-fermi fu				O	2.88 6.88 8.88 12.88 14.88 16.88 18.88 22.88 22.88 22.88 26.88 38.88
nrpt	g Jniversal tho				pread in rp-perp	1.00 19.09 33.08 45.43 45.43 57.13 68.46 79.50 90.39 101.14 117.79 1122.37 122.37 143.35 153.76 164.11
nmult ndskp	1 f(u) is ur				r(e,ep) sp	13.52 81.97 116.49 177.05 236.85 236.85 236.85 235.14 325.40 335.10 384.85 414.66
ndive	1 slope -	0.06781 0.07749 0.07749 0.07769 0.087869 0.082839 0.08283 -0.13129 -0.13129 -0.11109	ង		spread in rp-para	16.54 25.168 45.68 45.68 65.32 74.96 84.47 93.89 123.89 121.68 139.88 139.88 148.84
ncomp ndiv	2 f(u)	0 2022 0 2020 0 2380 0 334 0 4331 0 2735 0 1034	"""" ev p = anastroms dimensionless v/anastrom		s (də'	14.98 45.45 71.82 121.11 145.24 169.26 193.28 2217.34 265.75 298.12 339.23 363.96
nstp no	18 u(i)	6.882 6.882 6.828 6.928 6.928 6.158 6.158 7.988 7.988	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		eb rp(e	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9	38 i		energu r rp,r,delt eps,de/dr damage -	28	Œ	22222222222222222222222222222222222222

...end of program : core! ...time consumed (seconds)... =

task: corel

tardet

07/27/82 07:16:44 date: time:

> ions incident on a/an silicon dioxide uabhxo range and straggling data for

initial values

16.00 amu 6348.97kev axaden atomic number(z1) = atomic mass(m1) = energy maximum = incident ion

char. energd Xe< z-eff. t-f rad. a-mass am∪ dioxide a-number silicon components ı target

16.932 38.728 22.627 1.497e-09 1.657e-09

28.00 16.00

<u>4</u> α

silicon oxuqen

 \square

1.000 2.000

2.20524e+22 4.41048e+22

nexo

nform

density

o characteristic length = 190.76 angstroms

6.61572e+22 atoms/cc atomic density =

the following electronic stopping cross sections were used in the calculations

- thomas-fermi atomic model 1.89373e-03 silicon ese = - thomas-fermi atomic model 1.59703e-03 uebhxo

					pread in rp-perp	14.85 73.18 107.99 121.29 171.29 171.29 17.07 263.60 285.26 327.87 348.82
					r(e,ep) s	156.48 178.17 178.17 228.22 238.75 4477.34 4417.34 4417.34 776.68 776.68 895.48
					spread in rb-para	29.38 71.41 89.28 124.65 124.65 125.12 224.64 224.64 225.55 278.55 255.55
	from 1ss				(da'e	48.88 91.51 133.85 176.57 219.85 263.72 308.11 3353.80 444.06 490.11 536.48 583.11 629.98 677.04
	function ~				ep rp(
	-fermi fu				Œ	2.00 6.00 8.00 12.00 12.00 12.00 15.00 22.00 22.00 26.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
	thomas				c	1.00 6.20 1.58 1.58 1.58 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0
nrpt	8 universal				spread i rp-perp	
nmult ndskp	1 f(u) is				r(e,ep)	22.08 88.26 149.21 208.99 208.99 227.97 447.17 506.91 566.69 626.51 686.35 686.35 686.35 746.18 865.66 865.65
ndive	1 slope -	.06781 07749 07791 07791 07289 08283 06284 12085 13129 11109			spread in rp-para	34.88 46.84 62.65 88.32 98.32 113.33 183.34 167.59 167.59 232.51 247.94 263.08
ncomp ndiv	2 f(u)	00 00 00 00 00 00 00 00 00 00 00 00 00	andstroms dimensionless andstrom		ras (də.	88 27.66 88 88 88 88 88 88 88 88 88 88 88 88 8
nstp ned	18 u(i)		s Kev a,dp _ ev/an		ep rp(e,	00000000000000
au	38 i		enerau r rp.r.delt aps.de/dr demace -	30	©	11.288 17.288 17.288 17.288 23.1.388 23

target

silicon ions incident on a/an silicon dioxide range and straggling data for

initial values

incident ion silicon atomic number(z1) = 14. atomic mass(m1) = 28.00 amu energy maximum = 23431.06Kev

char, energh z-eff. t-f rad. 80 a-mass dioxide amc a-number silicon components ŧ tarast

t-f rad. z-eff. char. enerau densitu cm kev 1.375e-89 39.598 41.843 2.28524e+22 1.497e-89 38.728 29.632 4.41848e+22

00

1.000 2.000

nexb

nform

characteristic length = 239.04 anastroms

31

28.00 16.00

7. α

silicon oxugen atomic density = 6.61572e+22 atoms/cc

used in the calculations the following electronic stopping cross sections were

silicon – thomas-fermi atomic model , lindhard theoru cse = 1.23221e-03

oxugen _ thomas—fermi atomic model , lindhard theoru cse = 1.81522e–03

					de/dx	7.4646e+00 1.0557e+01 1.2929e+01 1.4929e+01 1.6691e+01		den e	5.1153e+81 4.8357e+81 4.5828e+81 4.2283e+81 3.9761e+81	15	
					œ	6.9 12.8 18.8 38.8		Œ	.0 12.0 18.0 39.0 39.0		O
					de/dx	6.8143e+00 1.0107e+01 1.2565e+01 1.4515e+01 1.6411e+01		a-dap	5.0896e+01 4.9016e+01 4.5561e+01 4.2643e+01 4.0151e+01		np-rec
	មា មា				Ф	5.8 11.8 17.8 23.8 29.8		Ф	5.0 11.0 17.0 23.0 29.0		œ
	function – from l				de/dx	6.0949e+80 9.6368e+80 1.2190e+81 1.4294e+81		a-a-p	5.0132e+01 4.9655e+01 4.6103e+01 4.3103e+01 4.0545e+01		np-rec
					Çı	184 186 186 188 188 188 188		Oυ	18.0 16.0 16.0 22.0 28.0		œ
bt	8 rrsal thomas—fermi				de/dx	5.2783e+00 9.1423e+00 1.1803e+01 1.3965e+01 1.5835e+01		9-0 0 0	4.8603e+01 5.0242e+01 4.6634e+01 4.3584e+01 4.0941e+01	ō	rb-rec
ndskp nrp	1 8 is univer			5Kp= 1	O)	3.8 15.8 27.8		ω	3.8 15.8 27.8	rp-rec	CJ
nmul t	1 1 5e - f(u)	= 5 = 5 5 5 5 5 5 5 5 5 5	e√anqstrom	ev∕anastrom ndskp≕	xp/ep	4.3097e+00 8.6194e+00 1.1402e+01 1.3629e+01 1.5539e+01	dep-e	e-dep	4.5763e+01 5.0724e+01 4.7198e+01 4.4064e+01 4.1357e+01	range(anastroms)	rp-rec
ndiv ndive	1 slop	0.0678 0.0779 0.0779 0.0779 0.0878 0.0878 -0.1288 -0.1110 -0.0622	١	•	Œ	224.82 264.82 26.88 8.88	astrom) ,	OJ.	28.8 28.8 26.8 26.8 8		Q)
nstp ncomp r	10 2 u(i) f(u)	882 8 162 816 8 289 826 8 334 848 8 333 158 8 431 288 8 435 889 8 275 889 8 184 889 8 187	ts "### Kev — angstroms position rates	ic stopping power	de/dx	3.0474e+80 8.0627e+80 1.0988e+81 1.3283e+81 1.5237e+81	d enerqu(ev∕anqstrom)	e-dep	3.9736e+81 5.1855e+81 4.7763e+81 4.4548e+81 4.1779e+81	projected recoil	rp-rec
ac	38	— ഗഡ 4 സര∨ ಇಲ್ಲಿ 1 ರ 4 ರ ಪಟ್ಟಣೆ ಪಟ್ಟಣೆ ಪಟ್ಟು ನಿ	enerau - Ienaths - enerau dek	32 electronic	œ	1.8 13.8 25.0 25.0	deposited	œ	2.25 1.3 2.5 2.5 2.5 2.6	d Abbudde d	œ

range and straggling data for silicon ions incident on a/an silicon dioxide target

date : time :

spread in rp−perp	99.36	95.89	98.37	84.23	27.79	71.23	64.63	58.87	51.57	99.57
r(e,ep)	273.37	267.81	257.52	246.06	234.87	221.78	209.24	196.48	183.48	321.64
spread in rp-para	102.27	101.74	180.41	98.58	96.36	93.76	90.77	87.40	83.64	130.81
	238.78	234.04	227.31	219.67	211.31	202.37	192.87	182.84	172.28	295.46
ep rp(e,ep)	1.98	2.00	3.88	4.00	5.88	6.88	7.00	8 8	99.6	10.00
Œ	20.00	20.00	28.88	28.88	20.00	20.00	20.68	20.00	20.00	30.00
spread in rp-perp	41.67	38.75 149.86	33.17 144.53	26.99 138.61	20.68 132,36	14.48 125.93	8.46 119.39	2.19 112.79	1.00 106.18	45.18
r(e,ep) spr rk	124.66 422.32	118.84 416.80	108.13 406.56	95.97 395.20	82.85 383.36	68.79 371.30	53.47	36.89 346.71	14.35 334.24	170.20
spread in rp-para	53.38 148.30	52.80 147.66	50.63 146.46	47.50 144.96	43.50 143.20	38.59 141.19	32.75 138.94	26.15 136.47	20.01 133.76	79.45
Ψ1	114.45	108.64 359.06	188.18 353.84	90.32 346.24	79.19 338.84	66.72 330.98	52.57 322.68	35.96 313.97	14.57 304.90	161.18
(de,e) or de	1.00 1.00	2.88 2.88	3.88 3.88	4.80 4.88	5.88 5.88	6.08 6.08	7.88 7.88	8.68 8.88	9.00 9.00 9.00	10.00
Œ	1 8.00 38.88	18.88 38.88	18.98 38.88	18.98 38.98	18.88 38.88	18 38 38 88	19.88 39.88	19.88 38.88	10 38 38 38	28,98

37.40	102.83	
185.27	278.93	
86.54	102.80	
30.00 20.00 179.81	243.52	1.23298
20.00	ଷ ପ୍ର	ii
30.00	20.00	(Seconds)
ପ.ପଟ	44.59 156.99	time consumed (seconds)
ପ୍ର ପ୍ର	130.49 427.85	ase4t
ତ ୍କ ପ୍ରତ୍ର	53.95 148.95	end of program : rase4
ପ୍ର ପ	120.26 367.58	end of
20.00	6.68 6.68	
28.88	18.88 38.88	

cpu time(millisec.);
io
sus
time left (seconds);
task time (minutes);

task: rase4

	07/27/82 07:16:44			
	date:		٤	
	tanget		iter	
***	dioxide		χ Θ	Ø
n dioxide	ions incident on α∕an silicon dioxide taraet		nxtnd	
tarqet silicon dioxide	dent on α∕		istp	58
tarae			ntupe	-port
silicon	silicon	3.5660)	nmul t	
incident ion	tions for	(alat= 2-oxuqen 8.888 16.888	ndive	•1
	אם כמוכטומי	taraet 1-silicon 14.000 28.000	ndiv	
'am : dan	nic enero	<u> </u>	nstp	10
*** begin of program : damae2	o electror	ion silicon 28.	9	30
*** begi	damage and∕or electronic energu calculations for	atomic number atomic mass	mppu	M

silicon ions incident on a/an silicon dioxide tarqet damage and/or electronic energy calculations for

* ***	ж Э
units	l
~ ****	noueue

dimensionless depth,range,delta range – angstroms energy partition,ion distribution,integrated energy distribution – energy distribution – ev/angstrom

	incluent energy	30.00-ke∨	proj. range	368. –andstroms	delta rp	149anastroms	delta perpindicular	157angstroms	total enerau in distribution	18.23-kev	enerau partition	0.6411	final integrated energy ion energy distr. distr. distr.
steeleste	\$	* * * * * *	<u> </u>	* * * * *	* * *	* * * * * * * * * * * * * * * * * * *	X X	* * * *	X X	<u> </u>	* * * * * *		* * * * * * * * * * * *
	hh.lelle slientalit	20.00-ke√	broj. rande	244.~angstroms	delta rp	103.~anastroms	delta perpindicular	103angstroms	total energy in distribution	12.44-Kev	eneray partition	0.6596	final integrated energu ion energy distr. distr. distr.
777	***	* * * * * *	* * * * * *	* * * * * * * * * * * * * * * * * * *	* * *	* * * * * * * * * * * * * * * * * * *	* * *	* * * *	***	* * * *	* * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
20 20 20 20 20 20 20 20 20 20 20 20 20 2	, 22 (0:10 1:05 0:17	10.80~ke∪	proj. range	120angstroms	delta np	54.~anastroms	delta perpindicular	45.~anastroms	total energy in distribution	5.86~kev	enerau partition	0.6333	p final integrated energy ion energy distr. t) distr. distr.
				36									x/rp (pct)

41111112222222222222222222222222222222
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
230702222222222222222222222222222222222
1
0 0
57-81-82-82-82-82-82-82-82-82-82-82-82-82-82-
1
0 0
<u>2111111111111111111111111111111111111</u>

2222 2222 2222 2223 2323 2323 2323 232
00.00000000000000000000000000000000000
8.889888888888888888888888888888888888
22222 221286 221286 2227474 2227474 2227474 2227474 2227474 2227474 2227474 2227474 2227474 2227474 2227474 22274
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
689388888888888888888888888888888888888
200201111111110000000004400000000000000
0 0
00 00 <td< td=""></td<>
38 800000000000000000000000000000000000

depth(andstroms)		
enerau distribution(ev/angstrom)	30.	66. 68. 85. 111. 139. 174. 338. 359. 359. 457. 457.
distribu		######################################
enerad	20.	18 521. 67. 186. 196. 198. 283. 283. 283.
plot		2000
contour	18.	202. 1653. 1653. 1653. 1653. 1653.
values for contour	enerqu(kev)	ក្រុកក្រុកក្នុង ក្រុកក្រុកក្នុង ក្រុកក្រុកក្នុង ក្រុកក្រុកក្នុង ក្រុកក្រុកក្នុង ក្រុកក្នុង ក្រុង ក្រុង ក្រុកក្នុង ក្រុកក្នុង ក្រុកក្នុង ក្រុកក្នុង ក្រុកក្នុង ក្រុង ក្រុកក្នុង ក្រុងក្នុង ក្រុងក្នុង ក្រុងក្បានក្នុង ក្រុងក្នុង ក្នុង ក្រុងក្នុង ក្រុងក្នុង ក្នុងក្នុង ក្នុងក្នុង ក្នុងក្នុង ក្នុងក្នុង ក្នុងក្នុង ក្នុងក្នុង
5	Ğ	39

total eneray in distribution	6.3326 taraet = 5.8589	13.192 target = 12.439	0.64113 energu deposited in target = 18.227
enerau partition	8.5325 energy deposited in target = 5.8589	0.65959 eneray deposited in target =	0.64113 energy deposited in
delta x-sa averade	3218.9	11298.	24495.
×-averade	82.876	164.14	249.45
enerad	10	28	38

damage and/or electronic energy calculations for

dxmom3(i)xmom3(i) dpct

6.0347e+04 4.0147e+05 1.2600e+06 1.6023e+04 1.9583e+05 4.6916e+05 0.633264 0.659591 0.641137

- \sim \sim

...time consumed (seconds)... = ...end of program : damge2

0.445843

task: damae2

445 397 397 4 58 8.00742 cpu time(millisec.) :
io
sus
time left (seconds) :
task time (minutes) : Appendix B
COREL Outputs

date : 07/26/82 time : 13:51:57 (pst) machine : c			- brice brice00	- brice brice88	- brice brice80	- brice brice88	- brice brice88	- brice brice88	- brice brice00	- brice brice00	- brice brice00	- brice brice88	- brice brice00	- brice brice88	- brice brice00					
	abrice00	****				1)= 28.0000	2)= 16.0000	ed=0.												:1 ndskp=-2 \$
	obrice00 ak	for brice00 run			28.0000 ncomp= 2	z2(1)= 14. p2(z2(2)= 8. p2(alatd= 0.888 0 ല						ndive=1 \$				ndive=1 \$		nstp=10 ndive=1
11er: +1bricea e : 13:18:06 : a t : 862swi 126	tape30 tape32	input data			zi= 14. pi= 28.	nform(1)= 1.000	nform(2)=2.009	8. 00000 പ						ndiv=10				ndiv=100000 r		ndiv=4 ns
contro at tim sustem accoun): 1:59	tape20 ta	****			=	1)="si " nf	=	3.5660 alata=				Ø	В.	nmu1 t =3	rv.	Ø	В.	nmult=27769		nmult=1
controllee: xbrice loaded on : 07/2/82 dropfile : +xbricea user # : 001450 program bank(min:sec	files: tape10		1 : 8	2 :sio2	3 : ion="si	4 :tarqet(1	5 :taraet(2)="o2	6 :alat= 3.	7 :nati=4	8 Sendmain	9 :corel	10 =- :nexp= 0	11 :cse= 0.	12 :ne=101	13 :corel	14 :nexp= 0	15 :cse= 0.	16 :ne≖101	17 :rdse 1	18 :ne=120

19 :* partition function <<<<<<<	20 :ibin=1	21 :\$end partition function >>>>>>>	:dama 1	23 : stp=0 ntupe=1 iprntd=8 ip1td=8 \$	24 :end brief
61	20	21	22 :dama	23	24

brice00

brice00

brice00 brice00

r brice rough

brice00

brice00

- brice - brice

	13:51:57	07/26/82	
	time :	date :	
ليوس			
taraet			
icident on a/an sio2			
ions incident or			
e and stragaling data for			

range

target

...in sio2

recoil no. 1..."si

*Mok begin of program : corel

initial values

= 14. 28.00 amu 23431.06kev atomic number(z1) atomic mass(m1) = energy maximum = ហ incident ion

sio2 taraet -

nform r	1.888 2.888
densitu	2.20524e+22 4.41048e+22
char. enerau Kev	41.043
ZBff.	39.598
t-f rad. cm	1.375e-09 1.497e-09
amu amu	28.88 16.88
a-number	4.œ
components	si o2

a a

nexp

characteristic length = 239.04 angstroms

45

6.61572e+22 atoms/cc atomic density =

the following electronic stopping cross sections were used in the calculations

thomas-fermi atomic model 1.23221e-03 CS0 = 'n

... thomas-fermi atomic model - 850 얺

				spread in rp-perp	14.12 26.13 26.13 32.82 36.73 36.91 57.12 67.18 87.51 87.51 87.51 87.51 87.51 87.51 87.51
				r(e,ep)	28.11 28.11 40.14 40.14 72.18 82.13 91.87 110.28 120.22 120.29 126.90 1174.97 1174.97 1183.96
	_			spread in rp-para	823.15 23.15 23.15 38.15 38.15 38.15 38.16 38.26 443.28 55.66 61.63 61.63 82.25 82.25 82.25
	from 1ss			(da'a)	13.12 23.84 41.87 58.13 58.13 58.89 65.84 88.32 95.66 110.29 117.43 117.43 117.43 117.63 1189.81 160.51 167.67 189.16
	function -			ep rp(e,	88888888888888888888888888888888888888
	thomas—fermi fu			Cu	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
nrot	8 universal th			spread in rp-perp	1.3.08 1.3.08 1.3.28 2.22 2.23 2.23 2.23 2.23 2.23 2.23
nmult ndskp	3 0 - f(u) is 1			. (də,e) r	21.59 34.26 34.26 56.69 67.19 86.67 124.08 115.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24 123.24
iv ndive	g 1 slope	8.86781 8.87749 8.87749 8.87749 8.87259 8.85239 -0.86284 -0.13129 -0.13129	em ស	spread in rp-para	7.27 1111 12.23 12.23 12.23 12.23 12.23 12.23 12.23 13
ncomp nd	2 f(u)	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	"" anastroms dimensionless anastrom	(də.	6.53 28.53 37.59 37.59 37.59 69.66 69.66 69.66 113.82 113.82 113.82 1142.68 1142.68 1171.25 1185.33 1185.33 1186.33 1187.42 1187.42 1188.33
nstp n	1 (E)	8.882 8.884 8.818 8.828 8.188 8.188 8.288 1.688 4.888	14s Ke L	e) di de	B B B B B B B B B B B B B B B B B B B
ë	101	www. co. co. co. co. co. co. co. co. co. co	""" uni enerau rp.r.del eps.de/d damage	Œ	8

93.97 108.35 108.35 109.89 113.86 125.55 125.66 128.88 141.38 147.52 156.83 156.83 156.83 172.27 173.81
246.46.46.46.47.48.48.49.49.49.49.49.49.49.49.49.49.49.49.49.
84 86 877 886 893 39 893 39 89 89 89 89 89 89 89 89 89 89 89 89 89
286.33 283.51 2217.89 2255.11 2255.18 2255.31 2251.89 2261.27 281.27 281.27 281.27 334.45 334.45 334.45 334.45 334.45 334.83 334.83 334.83 336.64 337.88
15.68 16.58 16.58 17.88 18.88 18.88 22.22 22.28 22.28 22.28 22.28 38.28 38.28 38.28 38.38 38.38 38.38
92.35 986.12 101.96 111.48 111.78 113.78 113.78 113.78 113.78 113.78 113.78 113.78 114.78 115.78 116.78 117.78 117.78 117.78 117.78 117.88
241.98 268.64 268.64 33.86.48 33.86.48 33.26 33.26 33.26 33.26 33.26 33.26 33.26 33.26 33.26 446.96 464.90 464.90
83.44 89.128 91.98 94.88 1086.254 1086.255 1117.158 113.66
192.75 2214.30 2214.30 2214.30 221.13 221.43.13 225.93 336.75 336.75 336.75 336.75 336.75 336.75 336.75 336.75 336.75 336.75
තතනගතතතතත තතතතතතතතතතතත තතතතතතතතතතතතතතතතත
22.32

task: corel

cpu time(millisec.): 392
io ...
time left (seconds): 2
time left (seconds): 119
task time (minutes): 8.00683

0.388465

...time consumed (seconds)... =

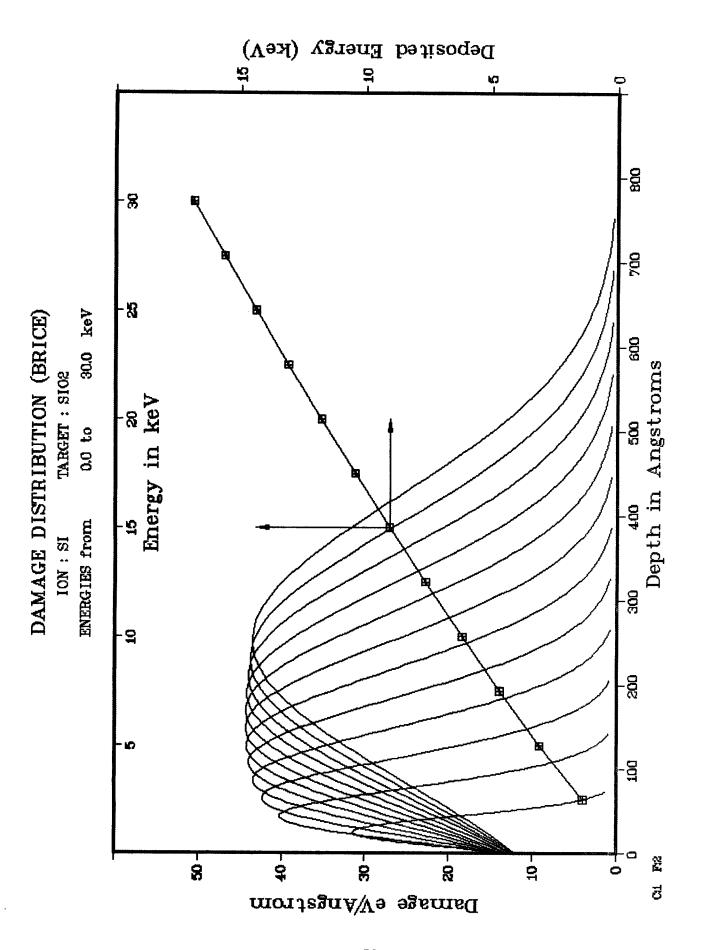
ore]

<u>5</u>	_	C	ťα	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	j.	ם מ	
≱ characteristic length =	02 1	campanents	target -	incident ion o2 atomic number(z1) atomic mass(m1) = energu maximum =	initial values	iae and st	xxx beq
	8.14 8.	a~n∪mber	s102	Ħ	ō vi	ranae and stragaling data for	in of prog
	28.00 16.00	a-mass		8. 16.00 amu 6348.97kev		ata for o2	жжж begin of program : corel
	1.497e-09 1.657e-09	t-f rad.					recoil n
	30.720 22.627	z-eff.				s incident	recoil no. 2"o2
	16.932 11.121	char. enerqu Kev				ions incident on a∕an sio2	
	2.20524e+22 4.41048e+22	densitu				#	sio2
	1.000 2.000	nform				target	target
	Ø Ø	gxau					
							**
						date :	
						07/26/82 13:51:57	

the following electronic stopping cross sections were used in the calculations

si – thomas-fermi atomic model cse = 1.09373e-03

;2 - thomas-fermi atomic model cse = 1.69703e-03


				spread in rp-perp	4.31 28.114 28.117 36.98 43.67 58.93 71.82 81.93 98.61 105.28 111.24 137.69 156.52 163.25 163.25
				r(e,ep)	21.16 42.34 61.34 97.25 97.26 114.44 131.44 148.28 188.26 231.36 231.36 286.92 338.92 338.92 338.92 338.92 338.92 338.92
				spread in rp-para	26.28 26.28 31.96 37.63 37.63 443.29 48.82 75.63 86.36 96.26 101.33 116.35 126.21 121.29 131.10
	from 1ss			(də.	18.21 56.59 68.41 80.12 80.12 91.78 115.07 1
	function -			e) du de	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	fermi			O)	22.22 2.22 2.33 3.33 3.33 3.33 3.33 3.3
nrpt	0 versal thomas-			pread in rp-perp	1.00 23.56 32.19 32.19 33.86 35.19 47.32 108.48 115.02 121.53 124.47 144.91 144.91 153.71 166.68
t ndskp	9 g f(u) is uni			r(e,ep) spri	8.58 78.58 78.58 78.58 11.22.98 11.25.96 11.25.96 11.25.96 11.25.96 11.25.96 11.25.95 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25
v ndive nmul	1 27769 slope –	0.06781 0.07749 0.077691 0.07869 0.07869 0.02433 0.02433 0.12005 0.13129 0.13129	w w	pread in rp-para	14.24 23.15.24 24.86 24.86 27.28 67.28 67.28 67.28 67.28 67.28 67.28 68.24 98.34 98.31 108.85 113.87 123.75 123.75 123.75
ncomp ndi	2 100000 f(u)	0 162 0 289 0 289 0 283 0 283 0 285 0 184 1 1 1 1 1 1	angstrom mensionles gstrom	ds (də'ə)	18.82 25.26 38.32 58.61 62.52 189.61 128.98 132.59 144.52 156.98 156.98 179.76 191.67 283.63 227.71 283.63 288.78
nstp r	1 u(i)	69.000 69.000 69.000 69.001 69.001 69.000 69.000 69.000 69.000	8	ep rp(
a		1224200721 121 121	enerau rp,r,delt eps,de/dr damaae	O)	8.833 803 803 803 803 803 803 803 803 803

175.91								-					_	_		_	_	_	_	_					_	
429.71																										
140.81										92.	97.		86.	10	15.	19.	23.	28	32	37.	4.	₹.	₽.	20	26.	
307.20	i	4	ö	o,	ď	4.	۲.	on.	'n	ъ.	ä	Ö	'n	w.	φ.	'n	'n	œ.	Δ.	M	ú	ď	o.	ю.	ri.	
89.88 88.88		•						•									•				•				-	
13.88			•	-			œ	œ	o,	o,	8		Ξ.	'n	'n	'n	'n	4.	4.	ь.	ó	٠. ص	ĸ.	ĸ.	œ.	
172.75	מו כ	īŪ	œ	ø	ď	w	υ	~	ω	ω.	ø		_	ú	Ñ	ú	ú	-	_	Ø	ω	ω	\sim	N	_	
	ຸນ	_	Γ.	m	σ.	'n.		~	ניז	οj	ល	۳.	ŀ	w	ø	ø	ú	ω.	4	ø	ø	ď	တ	4	~	
138.39											94.	99.	83.	8		7	2	26.	30.	8. 4.	39	Д Ю	47	52.	54.	
301.02		ö	ö	'n	'n	ö	ö	'n	Ġ	o,	_;	4.	Š	œ.	å	ю.	ത്	_;	4	ż	ej.	'n	ເຄ	ന്	iù	
8 8 8 8		ø.	œ.	œ.	ø.	œ.	œ.	œ.	ø.	ø.	ø	Θ.	ä	æ	ō.	ø.	Θ.	ä	₫.	ä	ø.	ø	ø	ā	ھ	
13.61		•	•			•		ö	σ.	o,	0		_;		ei.	m.	'n	7.	4.	ហ	س	o.	Ġ	ĸ.	ζ.	

time consumed (seconds) =	
end of program : corel	438 2 1 119 8.88717
ora	
end of	cpu time(millisec.) : io
ore1	cpu io sus time task
o task: corel	

0.430218

Appendix C
RASE4 and DAMG2 Outputs

8 Q 1000 DAMAGE and ION DISTRIBUTIONS (BRICE) ENERGY: 30.0 keV 800 400 500 600 700 Depth in Angstroms TARGET SIOS IS: NOI -00 -00 -8 100 50 40-CH PER 30-10-Damage e√Angstrom

Ion Distribution

07/26/82 14:19:25 c brice01 brice01 brice01 brice01 brice01 brice01 brice01 brice0] brice01 brice01 brice01 brice01 brice01 brice01 brice0] brice01 brice01 brice01 mach ine brice - brice brice brice brice brice brice brice ndskp=1\$ -- :part(2, 2)=0.6329 0.6585 0.6446 0.6275 0.6107 0.5948 0.5799 0.5660 0.5530 :part(2, 1)=0.5934 0.6549 0.6594 0.6545 0.6467 0.6389 0.6386 0.6223 0.6143 p2(1)= 28.0000 p2(2) = 16.0000abrice01 **** ed=0 ndive=1 brice01 run 0.0000 =dwo>u obrice01 z2(1)=14.φ, z2(2)=nstp=10 pi= 28.8800 alatd= for tape32 nform(1)= 1.888 2.000 +1 briced 13:18:06 ***** input data a 862swi nform(2)= 0.00000 ndiv=4 zi= 14. :partition functions for recoils controller: tape30 122 sustem account 1:59 at time 2.3141 alata= Ω. :0.6066 0.5992 0.5921 tape20 nmult=1:target(2)="o2 :tarqet(1)="si User # : warrer program bank(min:sec ' 3.5660 Ø 2.5000 controllee: xbrice loaded on: 07/22/82 dropfile: +xbricea user #: 001450 7 Ø 12 :Sendmain tape 10 ø :ion="si :alat= : nat i =4 :ne=120 :ndam= =dxau: :sio2 :cse :rase : de= i 1 1 1 ŀ 1 1 ŀ 1 1 1 i | files: 4 Ŋ M ហ ω ~ တ σ Ξ 2 5 4 9 13 ñ \succeq

(pst)

date time

13 == :0.04ø/ 0.525 0.5183	- brice	brice01
20 :ibin=1	- brice	brice01
21 : \$ end partition	1	hricoA1
22 :dama	1 00 00 00 00 00 00 00 00 00 00 00 00 00	7 C
23 :ntupe=1)	
24 :end brief		0r10e01
	2	

82/26/82	14:19:25
date:	time :
	000000000000000000000000000000000000000
	ions included to a constant
	and stracalina data for si

rande

220

rakder

...tarqet.. sio2

incident ion.. si

*** begin of program : rase4

initial values

= 14. 29.00 amu 23431.06kev incident ion si atomic number(z1) = atomic mass(m1) = energy maximum =

sio2 ı taraet

	nexp	Ø Ø
	nform	1.000 2.000
	densitu	2.20524e+22 4.41048e+22
	char. energu Kev	41.043
	z-eff.	39.598 30.720
	t-f rad. cm	1.375e-09 1.497e-09
	amu	28.00 16.00
1	a-number	14. 8.
,))	components	. so

239.04 angstroms characteristic length =

56

6.61572e+22 atoms/cc atomic densitu =

used in the calculations the following electronic stopping cross sections were

- thomas-fermi atomic model , lindhard theoru 1.23221e-03 'n

- thomas—fermi atomic model , lindhard theoru 1.81522e–03 080 얺

	1 0 f(u) is universal thomas—fermi function — from lss											
nrpt	g iversal thom											
nmult ndskp	***											
ndiv ndive r	4 1 slope -	0.06781	0.07749	0.07791	8.87889 8.85239	0.00987	-0.02433	-0.06204	-0.12005	-0.13129	-0.11109	-0.06221
ncomp n	2 4 f(u)	0.162	8.289	280	9,383	0.431	0.435	0.428	0.385	0.275	0.184	0.107
nstp	18 u(i)	8.882	0.004	20 cg 20 cg 20 cg 20 cg	9.0 .048	0.100	0.150	0.200	0.400	1.888	2.000	4.000
au	128 i		(1)	א לא	លដ	9	~	တ	ማ	2	11	12

ndskp≡
ev/andstrom
٠.
power
D.
stoppi
electronic

ev/angstrom

enerau - Kev lenaths - angstroms enerau deposition rates

"""" Units """"

## de/dx	8.5 2.1549e+80 8.8 2.6392e+80 1.8 3.0474e+80 1.2 3.4071e+80 1.5 3.7323e+80 2.6 4.3897e+80 2.2 4.8184e+80 2.7 5.9536e+80 3.6 5.7464e+80 3.5 5.7012e+80 3.7 5.9036e+80 4.2 6.824e+80 4.5 6.4466e+80 5.6 6.825e+80 5.7 7.464e+80 4.5 7.464e+80 4.5 7.464e+80 5.7 7.695e+80 5.7 7.464e+80 7.7 8.285e+80 7.5 8.464e+80 8.5 8.464e+80 8.5							;				
8.5 2.1549e+00 8.8 2.6392e+00 1.8 3.0474e+00 2.7 5.0536e+00 3.0 3.7523e+00 3.0 3.047e+00 2.7 5.0536e+00 3.0 3	8.5 2.1549e400 8.8 2.6392e400 1.8 3.8474e400 2.7 5.9536e400 3.9 5.2783e400 2.5 4.8184e400 2.7 5.9536e400 3.9 5.2783e400 4.5 6.646e400 3.9 5.2783e400 4.5 6.646e400 4.5 6.466e400 6.5 8.546e40 8.5 8.646e400 8.5 8.646e401 10.5 9.646e401 10.5 9.646e401 10.5 9.646e401 10.5 9.646e401	a)	7 1.	ae/ax	œ	ge/d×	O)	de/d×	O)	de/dx	ω	de/dx
2.0 4.5711e+80 2.5 4.8184e+80 2.7 5.0536e+80 3.0 5.2783e+80 3.0 5.2783e+80 3.0 5.2783e+80 3.0 5.2783e+80 3.0 5.2783e+80 4.0 6.0949e+80 4.2 6.2824e+80 4.5 6.464e+80 4.5 6.464e+80 4.5 6.464e+80 4.5 6.464e+80 6.0 7.446e+80 6.0 7.592e+80 7.5 8.456e+80 6.0 7.592e+80 7.5 8.456e+80 6.0 7.56e+80 8.3457e+80 8.7 8.446e+80 8.8 <	2.8 4.3897e+80 2.2 4.5711e+80 2.5 4.8184e+80 2.7 5.635e+80 3.9 5.773e+80 3.7 5.9913e+80 4.5 6.844e+80 4.5 6.464e+80 6.9 7.464e+80 7.5 8.245e+80 7.5 8.245e+80 7.5 8.245e+80 7.5 8.245e+80 7.5 8.245e+80 9.0 1.425e+80 9.0 1.425e+80 9.0 1.425e+80 1.0 9.655e+80 10.7 9.0144e+80 9.0 9.142a+80 1.6 9.142a+80 1			.1549e+0		.6392		.0474e+B	1.2	4M710+M		72020
3.5 5.7012e+00 3.7 5.9013e+00 4.0 6.0949e+00 4.2 6.2824e+00 4.5 6.464e+00 6.0 6.0 7.469e+00 5.7 7.3075e+00 6.0 7.464e+00 6.5 7.5913e+00 7.0 8.0627e+00 7.2 8.2055e+00 7.5 8.3457e+00 8.6 9.404e+00 9.7 9.7565e+00 9.7 9.7565e+00 9.7 9.742e+00 9.7 9.7565e+00 1.0557e+01 1.7 1.0446e+01 12.7 1.197e+01 12.7 1.197e+01 12.7 1.197e+01 12.7 1.187e+01 12.7 1.2839e+01 12.7 1.2839e+01 12.7 1.2865e+	3.5 5.7012e+00 3.7 5.9013e+00 4.0 6.0949e+00 4.2 6.2824e+00 4.5 6.4646e+00 6.0 6.0 6.0949e+00 5.7 7.3073e+00 6.0 7.464e+00 6.0 7.464e+00 6.0 7.464e+00 6.0 7.464e+00 6.0 7.464e+00 6.0 7.464e+00 6.0 7.56e+00 7.5 8.2055e+00 10.5 9.875e+00 10.5 9.875e+00 10.557e+01 11.5 10.888e+01 11.7 10.846e+01 12.5 11.1805e+01 12.5 12.565e+01 12.5 12.565e			.3097e+0		5711			2,7		•	
5.0 6.8143e+00 5.2 7.1469e+00 5.7 7.2075e+00 7.2 8.2055e+00 7.5 8.3457e+00 7.5 8.2055e+00 7.5 8.3457e+00 9.1423e+00 9.1423e	5.0 6.8143e+00 5.2 6.9825e+00 5.5 7.1469e+00 5.7 7.3075e+00 6.9 7.446e+00 6.9 7.446e+00 6.9 7.446e+00 6.9 7.446e+00 7.5 8.2655e+00 7.5 8.3457e+00 8.6 9.8 8.7531e+00 9.8 8.7531e+00 9.8 8.7531e+00 9.8<			.7012e+0		.9813		2	7			
6.5 7.7695e+00 6.7 7.9175e+00 7.0 8.0627e+00 7.2 8.2055e+00 7.5 8.3457e+00 8.7 9.0144e+00 9.0 9.1423e+00 9.0 9.0144e+00 9.0 9.1423e+00 9.0 9.00 9.1423e+00 9.0 9.0 9.00 9.1423e+00 9.0 9.00 9.1423e+00 9.0	6.5 7.7695e+00 6.7 7.9175e+00 7.0 8.0627e+00 7.2 8.2055e+00 7.2 8.3457e+00 8.7 8.3457e+00 8.7 9.0144e+00 9.0 9.1423e+00 9.5 9.531e+00 8.5 8.847e+00 8.7 9.0144e+00 9.0 9.1423e+00 9.5 9.555e+00 10.2 9.755e+00 10.2 9.8748e+00 10.2 9.874e+00 10.2 9.8		-	.8143e+0		982			۱ <u>۲</u>			
8.0 8.6194e+00 8.2 8.7531e+00 8.5 8.8847e+00 8.7 9.0144e+00 9.7 9.7565e+00 10.2 9.875e+00 10.2 9.75e+00 10	8.6 8.6194e+88 8.2 8.7531e+88 8.5 8.8847e+88 8.7 9.6144e+88 9.8 9.7531e+88 8.5 9.5328e+88 18.2 9.7555e+88 18.2 1.8324e+81 11.2 1.8324e+81 11.2 1.8324e+81 11.2 1.8324e+81 11.2 1.8324e+81 11.2 1.8324e+81 11.2 1.8324e+81 12.2 1.1893e+81 13.5 1.1197e+81 15.8 1.1584e+81 14.7 1.1784e+81 15.8 1.1893e+81 15.2 1.1893e+81 15.2 1.1893e+81 15.2 1.1893e+81 15.2 1.2832e+81 15.2 1.2832e+81 15.2 1.2832e+81 17.2 1.2657e+81 17.2 1.2657e+81 17.2 1.2784e+81 17.7 1.2832e+81 18.8 1.2952e+81 17.2 1.2657e+81 17.2 1.2784e+81 17.7 1.2832e+81 18.8 1.2952e+81 18.7 1.3196e+81 17.7 1.2832e+81 18.8 1.3455e+81 17.2 1.3196e+81 17.7 1.2832e+81 19.5 1.3738e+81 17.7 1.2833e+81 17.7			.7695e+0		9175		.0627e+0				I M
9.5 9.3928e+88 9.7 9.5156e+88 18.8 9.6368e+88 18.2 9.7565e+88 18.5 9.8748e+88 18.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	9.5 9.3928e+00 9.7 9.5156e+00 10.0 9.6368e+00 10.2 9.7565e+00 10.5 1.021e+01 11.2 1.0221e+01 11.5 1.0334e+01 11.7 1.0446e+01 12.0 1.0557e+01 12.7 1.0882e+01 13.2 1.1093e+01 13.5 1.1197e+01 12.7 1.0882e+01 13.2 1.1093e+01 13.5 1.1197e+01 14.2 1.1504e+01 14.7 1.1704e+01 15.5 1.1197e+01 15.5 1.1504e+01 15.7 1.293e+01 15.7 1.293e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.273e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.273e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2657e+01 17.2 1.273e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2839e+01 17.2 1.2839e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2839e+01 17.2 1.2839e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2839e+01 17.2 1.2657e+01 17.2 1.2899e+01 17.2 1.2657e+01 17.2 1.2899e+01 17.2 1.2657e+01 17.2 1.2899e+01 17.2 1.2657e+01 17.2 1.2899e+01 17.2 1.2657e+01 17.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1			.6194e+0		5.	-	.8847	00		•	1422040
1.01.0107e+0111.21.0521e+0111.51.0334e+0111.71.0446e+0112.02.51.077e+0112.71.0988e+0113.21.1093e+0113.51.1197e+014.01.1402e+0114.51.1604e+0114.71.1704e+0115.01.1803e+015.51.1998e+0115.71.2839e+0116.51.2379e+017.01.2565e+0117.21.2839e+0116.51.2379e+018.51.3107e+0117.71.2839e+0118.01.2929e+018.51.3107e+0117.71.2839e+0119.51.3457e+019.01.3713e+0120.51.3798e+0122.21.4455e+011.51.4130e+0122.21.4255e+0122.51.4455e+011.51.4615e+0123.21.4654e+0123.71.4851e+012.01.5161e+0125.01.5237e+0125.51.5339e+013.01.5539e+0125.51.5618e+0125.51.5618e+014.51.5638e+0126.71.5618e+0127.71.5688e+015.51.5539e+0126.71.5698e+0127.71.6653e+017.51.5981e+0127.71.6481e+0129.71.6552e+0130.01.6411e+0129.51.6552e+0129.71.6552e+01	1.0 1.0107e+01 11.2 1.0221e+01 11.5 1.0334e+01 11.7 1.0446e+01 12.0 1.0557e+01 13.2 1.093e+01 13.5 1.1097e+01 15.5 1.2094e+01 15.7 1.2094e+01			.3928e+0	•	51	-	.6368	10.2	N	•	0770010
2.5 1.0774e+81 12.7 1.0882e+81 13.0 1.0988e+81 13.2 1.1093e+81 13.5 1.1197e+81 14.2 1.1584e+81 14.5 1.1684e+81 14.7 1.1784e+81 15.5 1.1197e+81 15.5 1.1197e+81 14.5 1.1584e+81 14.7 1.1784e+81 15.5 1.1883e+81 15.7 1.2894e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.5 1.2592e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.5 1.3196e+81 17.5 1.2748e+81 17.7 1.2839e+81 19.5 1.3716e+81 19.5 1.3716e+81 19.5 1.3716e+81 19.5 1.3716e+81 19.5 1.3716e+81 19.6 1.473e+81 19.6 1.473e+81 19.6 1.4851e+81 19.6 1.4851e+81 19.6 1.5161e+81 19.6 1.5161e+81 19.6 1.5161e+81 19.6 1.5161e+81 19.6 1.5161e+81 19.6 1.5161e+81 19.6 1.6161e+81 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.	2.5 1.8774e+01 12.7 1.8882e+01 13.0 1.8988e+01 13.2 1.1893e+01 13.5 1.1371e+01 15.0 1.1803e+01 14.5 1.1604e+01 14.7 1.1704e+01 15.0 1.1803e+01 15.0 1.1803e+01 15.5 1.1803e+01 15.5 1.2898e+01 15.7 1.2894e+01 15.7 1.2839e+01 16.5 1.2879e+01 17.7 1.2839e+01 18.0 1.2929e+01 17.7 1.2839e+01 18.0 1.2929e+01 18.7 1.371e+01 18.7 1.398e+01 20.2 1.371e+01 20.2 1.4851e+01 20.2 1.4851e+01 20.2 1.4851e+01 20.2 1.4851e+01 20.2 1.4851e+01 20.2 1.588e+01 20.2 1.688e+01 20.2 1.688e+0			.0107			-	α.	11.7	Z		27.70.70
4.0 1.1402e+81 14.2 1.1504e+81 14.5 1.1604e+81 14.7 1.1704e+81 15.0 1.1803e+81 15.5 1.2894e+81 15.7 1.2894e+81 15.7 1.2894e+81 15.7 1.2894e+81 15.7 1.2894e+81 15.7 1.2894e+81 15.7 1.2839e+81 15.7 1.2839e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.0 1.2929e+81 18.5 1.3196e+81 19.0 1.3283e+81 19.2 1.3371e+81 19.5 1.3457e+81 19.5 1.3738e+81 28.5 1.3738e+81 28.7 1.3882e+81 28.7 1.3882e+81 28.7 1.3965e+81 28.5 1.3738e+81 28.7 1.4851e+81 22.5 1.4455e+81 22.2 1.4455e+81 22.2 1.4455e+81 22.5 1.4455e+81 22.5 1.4694e+81 23.5 1.4694e+81 23.5 1.4694e+81 24.7 1.5161e+81 25.8 1.5538e+81 26.7 1.5161e+81 26.5 1.5638e+81 26.7 1.5761e+81 27.7 1.6853e+81 28.7 1.6852e+81 28.7 1.6852e+81 28.7 1.6852e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6653e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6653e+81 28.7 1.6652e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6652e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6653e+81 28.7 1.6653e+81 28.7 1.6652e+81 28.7 1.6652e+81 28.7 1.6653e+81 28.7 1.6655e+81	4.0 1.1402e+81 14.2 1.1504e+81 14.5 1.1604e+81 14.7 1.1704e+81 15.0 1.1803e+81 15.5 1.2094e+81 15.7 1.2094e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.0 1.2929e+81 18.5 1.3196e+81 17.7 1.2839e+81 18.0 1.2929e+81 18.5 1.3196e+81 18.7 18.3196e+81 18.7 18.319		-	8		1.0882e+01	-	898B	13.2	· —	į'n	10707011
5.5 1.1998e+81 15.7 1.2094e+81 16.8 1.2190e+81 16.2 1.2285e+81 16.5 1.2379e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.6 1.2929e+81 18.5 1.2379e+81 18.6 1.2929e+81 18.6 1.2929e+81 18.6 1.2929e+81 18.6 1.2929e+81 18.6 1.2929e+81 18.6 1.3716e+81 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18	5.5 1.1998e+81 15.7 1.2894e+81 16.8 1.2198e+81 16.2 1.2285e+81 16.5 1.2379e+81 17.2 1.2657e+81 17.5 1.2748e+81 17.7 1.2839e+81 18.6 1.2929e+81 18.5 1.2457e+81 18.6 1.2929e+81 18.5 1.3457e+81 18.6 1.2929e+81 18.5 1.3457e+81 18.5 1.3718e+81 28.5 1.4455e+81 28.5 1.4455e+81 28.5 1.4851e+81 28.5 1.4851e+81 28.5 1.4851e+81 28.5 1.4851e+81 28.5 1.5838e+81 28.5 1.5538e+81 28.5 1.5538e+81 28.5 1.5538e+81 28.5 1.5638e+81 28.5 1.5638e+81 28.5 1.6481e+81 29.5 1.6552e+81 29.7 1.6552e+81		-	1.1402e+01		1.1504e+01	-		14.7	1704	מו	1001
7.0 1.2565e+01 17.2 1.2657e+01 17.5 1.2748e+01 17.7 1.2839e+01 18.0 1.2929e+01 8.5 1.3196e+01 19.0 1.3283e+01 19.2 1.3371e+01 19.5 1.3457e+01 0.0 1.3629e+01 20.2 1.3713e+01 20.5 1.3798e+01 20.7 1.3882e+01 21.0 1.3965e+01 1.3513e+01 21.7 1.4212e+01 22.0 1.4294e+01 22.2 1.4375e+01 22.5 1.4455e+01 22.5 1.4455e+01 22.2 1.4615e+01 22.5 1.455e+01 22.5 1.455e+01 22.5 1.455e+01 22.5 1.455e+01 22.5 1.4851e+01 24.0 1.4929e+01 25.5 1.5613e+01 24.7 1.5161e+01 25.0 1.5538e+01 26.7 1.5161e+01 26.5 1.5613e+01 26.5 1.5688e+01 26.7 1.5761e+01 27.0 1.5835e+01 27.7 1.6053e+01 28.0 1.6125e+01 29.7 1.6622e+01 30.0 1.6621e+01 29.7 1.6651e+01 29.7 1.6652e+01 30.0 1.6691e+01	7.0 1.2565e+01 17.2 1.2657e+01 17.5 1.2748e+01 17.7 1.2839e+01 18.0 1.2929e+01 8.5 1.3196e+01 19.0 1.3283e+01 19.2 1.3371e+01 19.5 1.3457e+01 19.2 1.3371e+01 19.5 1.3457e+01 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.		-	-	-	1.2094e+01	_	1.2190e+01	16.2	1.2285e+01	ú	240
8.5 1.3107e+01 18.7 1.3196e+01 19.0 1.3283e+01 19.2 1.3371e+01 19.5 1.3457e+01 0.0 0.0 0.3629e+01 20.2 1.3713e+01 20.5 1.3798e+01 20.7 1.3882e+01 21.0 1.3965e+01 1.3965e+01 21.7 1.4212e+01 22.0 1.4294e+01 22.2 1.4375e+01 22.5 1.4455e+01 22.5 1.4455e+01 22.2 1.4575e+01 22.5 1.4455e+01 22.5 1.4692e+01 23.7 1.4851e+01 24.0 1.4929e+01 23.7 1.4851e+01 24.7 1.5161e+01 25.0 1.5237e+01 25.2 1.5313e+01 24.7 1.5161e+01 25.0 1.5688e+01 26.7 1.5761e+01 27.0 1.5835e+01 26.7 1.5761e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 30.0 1.6659e+01 29.7 1.6622e+01 30.0 1.6659e+01 29.7 1.6652e+01 30.0 1.6691e+01	8.5 1.3107e+01 18.7 1.3196e+01 19.0 1.3283e+01 19.2 1.3371e+01 19.5 1.3457e+01 13.629e+01 20.2 1.3713e+01 20.5 1.3798e+01 20.7 1.3882e+01 21.0 1.3965e+01 13.529e+01 21.7 1.4212e+01 22.0 1.4294e+01 22.2 1.4375e+01 22.5 1.4455e+01 23.2 1.4694e+01 23.5 1.473e+01 23.7 1.4851e+01 24.0 1.4929e+01 24.7 1.5161e+01 25.5 1.5538e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5613e+01 25.2 1.5613e+01 25.2 1.561e+01 27.0 1.5835e+01 26.7 1.5761e+01 27.0 1.5835e+01 26.7 1.5761e+01 27.0 1.5835e+01 28.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6652e+01 30.0 1.6691e+01		'n.	1.2565e+01	'n.	1.2657e+01	_	1.2748e+01	ν.	1.2839e+N1	ά	70700
0.01.3629e+8120.21.3713e+8120.51.3798e+8120.71.3882e+8121.01.3965e+811.51.4130e+8121.71.4212e+8122.81.4294e+8122.21.4375e+8122.51.4455e+813.01.4615e+8123.71.4851e+8124.01.4929e+814.51.5884e+8124.71.5161e+8125.21.5313e+8125.51.5389e+816.01.5539e+8126.21.5613e+8126.51.5688e+8126.71.5761e+8127.01.5835e+817.51.5981e+8127.71.6053e+8128.01.6125e+8128.21.6197e+8128.51.6269e+819.01.6411e+8129.21.6481e+8129.51.6552e+8130.01.6691e+81	8.0 1.3629e+01 20.2 1.3713e+01 20.5 1.3798e+01 20.7 1.3882e+01 21.0 1.3965e+01 1.5 1.4130e+01 21.7 1.4212e+01 22.2 1.4375e+01 22.5 1.4455e+01 22.5 1.4455e+01 22.2 1.4455e+01 22.5 1.4455e+01 22.2 1.4615e+01 22.5 1.4692e+01 23.7 1.4851e+01 24.0 1.4929e+01 24.7 1.5161e+01 25.7 1.4851e+01 24.0 1.4929e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.2 1.5539e+01 25.5 1.5539e+01 25.7 1.5613e+01 26.7 1.5761e+01 27.0 1.5835e+01 27.7 1.6053e+01 28.0 1.6125e+01 29.7 1.6622e+01 30.0 1.6691e+01 30.0 1.6691e+01		ö	1.3107e+01	σ.	1.3196e+01	_	1.3283e+01	Ġ	1.33710+01	οσ	
1.5 1.4130e+81 21.7 1.4212e+81 22.8 1.4294e+81 22.2 1.4375e+81 22.5 1.4455e+81 3.0 1.4455e+81 22.5 1.4455e+81 22.5 1.4455e+81 23.7 1.4851e+81 24.8 1.4929e+81 4.5 1.5884e+81 24.7 1.5161e+81 25.8 1.5237e+81 25.2 1.5313e+81 25.5 1.5389e+81 26.8 1.5539e+81 26.7 1.5161e+81 27.7 1.6853e+81 26.7 1.5761e+81 27.7 1.6853e+81 28.8 1.6125e+81 28.2 1.6197e+81 27.7 1.6853e+81 28.8 1.6125e+81 28.2 1.6197e+81 38.8 1.6591e+81 39.8 1.6691e+81 38.8 1.6691e+81 3	1.5 1.4130e+81 21.7 1.4212e+81 22.8 1.4294e+81 22.2 1.4375e+81 22.5 1.4455e+81 23.0 1.4455e+81 23.2 1.4455e+81 23.7 1.4851e+81 24.8 1.4929e+81 24.5 1.5884e+81 24.7 1.5161e+81 25.8 1.5237e+81 25.2 1.5313e+81 25.5 1.5389e+81 26.2 1.5513e+81 26.7 1.5161e+81 26.5 1.5688e+81 26.7 1.5761e+81 27.0 1.5835e+81 27.7 1.6853e+81 28.8 1.6125e+81 28.2 1.6197e+81 28.5 1.6269e+81 29.8 1.6411e+81 29.2 1.6481e+81 29.5 1.6552e+81 29.7 1.6622e+81 38.8 1.6691e+81		œ.	-	Ω,	1.3713e+01	_	1.3798e+01	, C	1.38879+21	• }	⊢ ל טונ
3.0 1.4615e+81 23.2 1.4694e+81 23.5 1.4773e+81 23.7 1.4851e+81 24.8 1.4929e+81 4.5 1.5884e+81 24.7 1.5161e+81 25.2 1.5376e+81 25.2 1.5389e+81 25.2 1.5389e+81 26.2 1.5539e+81 26.2 1.5613e+81 26.5 1.5688e+81 26.7 1.5761e+81 27.8 1.5835e+81 27.7 1.6853e+81 28.8 1.6125e+81 28.2 1.6197e+81 28.5 1.6269e+81 38.8 1.6411e+81 29.2 1.6481e+81 29.5 1.6552e+81 29.7 1.6622e+81 38.8 1.6691e+81	3.0 1.4615e+81 23.2 1.4694e+81 23.5 1.4773e+81 23.7 1.4851e+81 24.8 1.4929e+81 4.5 1.5884e+81 24.7 1.5161e+81 25.8 1.5237e+81 25.2 1.5313e+81 25.5 1.5389e+81 26.7 1.5161e+81 27.8 1.5389e+81 26.7 1.5761e+81 27.8 1.5835e+81 27.7 1.5613e+81 28.8 1.6125e+81 28.2 1.6197e+81 28.5 1.6269e+81 28.5 1.6269e+81 29.7 1.6411e+81 29.2 1.6481e+81 29.5 1.6552e+81 29.7 1.6622e+81 38.8 1.6691e+81		- -	1.4130e+01	∹	1.4212e+01	_	4	ίς.	43759	•	ไม่ เ
4.5 1.5084e+01 24.7 1.5161e+01 25.0 1.5237e+01 25.2 1.5313e+01 25.5 1.5389e+01 6.0 1.5539e+01 26.2 1.5613e+01 27.0 1.58359e+01 26.7 1.5761e+01 27.0 1.5835e+01 7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.6269e+01 30.0 1.6691e+01 29.7 1.6622e+01 30.0 1.6691e+01 1.6691e+01 29.7 1.6622e+01 30.0 1.6691e+01	4.5 1.5084e+01 24.7 1.5161e+01 25.0 1.5237e+01 25.2 1.5313e+01 25.5 1.5389e+01 6.0 1.5539e+01 26.7 1.5761e+01 27.0 1.5835e+01 7.5 1.5839e+01 26.7 1.5761e+01 27.0 1.5835e+01 7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.629e+01 9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01		'n	4	'n	1.4694e+01	_	4773	m	485.10	; <	
6.0 1.5539e+01 26.2 1.5613e+01 26.5 1.5680e+01 26.7 1.5761e+01 27.0 1.5835e+01 7.5 1.5761e+01 27.0 1.5835e+01 7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.6269e+01 9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01	6.0 1.5539e+01 26.2 1.5613e+01 26.5 1.5688e+01 26.7 1.5761e+01 27.0 1.5835e+01 7.5 1.5761e+01 27.0 1.5835e+01 7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.629e+01 9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01		4	1.5084e+01	4.	1.5161e+01	_	1.5237e+01		53130	tu	17000
7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.6269e+01 9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01	7.5 1.5981e+01 27.7 1.6053e+01 28.0 1.6125e+01 28.2 1.6197e+01 28.5 1.6269e+01 9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01		Ġ	533	Ġ.	1.5613e+01	_	689	o.	761p) N	יינ מממ מממ
9.8 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01	9.0 1.6411e+01 29.2 1.6481e+01 29.5 1.6552e+01 29.7 1.6622e+01 30.0 1.6691e+01		ζ.	981e	Ÿ.	1.6053e+01	_	125	ω	1970+	. a	2500000
			o	411e	o,	6481e	_	552e	5	522e	'n	6691e+01

deposited energy(ev/angstrom) , dep-e

-			The second secon	985
deb-e	4.0411e+6 4.22112e+6 4.22132e+6 4.2653e+6 4.1213e+6 4.1213e+6 4.1213e+6 3.9313e+6 3.9313e+6 3.9313e+6 3.7157e+6 3.7157e+6 3.5134e+6 3.5134e+6	- ar	1.6218e+81 2.1654e+81 2.7483e+81 3.8413e+81 3.8413e+81 4.8531e+81 5.3246e+81 7.885e+81 7.885e+81 7.885e+81 7.885e+81 9.8268e+81 9.8268e+81 9.3344e+81	drp-rec 1.4174e+81 2.2830e+81 3.8182e+81
OJ		ū	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ი იი.
dep-e	3.9389e+01 4.2420e+01 4.2434e+01 4.2543e+01 4.2543e+01 4.1496e+01 4.113e+01 4.0585e+01 3.9403e+01 3.9403e+01 3.9403e+01 3.9403e+01 3.9403e+01 3.9697e+01 3.5617e+01 3.5617e+01	- dr	8.9411e+80 1.5280e+81 2.6572e+81 3.2177e+81 4.2744e+81 4.7730e+81 5.2475e+81 5.2475e+81 6.5931e+81 7.8128e+81 7.8128e+81 7.8128e+81 8.9646e+81 8.9646e+81 8.9646e+81 8.9646e+81	drp-rec 1.2620e+01 2.1387e+01 2.8903e+01
ω	1048888111144111 8222222222222222222222222	ū	1048288888888888888888888888888888888888	0 2.7.4
deb e-deb	3.7897e+81 4.2389e+81 4.2389e+81 4.2747e+81 4.2474e+81 4.1542e+81 4.1542e+81 4.0677e+81 3.9588e+81 3.9588e+81 3.7856e+81 3.7856e+81 3.529e+81 3.529e+81	rp-rec	7.5543e+88 1.9387e+81 1.9987e+81 2.5624e+81 3.1284e+81 3.6648e+81 4.6931e+81 5.6293e+81 6.9427e+81 6.9427e+81 7.7584e+81 8.1384e+81 8.5221e+81 8.5221e+81 9.6378e+81	drp-rec 1.1042e+01 1.9992e+01 2.7898e+01
Œ	1.942.2222222222222222222222222222222222	ū	4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	a
e- dep	3.5789e+81 4.2354e+81 4.2354e+81 4.2352e+81 4.2541e+81 4.2551e+81 4.1582e+81 4.1592e+81 4.0266e+81 3.9635e+81 3.9635e+81 3.7498e+81 3.6895e+81 3.5859e+81 3.5859e+81	707 707 707	6.0263e+00 1.3450e+01 1.9029e+01 2.4678e+01 3.5748e+01 4.1039e+01 5.0919e+01 6.0055e+01 6.4732e+01 6.4732e+01 7.5873e+01 7.5873e+01 8.0740e+01 8.0740e+01 9.2112e+01	drp-rec 9.4515e+00 1.8604e+01 2.6810e+01
O)	80000000000000000000000000000000000000		886.22.28.28.28.28.28.28.28.28.28.28.28.28.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
deb e	3.5292e+81 4.2284e+81 4.2284e+81 4.2289e+81 4.2599e+81 4.25599e+81 4.15124e+81 4.15126e+81 3.9729e+81 3.9729e+81 3.9729e+81 3.6982e+81 3.5941e+81 3.5941e+81	range(angstroms) rp~rec	4.3685e+90 1.2455e+91 1.8114e+91 2.3703e+91 3.4866e+91 4.0172e+91 5.0127e+91 5.9310e+01 5.9310e+01 7.5200e+91 7.5200e+91 8.3946e+91 8.3946e+91 9.1498e+91	drp-rec 7.9229e+00 1.7171e+01 2.5610e+01
O)	a_{α}	recoil rang e		9 20.50 10.0
d-0-p	7.50 7.50	projected	2.3646e+88 1.7178e+81 2.2694e+81 3.3974e+81 3.3974e+81 4.4473e+81 4.9329e+81 5.9329e+81 5.3811e+81 6.737e+81 7.5544e+81 7.5544e+81 7.9447e+81 8.3388e+81 8.3388e+81 9.882e+81 9.882e+81	drp-rec 4.9113e+00 1.5695e+01 2.4281e+01
Œ	8-1240 8-	average e	28 28 28 28 28 28 28 28 28 28 28 28 28 2	9 3.1.5 2.2

				886
3.8745e+6 4.7629e+8 5.6071e+8 6.4296e+9 7.2298e+8 8.0123e+9 9.5235e+9 1.1703e+9 1.3149e+6 1.3149e+6 1.3855e+8 1.5252e+8 1.5252e+8 1.5252e+8	de/dx	3.7323e+88 6.4646e+88 7.4646e+88 8.3457e+88 9.1423e+88 1.197e+81 1.197e+81 1.2379e+81 1.3965e+81 1.3965e+81 1.4455e+81 1.5389e+81 1.5359e+81 1.6691e+81	a-dep	3.8729e+00 8.4337e+00 1.1189e+01 1.2561e+01 1.3283e+01 1.3938e+01
667 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QJ	22222222222222222222222222222222222222	œ	12.4.0.1.0 12.00.10.00
3.7572e+01 4.6305e+01 5.4687e+01 6.2886e+01 7.1005e+01 7.8830e+01 9.3381e+01 1.0879e+02 1.2318e+02 1.2318e+02 1.235e+02 1.3736e+02 1.3736e+02 1.3736e+02	x p \ ap	3.4871e+00 6.2856+00 7.3875e+00 8.2875e+00 9.2144e+00 1.0446e+01 1.1893e+01 1.2285e+01 1.3371e+01 1.3882e+01 1.3882e+01 1.3882e+01 1.3871e+01 1.3871e+01 1.3871e+01 1.3871e+01 1.3871e+01	e-dep	3.1144e+00 7.7679e+00 1.0810e+01 1.2472e+01 1.3166e+01 1.3831e+01
22.22 22.22 23.22 23.22 23.22 23.22 23.22 23.22 23.22 23.22	Œ	124 27 8 8 11 11 4 3 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Œ	-445∨8 ararar
3.6467e+01 4.5038e+01 6.1658e+01 6.1658e+01 6.9771e+01 7.7589e+01 9.2798e+01 1.0759e+02 1.2202e+02 1.2202e+02 1.2202e+02 1.2213e+02 1.3619e+02 1.3619e+02 1.3619e+02	de/dx	3.8474e+88 4.8184e+88 6.8949e+88 7.1469e+88 8.8847e+88 9.6368e+88 1.8334e+81 1.2748e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.3798e+81 1.4773e+81 1.5237e+81	e-dep	2.3738e+88 7.8119e+88 1.8489e+81 1.2386e+81 1.3847e+81
22222222222222222222222222222222222222	QJ		Œ	∸44.n.v.a ອັນອັນອັນ
3.5190e+01 4.3645e+01 6.0352e+01 6.0352e+01 7.6504e+01 9.354e+01 9.354e+01 1.0538e+02 1.2795e+02 1.2795e+02 1.2795e+02 1.2795e+02 1.3599e+02	de/dx	2.6392e+80 4.5711e+80 5.9813e+80 6.9825e+80 7.9175e+80 8.7531e+80 1.8221e+81 1.2894e+81 1.2894e+81 1.2657e+81 1.3713e+81 1.3713e+81 1.3713e+81 1.5613e+81 1.5613e+81 1.5613e+81	a-dap	1.6630e+00 6.2144e+00 9.9674e+00 1.2134e+01 1.2928e+01 1.3620e+01
2088211114211188888888888888888888888888	asko≕ 2 e	80000000110111000000000000000000000000	Q	80,50,00 80,50,50
3.3738e+81 4.2188e+81 5.8578e+81 6.718e+81 6.716e+81 7.475e+81 9.7791e+81 1.8515e+82 1.1247e+82 1.1266e+82 1.2676e+82 1.3884e+82 1.3884e+82 1.4791e+82 1.5483e+82	ev/angstrom ndsko de/dx e	2.1549e+00 4.3097e+00 5.8143e+00 6.8143e+00 7.7695e+00 9.3928e+00 1.0107e+01 1.1998e+01 1.2565e+01 1.3629e+01 1.3629e+01 1.3629e+01 1.5084e+01 1.5539e+01 1.5539e+01 1.5539e+01 1.5539e+01	deb-e dep-e	1.0005e+00 5.4255e+00 9.5110e+00 1.1844e+01 1.2808e+01
n n a a 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	, rawod e	ອດພບດອຍ 1111111222222222 222222222222222222222	andstrom) e	ឧបសលលល លេខសេខសេខ
3.2046e+01 4.947e+01 4.9145e+01 5.7567e+01 6.5758e+01 8.9043e+01 1.0394e+02 1.125e+02 1.125e+02 1.357e+02 1.357e+02 1.357e+02	stopping de∕dx	1.5237e+98 4.0314e+98 5.4938e+98 6.6417e+98 7.6185e+98 9.2684e+98 1.0566e+91 1.1308e+91 1.2472e+91 1.3543e+91 1.3543e+91 1.3543e+91 1.3543e+91 1.598e+91 1.598e+91 1.598e+91 1.598e+91	ed enerau(ev/anastrom) dep-e e	4.0906e-01 4.6448e+00 8.9978e+00 1.1530e+01 1.2680e+01 1.3398e+01
4.00 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electronic e	29 8	deposit	80-124.0V 20-124.0V

į

ā	1 105/04/04	ō U	0810			0		(
	10.00.00	7.0	701906177	70.0	1.77576+57	ית. מינים	1.74136+02	19.7	1,25610+02	r.	1,2710a+33
19.7	1.2874e+02	20.0	1.38280+82	28.0	1,31780482	ر 20 اد	1 22050+00	200	1 24750+00	0.0	100-100-100
	LOPP			!! ! !) (10.00.00		70 - 20 - 50 - 10 - 1	21.5	1.3030e+8Z
7.17	1.57936+82	r.1.7	1.59570407	7.17	1.4107e+02	22.2	1.42580+02	22.7	1 44RR¤+R2	c C	1 ANAROHRO
ر د د	1 オンシシ・エのシ	0.00	70701100	111	700			11)	70-0000
- 77	70187714.1	20.0	1.40/204-07	V.07	1.00346+07	0.5V	1,5185e+0Z	23.7	1.5338e+N2	77	- 574940+02
0 70 0	1 INCIDED + 20	U 70	1 1002010	D. 10	4 1007	e Li	00000	(L	1000	10	
J	70.0000.1	r.	701200000	L.t	1.3337 PT02	20.62	1.01030+07	v. v.	1.62516+02	IC.	1.6418e+82
ر در در	1 K577a+07	ת מ	1 67050460	CUC	1 60700400	n G	10000	, , ,	100	010	70.01.11
- () [10.00) !) !	70.000.00	7.07	70100.1	7.04	1. razaetaz	٧٥.	1./ Tabe+02	Z Z	1.73370+27
7.77	1.74946+02	27.5	1.7650e+02	27.7	1.7804e+02	28.8	1,7956e+R2	28.0	1 α1ααα+αα	C C	0.007(0.700)
יי	0.440.40.4	c	CC. LPLC	(11		1	10.010.1	0.0	7010t070.1
.07	1.84138+82	מי	1.83/36+02	27.62	1.8729e+82	29.5	1.8882e+02	29.7	1.9036e+02	20,00	1,91978+RV

7.26/82 1:19:25	ad in perp	29.57 60.84 88.84 115.84 141.58	29.23 59.23 114.48 148.39 166.95	27.73 57.96 85.97 113.82 139.54	25.91 56.27 84.32 111.44 138.02 164.21	23.98 54.47 82.60 189.77 136.41	22.02 52.62 80.85
date : 07 time : 14	r(e,ep) spread rp-per	79.22 156.14 230.60 304.65 378.92 453.57	78.89 155.85 230.30 304.34 378.61 453.25	76.02 153.02 227.46 301.51 375.77	72.68 149.63 224.88 298.13 372.39 447.83	69.00 146.10 220.55 294.60 368.86 443.50	65.35 142.54 216.99
	spread in rp-para	32.84 58.33 82.83 186.51 159.62 152.25	32.25 58.38 82.84 106.49 129.57 152.19	32.82 58.18 82.56 186.21 129.29 151.91	31.59 57.82 82.28 105.86 128.95 151.57	31.00 57.46 81.86 105.48 128.58 151.21	30.29 57.05 81.52
ze t	(da.	69.89 131.92 192.25 252.72 313.82 375.64	68.72 130.94 191.36 251.89 374.90	66.78 129.32 189.92 258.56 311.78 373.78	64.39 127.44 188.26 310.35 372.34	61.89 125.44 186.47 247.40 378.82 370.88	59.27 123.36 184.62
targe	eb rp(e	០០០០០០ លល់ល់ល់ល់ សល់លំល់សស	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 00 00 00 00 00 00 00 00 00 00	188 188 1888 1888	2555555	1.58 1.58 1.58
io2	O)	5.88 18.88 15.88 28.88 38.88	5.00 10.00 15.00 20.00 25.00 30.00	5.88 18.88 15.88 28.88 38.88	5.88 18.88 28.88 25.88 38.88	. 5 18.88 28.88 25.88 39.88	5.88 18.88 15.88
ions incident on a/an s	read in p-perp	11.19 45.30 74.23 101.62 128.32 154.59	11.56 44.77 73.61 100.97 127.68 153.94	10.14 43.28 72.14 99.57 126.33 152.65	8.33 41.54 70.46 97.96 124.79 151.16	6.48 39.68 68.72 96.26 123.15 149.59	4.46 37.78 66.92
	r(e,ep) spr rp	37.15 118.25 193.49 267.62 341.74 416.20	36.69 117.95 193.19 267.31 341.43 415.88	33.65 115.11 190.36 264.48 338.60 413.04	29.95 111.73 186.98 261.10 335.22 489.66	25.93 108.19 183.45 257.57 331.69 406.13	21.60 104.61 179.89
or si	spread in rp-para	16.85 45.55 70.78 94.76 118.13 140.98	17.22 45.64 70.73 94.75 118.99	16.78 45.45 78.45 94.47 117.81	15.79 45.11 78.11 94.12 117.46	14.57 44.68 69.79 93.73 117.09 139.94	13.05 44.17 69.43
data f	gs (də.	35.38 101.37 162.12 222.42 283.18 344.64	33.94 100.32 161.20 221.37 243.88	31.36 98.54 159.68 220.18 281.09 342.66	28.29 96.51 157.92 218.68 279.61 341.26	24.85 94.34 156.05 216.90 278.03 339.77	21.88 92.87 154.18
stragal ing	ep np(e,	ឧឧឧឧឧឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ ឧ	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8888888 7.7.7.7.7 2.2.7.7.7.7.7.7.7.7.7.7.7.7.7	1.000 1.000 1.000 1.000 1.000	2333333	1.58 1.58 1.58
ranae and	O)	2.58 7.58 12.58 22.58 27.58	2 7 12 12 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	2.58 17.58 17.58 27.58 27.58	2.58 12.58 17.58 22.58 27.58	2.58 7.58 12.58

	\sim	-
- 1	- No.	1~
,	()	8 3

108.07 134.77 161.07	20.05 50.75 79.08 186.37 153.18	18.89 48.87 77.29 104.66 131.44 157.82	16.15 46.99 75.50 102.93 129.77 156.19	38.18 59.59 87.55 114.71 141.38	26.92 55.79 83.74 111.07 137.95	24.46 52.58 80.19 107.49	22.46 49.61
291.84 365.38 439.94	61.68 138.99 213.45 287.76 361.76 436.40	57.98 135.47 209.95 283.99 358.26 432.90	54.24 131.98 206.49 280.53 354.79 429.44	90.41 165.93 240.07 314.19 388.63	94.12 169.73 244.07 318.44 393.13	97.74 174.13 249.00 323.79	100.98 178.50
185.87 128.19 158.83	29.45 56.58 81.14 184.74 127.78 158.43	28.58 56.88 88.73 184.38 127.41 158.83	27.44 55.52 88.38 184.88 127.85 149.63	41.58 67.68 91.83 115.21 138.83	46.27 73.77 98.56 122.18 145.08	49.37 78.41 103.97 127.99	51.45 81.94
245.69 307.22 369.36	56.54 121.22 182.71 243.93 305.57 367.79	53.69 119.82 180.76 242.12 383.87 366.18	50.70 116.76 178.77 240.28 302.13 364.53	82.24 145.78 207.57 269.33 331.54	88.46 154.37 217.97 281.21 344.63	93.43 161.69 227.07 291.73	97.53 168.06
1.50 1.50 1.50	222222	222222 222222 222222 22222 2222 2222 2222		22228 2228 2228 238 28	ന ാന് ന ാന് 1.00 1.00 1.00 1.00	7.58 7.58 7.58 5.58	18.88 18.88
20.00 25.00 30.00	5.00 10.00 15.00 28.00 30.00	18.88 15.88 28.88 38.88	18.00 18.00 28.00 38.00 38.00	7.128 17.58 22.58 27.58 27.58	18.88 15.88 25.88 38.88	12.58 17.58 22.58 27.58	15.88 28.88
94.55 121.48 147.97	2.52 35.85 65.18 92.82 119.79 146.32	33.93 63.26 91.87 118.11	32.81 32.81 61.43 89.31 116.41	14.24 45.11 73.78 101.20 128.10 154.56	12.14 41.49 69.86 97.47 124.56	10.62 38.58 66.48 93.89 120.99	9.46 35.96
254.08 328.13 402.57	16.87 101.04 176.35 250.46 324.59 399.03	11.39 97.49 172.85 246.96 321.08 395.53	4.14 93.94 169.37 243.58 317.62 392.06	58.45 128.51 203.05 277.10 351.36 426.00	53.95 132.26 286.93 281.23 355.74	56.76 136.33 211.62 286.38 361.26	58.96 140.23
93.38 116.69 139.56	11.23 43.68 69.82 93.83 116.31 139.16	9.14 42.96 68.58 92.65 115.96 138.75	7.18 42.26 68.11 92.25 115.59 138.39	26.25 54.93 79.84 103.60 126.68	29.51 68.57 86.37 118.48 133.78	31,24 64,58 91,45 116,12 139,64	32.17 67.49
215.12 276.38 338.21	16.63 89.72 152.09 213.29 274.68 336.60	11.39 87.29 150.83 211.42 272.93 334.95	4.24 84.88 147.93 209.51 271.15 333.26	47.59 114.45 176.74 238.41 388.37 362.85	52.14 121.96 186.28 249.59 312.88	55.46 128.20 194.54 259.44 324.02	57.96 133.54
1.58 1.58 1.58	525255	222222 22222 22222 22222 2222 2222 2222 2222	ក្រុកក្រុក សូសូសូសូសូសូ	200000 200000 200000	000000 00000 00000	7 58 7 58 7 58 7 58 8 58	18.88 18.88
17.58 22.58 27.58	2.58 7.58 17.58 22.58 27.58	2.58 12.58 17.58 22.58 27.58	2.58 12.58 17.58 22.58 27.58	10.00 10.00 15.00 20.00 30.00 30.00	7.50 12.50 17.50 22.50 27.50	18.88 15.88 28.88 25.88 38.88	12.50 17.50

76.91 184.82	20.78 47.02 73.84	19.33 44.69 70.98	18.06 42.56	16.93 40.59	15.93	15.02	5.24	29.90 60.63 88.67 115.68 142.15 168.23		
254.07 329.36	103.82 182.62 258.98	106.28 186.41 263.60	108.39 189.84	110.19 192.93	111.71	112.98	65.34	79.55 156.44 238.91 379.23 453.88		
108.32 132.84	52.82 84.61 111.81	53.69 86.63 114.61	54.18 88.12	54.38 89.18	54.36	54.17	30.96	31.83 58.28 82.82 186.53 129.66 152.31		
235.14 301.17	100.98 173.66 242.36	1 03.8 8 178.59 248.82	106.33 182.94	108.40 186.77	110.13	111.58	65.04	71.07 132.89 193.13 253.54 314.60 376.39	7.11785	
10.00 10.00	12.50 12.50 12.50	15.00 15.00 15.00	17.50 17.50	20.00 20.00	22.50	25.00	27.50	88888888888888888888888888888888888888	# :	
25.00 30.00	17.58 22.58 27.58	28.88 38.88	22.58	25.88 38.88	27.50	30.00	38.88	5.00 10.00 15.00 25.00 30.00	ed (seconds)	
63.27 90.49	8.52 60.41 87.28	7.75 31.80 57.78	7.83 38.85 55.34	6.53 28.47	6.04 27.03	5.61	8.88	182 45.82 74.85 102.26 128.97 155.23	time consumed.	
216.37 291.72	68.68 143.88 228.92 296.92	62.05 147.02 225.17	63.11 149.88 229.06	63.94 152.40	64.57 154.60	65.02	8.88	37.61 118.55 193.79 267.93 342.05 416.51	rase4	22 75
95.44 120.75	32.60 69.59 98.57 124.54	32.70 71.09 101.02	32,58 72,12 102,89	32.31 72.78	31.92	31.46	8.88	16.48 45.47 78.67 94.77 118.16 141.03	program :	715 : 6
201.81 268.23	59.88 138.15 208.27 276.12	61.48 142.16 214.01	62.57 145.64 219.12	63.48 148.65	64.17 151.27	64.68	B . B	36.82 102.41 163.25 223.27 283.98 345.40	···end of	(millisec.
10.00 10.00	12.58 12.58 12.58 12.58	15.00 15.00 15.00	17.58 17.58 17.58	28.88 28.88	22.50 22.50	25.00	27.50	8 8 8 8 8 8 8 8 8 8 8 8 8	ф 4	t ime
22.58 27.58	15.00 20.00 25.00 30.00	17.58 22.58 27.58	28.88 25.88 38.88	22.50 27.50	25.00 30.00	27.50	27,50	2.58 7.58 12.58 17.58 22.58 27.58	task: rase	

	date: 07/26/82 time: 14:19:25		1
	taraet		-1 -0 -1
** *	**		ъ 9 20
	in sio2		nxtnd 1
5102	ent on a/c		isto Ø
tarqet sio2	ions incident on a/an sio2		ntupe 1
 17	 10	3.5660)	nmul t
incident ion		(alat≡ 2-o2 8.000 16.000	ndive 1
	ı calculat	taraet 1-si 14.000 28.000	odio 4
an : dam	ic energ		nstp 10
*** begin of program : damge2	. electron	ion 14. 28.	ne 128
*** begin	damaqe and∕or electronic enerqu calculations for	si atomic number atomic mass	ndam 12

enerau distr.

ຶ່ນ

damage and/or electronic energy calculations for

**** units ****

	enerau depth,ran enerau pa enerau di	Kev qe,delta range = (rtition,ion distrib stribution = ev/a	angstroms Jtion,integrated ngstrom	d eneray distribution	tribution	1	dimensionless	ห		
		incident energu	* ? ?	incident	t enerau		***	inc	incident energu	
		. S.	***	ic.	7. 88-ke		* * * * * * * * * * * * * * * * * * *		7. 58-key	
			***	5) ()		XX) b	
			***				**			
		pro!. range	***	proj. rande	ande		***	pro	proj. range	
			***				* * *			
		37.~angstroms	**	71	71angstroms	δ	***		102. –andstroms	oms
66			**				* *			
5			**				**			
		delta rp	***	delta rp	0		* *	del	delta rp	
			**				* *			
		18andstroms	** *	33.	33andstroms	ស	** *		46andstroms	Smc
			* * * *				* * * *			
			327	1 7 7		-	ने जीवा के जिल्हा	7	· · · · · · · · · · · · · · · · · · ·	
		der to perbinational	* * *	delta pe	deita perpinaicular	LB	* * *		deita perpinaicular	in dr
		11.~angstroms	***	30.	30andstroms	ហ្គ	***	4	46andstroms	
			***				* *			
			* * *				* *			
	total	al energy in distribution	** *	total energy	energy in distribution	ibut ion	***	total en	energy in distribut	ribut
			***				* *			
		1.35~KeV	***	3.00	3.06-kev		* * *		4.64-kev	
			***				***			
			***				***			
		eneray partition	***	enerdy po	partition		** *	ener(energy partition	_
		111111111111111111111111111111111111111	** **	•	;		**			
		0.5934	**	Ø	.6549		** *		0.6594	
			***				***			
			* *				* * *			
			XXX				***			
			* *				***			
							* *			
×	x/rp fin	integrated ener		끞		enerad	* *		integrated	enerar
_		eneral aist	****			distr.	X 	ion	enerau	distr.
•	cpers als	it. Gist.	* * *	aistr. aistr.			***	distr.	aistr.	
			* **				***			
			* *				*			

in distribution

24111111222222222222222222222222222222	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.2845 8.1926 8.1811 8.1788 8.1595
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9842 0.9754 0.9524 0.9383 0.9226
22222333333333333333333333333333333333	ww44no
00000000000000000000000000000000000000	Naman
22222222222222222222222222222222222222	W VI KD W
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22222
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90000000000000000000000000000000000000
0.04.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	108 1112 1114 116

.<u>..</u>

21.41																																							0.9181
0.1396		-	•	œ.	۳.	u,	ů.	S,	· 20	بد.	S.	G.		5	ď.	يد	2	, C	, W	יט	ω.	ω.	יט	α.	ø	ď	Θ,	יט	ď	ø,	Ø	ø.	Ø	a	8	0	0	ø	Ö
0.9853		щ.	۳.		"-	'-	٠.	w.	w.	w.	۳.	۳;		٠,	u,	٧.	٧.	٧.	٧.	,,,	**!	ניו	ייו	14	w	ú	1.7	W	iÄ		∹			_	_	_	_	Œ	Ø.
19.73	17.97	17.11	16.27	15.45	14.65	13.88	177	w	_	_	CJ.					•	•	•			•				3.777					*							•	•	
B.1400		٦.	Ξ.	۳.	ä	بی	ت	'n.	ź.	S	يد	۳.	ď.	ä	يد	٦	بد	ď,	ď.	å	ď	ď	å	Ġ	å	ď	ā	œ,	₫.	ā	αi	₽.	ø,	ø.	Δ.	Θ.	ø	œ.	ø.
8.9893 8.8913	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	•				•	•	•		•				
19.00	ı.	σ.	Ξ.	4	~	4. Ø	ъ.	₩.	2.	<u>.</u>	8	Ø.	22	-12	.6	27	.63	. 16	7	Š	98.	4	8	7.	4.483	88	.78	4	23	86.	7.	ខ្លួ	32	걸.	4 6.	,78	.62	4 ا	.35
8.1738 8.1628		Ξ.	_;	Ξ.	_	Τ.	Ξ.	بد	۳.	ä	بە	ď.	يد	يە	œ.	'n	ä	بد	يە	ø.	ď.	ā	ā	Ø.	<u>a</u>	α,	α.	Z .	<u> </u>	Z)	0	Ö	ದ್ರ	ø.	₽.	຺	σ.	Z) :	25
8.9198 8.9837	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•		-	-	-	•	-	•	•	•			-	•	•			,	-		-	- 74			
128	124	126	128	158	132	134	136	138	140	42	4	146	148	150	152	154	156	158	160	162	164	166	168	170	172	174	176	178	186		184	186	188 188	190	192	194	196	198	202

enerau distr.

final integrated

××× *** *** *** ××× * * ***

enerqu distr.

distr.

07/26/82 14:19:25

**** unite ****

dimension]ess total energy in distribution enerqu distr. ŧ delta perpindicular depth,range,delta range – angstroms energy partition,ion distribution,integrated energy distribution energy distribution – ev/angstrom 345.~angstroms 141.~angstroms 155.-angstroms energy partition incident energy 27.58-kev 15.63-kev 0.5992 final integrated prol. range enerad distr. delta rp distr. *** *** * * * * * * ** * * * * * * * X X X * * * * * total energy in distribution enerqu distr. delta perpindicular 315.-anastroms 130.-andstroms 142.-andstroms energy partition incident energy 25.88-Kev 14.37~kev final integrated 0.6066 prof. range enerqu distr. delta rp X S distr. ion energa (pct) x/rb 69

total energy in distribution

16.87-kev

energy partition

* * * **

** * ** ** 0.5921

delta perpindicular

168.-andstroms

152.-andstroms

delta rp

376. -angstroms

** **

proi. range

incident energy

30.00-kev

*** *** *** ** ** * * * * * * * * * * * * * * * * ** * * * * * * * * * ** *

* * *

22222222222222222222222222222222222222	:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1481 0.1376
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ບາບາ
22222222222222222222222222222222222222	(A (2)
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u>4</u> $^{-}$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
22222222222222222222222222222222222222	ΔW
00000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,
agagagagagagagagagagagagagagagagagagag	ຫຫ
0.4400001400000000000000000000000000000	118 118

21.68	6. 6. 6.	א מ	้เก	י חו	ďΝ	n n	ű					w	1.7	w	بد	ш,	w		_	1,~	, ,,,	Z,	1~	Ŋ	w	O)	1	U)	143	£.	Ø	8	8	.73	<u>.</u>	0.5627	4
0.1277 P.1183		. ~	_	٠.	~~~				_	۳.	٠.	۳.	S.	S.	u.	بد	w	بد	۳	بت	يد	Ġ	'n.	يد	يد	w	ū	יבי	w	Ŋ	Ø	Ø	Ø	α	Ø	(Z) (עב
0.8850 8.8626	0.8387	0.7871	7537	8.7315	8.782b	777	D. 6134	0.5835	0.5537	0.5241	0.4948	0.4661	0.4379	0.4105	0.3838	0.3580	0.3331	0.3092	0.2863	0.2644	0.2437	0.2240	0.2054	0.1878	0.1714	0.1560	0.1417	0.1283	0.1160	0.1045	0.0940	0.0843	0.0754	0.0673	0.0600	0.0533	0.047A
20.94	σ <u>,</u> υ	'nΝ	เก๋เ	n 7	t N	in		_	σ.	٧.	1,-	œ.	У.	w.	w	۲.	w	۲-	L.	w	n.i	Ξ.	w	n.	(14)	Ø.	w i	w	Ā	ú	_	1.0	89	.78	89.		ů.
0.1292 0.1198		. 8	8	žį	žĕ	ď	9	8	ġ	ģ	8	g	8	ä	8	g.	ē.	ē	ė.	<u> </u>	ē.	<u>.</u>	8	98	8	BB	90	90	B	g.	8	8	8	8	8	200	2
0.8870 0.8649	841	798	.763		57.0	648	618	.589	.559	538	.501	472	444	.417	.390	.364	.339	315	.292	.270	.249	.230	211	. 193	. 176	. 161	146	.133	. 120	. 108	.098	. 888	.079	979	.863	200 200	1
22.19 21.07	ഗ് മ		u ص	o 4	m	N	้ณ่	- :	œ.	ø.	ינים	Ġ,	φ.	ם.	য়।	Φ.	ו נייו	α,	য়।	ದ .	w.	ייַי	ייס	υ,	য়∙	٦,	υi	`-!	wi	ינייו	ω,		2	נסנו		ם. 20. 20. 20. 20. 20.	
0.1308 0.1213			ى بى	20	, כי	2		œ.	a.	ייבי	بيد	، تح	اند	ايدا	ויב	٠,	<u>ت</u> انح		201	2	Ø,	0	20 (Z) (à.	20.0	20.0	201	20 (20	20.0	20.	20 (250	zi o	2 c	9
d.8889 Ø.8672	တွဲထ	Ν.	2,		3	6.	39.	ij	Š.	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟	ׅׅׅׅׅׅ֭֭֓֞֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֝֟֝֟֟֝֟֟֝ ֚	4.	4.	4	A) I	ږ٠	ž,	3	Ņ.	Ž	N,	N.	7	η (-	2.	ם.			N 1	=:	20 (מני	ق	z) ç	2 0	ວໍດ ບັນ)
128 122	124 4 6	128	138	727	136	138	140	142	44	94.	 5	158	N.	154	1 2 1 1 1	15 15 15 15 15 15 15 15 15 15 15 15 15 1	 	162	16.4	166	168	178	27	1. 4.	ο r	ρ c	200	700) () () ()	186	188	20.0	192	27.0 27.0	ρ η (νς 2 α 2 α)

'n

damage and/or electronic energy calculations for

0.59213 energy deposited in target = 16.868

26005.

261.91

30

S.

damage and/or electronic energy calculations for

...end of program : damge2

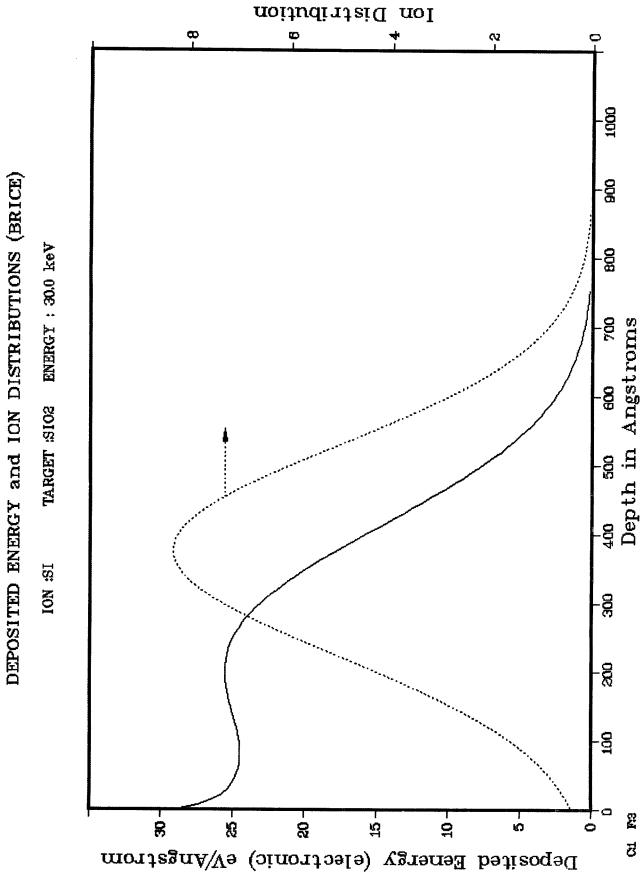
1.52665

11

...time consumed (seconds)...

task: damae2

1526 389 89 113 8.82544 time(millisec.) cpu time(millisec.)
io
sus
time left (seconds)
task time (minutes)


nd brief

Appendix D

DAMG2 Outputs for the Electronic Energy Deposition

8 T 6

```
: 07/26/82
: 14:23:00 (pst)
: c
                                                                                                                                                                                    brice02
                                                                                                                                                                     brice02
                                                                                                                                                                                                    brice02
                                                                                                                                                                                                                   brice02
                                                                                                                                                                                                                                  brice82
                                                                                                                                                                                                                                                  brice02
                                                                                                                                                                                                                                                                brice02
                                                                                                                                                                                                                                                                               brice02
                                                                                                                                                                                                                                                                                               brice02
                                                                                                                                                                                                                                                                                                              brice02
                                                                                                                                                                                                                                                                                                                              brice02
      date
time
machine
                                                                                                                                                                                                                   brice
                                                                                                                                                                                                                                                                brice
                                                                                                                                                                                                                                                                                brice
                                                                                                                                                                                                                                                                                               brice
                                                                                                                                                                     - brice
                                                                                                                                                                                     - brice
                                                                                                                                                                                                    - brice
                                                                                                                                                                                                                                   - brice
                                                                                                                                                                                                                                                  - brice
                                                                                                                                                                                                                                                                                                              brice
                                                                                                                                                                                                                                                                                                                              - brice
                                                                                                                                                                                                                                                                               ndskp=1$
                                                                                                                                                                                                                 p2(1)= 28.0000
                                                                                                                                                                                                                                p2(2)= 16.0000
                                                                                                       abrice82
                                                                                                                                      ****
                                                                                                                                                                                                                                                ed=Ø.
                                                                                                                                                                                                                                                                                ndive=1
                                                                                                                                    brice82 run
                                                                                                                                                                                                  ncomp= 2
                                                                                                                                                                                                                                                0.0000
                                                                                                       obrice02
                                                                                                                                                                                                                                 φ.
                                                                                                                                                                                                                 z2(1)=14.
                                                                                                                                                                                                                               nform(2)= 2.000 z2(2)=
                                                                                                                                                                                                  pi= 28.0000
                                                                                                                                                                                                                                                                              nstp=10
                                                                                                                                                                                                                                                alatd=
                                                                                                                                      for
                                                                                                      tape32
                                                                                                                                                                                                                 nform( 1)= 1,888
                           +1briced
13:18:06
                                                                                                                                    ***** input data
                                           a
862swi
                                                                                                                                                                                                                                                                              ndi∨=4
                                                                                                                                                                                                  zi= 14.
                                                                                                                                                                                                                                               0.00000
                           controller:
at time :
                                                                                                     tape30
                                                                                                                                                                                                                                                                                                           |stp=0 ipltd=1 $
                                         sustem
account
1:59
                                                                                                                                                                                                                                                alata=
                                                                                                     tape20
                                                                                                                                                                                                                                                                             nmu] t = 1
                        controllee: xbrice
loaded on : 07/22/82
dropfile : +xbricea
user # : 001450
program bank( min:sec ) :
pool bank( minutes ) :
                                                                                                                                                                                                                               :target( 2)="02
                                                                                                                                                                                                               :target( 1)="si
                                                                                                                                                                                                                                              :alat= 3.5660
                                                                                                                                                                                                                                                                                                                          end brief:
                                                                                                     tape10
                                                                                                                                                                                                                                                                                                           :ntupe=2
                                                                                                                                                                                                 :ion="si
                                                                                                                                                                  N
                                                                                                                                                                                                                                                             :nqt i=4
                                                                                                                                                                                                                                                                            :ne=120
                                                                                                                                                                                 :sio2
                                                                                                                                                                                                                                                                                             :damd
                                                                                                                                                                                                  1
                                                                                                                                                                                                                               |
                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                                                                            i
                                                                                              files:
                                                                                                                                                                                                                                                                                                                          Ξ
                                                                                                                                                                                 N
                                                                                                                                                                                                M
                                                                                                                                                                                                                4
                                                                                                                                                                                                                               ហ
                                                                                                                                                                                                                                               ø
                                                                                                                                                                                                                                                             Λ-
                                                                                                                                                                                                                                                                            ω
                                                                                                                                                                                                                                                                                            σ
                                                                                                                                                                                                                                                                                                           0
```

	07/26/82 14:23:00		
	date : time :		
	taraet		iter
****			ж ө 8
	an sio2		nxtnd 1
sio2	ent on a/		istp 8
taraet sio2	ions incident on a⁄an sio2		ntupe 2
∴	 	3.5660)	nmult 1
incident ion	ions for	(alat= 2-o2 8.000 16.000	ndive 1
	u calculat	taraet 1-si 14.000 28.000	on Sign
ram : dam	nic enerq	<u>.</u>	nstp 18
*dok begin of program ; damae2	o electro	ion si 14. 28.	ne 120
**************************************	damaae and∕or electronic enerau calculations for	atomic number atomic mass	ndam 12

ហ

damage and/or electronic energy calculations for

**** units ****

dimensionless ı enerau – Kev depth,range,delta range – angstroms enerau partition,ion distribution,integrated enerau distribution enerau distribution – ev/angstrom

Incident energy	incident energu	7.50-kev	proj. range	102. –angstroms	delta np	46anastroms	delta perpindicular	46anastroms	total enerau in distribution	1.80-kec	enerau partition	0.2505		final integrated energu ion energu distr. distr. distr.
incident enerate %%% 2.50-kev %%% %%% proi. range 37angstroms %%% delta rp %%% llangstroms %%% 11angstroms %%% %%% book 11angstroms %%% %%% %%% enerate partition %%% %%% %%% %%% %%% %%% %%%	* * *	* * * *	** *	* * * * * * * * * * * * * * * * * * *	(X)	{ 	* * *	* * * !	(* * * * * * *	* * * *	* * * * * *	* * * * * * * * * *	* * * * * * * * * * * *
incident energu 2.50-kev proi. range 37. angstroms delta perpindicular 11. angstroms total energu in distribution 0.27-kev energu partition 0.1183 final integrated energu ion energu distr. distr. distr.		5.00-kev	prol. range	71.~andstroms	delta rp	33andstroms	delta perpindicular	30anastroms		0.97-Kev	enerau partition	0.2024		intearated enerau distr.
_	* ** * *	* * * * * *	* * * *	* * * * * *	* * * *	* * * * * * * *	* * * *	* * * * * * * *	* * * * * *	* * * *	** * ** *	* * * *	* * * * * * * * *	* * * * * * * * * * * *
V	incident energu	2.50-Kev	proj. range	37.~angstroms	delta rp	18.~angstroms	delta perpindicular	11.~angstroms	total energy in distribution	0.27-kev	eneray partition	0.1183		intearated enerau distr.

7.1.1.2.3.2.2.3.3.3.2.2.3.3.3.3.3.3.3.3.3	$a \leftarrow c$
20000000000000000000000000000000000000	1416 1326
අතු අතු අතු අතු අතු අතු අතු පතු පතු පතු පතු පතු පතු පතු පතු පතු ප	200
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.9383 .9286
	ממממ
27922222222222222222222222222222222222	082
11111111111111111111111111111111111111	ובוניונו
98898 98898 98898 98899 98899 98789 88599 88599 77897 77897 7789 8859 885	- C 60
	200 244
20020 11120 11120 11120 11120 11220 11220 11220 11220 11220 12338 12338 12332 12332 12333	418 259
papapapapapapapapapapapapapapapapapapa	າ ຂອ ກ່ວນວ່
7-90-00-00-00-00-00-00-00-00-00-00-00-00-	ט אדע נ
2000 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	000
0 1235 0 0 1	986
2014088888888888888888888888888888888888	19 81

7.488	7.855 2.25	707	6.872	7.7.6	5.44 444	5,142	4.849	7,52	200.	200	7.02		700	200		2000 0000	פיני פיני פיני	7.40p	CB2.7	2,113	1.951	1.798	1.655	1.520	1.394	1.277	1.167	1.066	υ:	u,	w		ч,				. \	. 17	יין נ יין נ	0.3126
0.1240			. –.	Ξ,	т.	_	_	_		. –					. ~				~ `	٠.	٠.	۳.	٠.	ب	ب	S.	w	يد	w	w	بحا	بحا	C	-	(7	, W	C	1 (2)	(C)	(Z)
0.9853	ŏă	ά	ò	~	~	Υ.	1	Ğ	Ġ	ù	ù	ŭ	ŭ	ú	, ir	3	ť₹	įź	į,	4 !	ž,	4	Ŋ	2	Ŋ	2	낁	S	S	2	₩.	$\stackrel{\sim}{-}$		7	[17]	12			8	8
5.827	אַכֿ	ğ	8	រូរ	3,	Ξ.	86.	89.	4	ĸ	ď	8	7	'n	7	7	ž	90	,,	בו פו	מנו	'n.	4	3	28	Ξ	1.02	.938	.860	.787	.719	.656	.597	.543	494	.448	.405	367	331	.298
0.1313	-	3	. 18	ģ	g.	8	<u>.</u>	9	.06	Z	S	8	Z	Ø	Z		2 (2	20,0	9 6	96	20	ğ	<u>.</u>	ė.	0	<u>.</u>	<u>.</u>	ġ	8	g.	8	8	88	8	8	8	80.	8	80	80
8.9893		-	-	-	-	-	-	•	-		-					-	,	• '	•	•	•	•				-				=										
3.265		o:	w.	•	Ψ.		۲.	1.1	1.3	Ξ.	۳.	٠:	u,	۲.	w.	u ,	п.	١٧.	. 14	, c	•	•	٦,		ָ טינו	9	B		9	. 7	. 66	.6	į,	ŭ	ą.	₹.	3	0.3908	.36	33
8.1651 8.1563	4	. 135	13	N.	=	18	. 102	98.	88	88.	978	.072	.067	.862	.858	.852	245	24	041	אן מין	֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֡֓֡֓֓֓֓֡֓֡֓֡֓֡		20.0	200	20 (Z) (2 7 1 1 2 1 2 1	25 t	ב ביני	E 13		2 2 3	988	987	200	904	003	882	000	000
0.9198																																								
128	124	126	128	150		10.	136	330	140	142	<u>4</u>	146	148	158	152	154	156	158	167	100	184	1 U	00) Q	ייב. מני	77	7 i 4 i	٥ ا ا	χ Σ ζ	200	20.7	184	186	88	25	192	25. 42.	196	(C)	200

units

incident energu	30.00-ke√	proj. range	376andstroms	delta np	152.—anastroms	delta perpindicular	168.—angstroms	total energy in distribution	11.27-kev	energu partition	0.3886		final integrated energu ion energu distr. distr. distr.
***	* * * * *	* *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	*	X	* * * * * * * * * * * * * * * * * * *	* * * * * *	* * * * * *	* * * :	* * :	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
incident energu	27.50-kev	proj. range	345anastroms	delta rp	141.~angstroms	delta perpindicular	155.~anastroms	total eneray in distribution	10.08-kev	eneray partition	7675.0		final integrated energy ion energy distr. distr. distr.
***	* * * * * * * *	* * * *	* * * * * * * *	* * * *	* * * *	* * *	* * * * * * * * * * * * * * * * * * *	* * * * * * *	(* * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * *
incident energu	25.00-kev	proj. nange	315.~angstroms	delta rp	130.~angstroms	delta perpindicular	142.~angstroms	total enerau in distribution	8.92~kev	eneray partition	0.3700		<pre>x/rp final integrated energy</pre>
			83										X/rp (pot)

28.25.25.25.25.25.25.25.25.25.25.25.25.25.	micromininic in minimum of our
1.00000 00.996333 00.996333 00.996333 00.996333 00.99699 00.99699 00.3947 00.3969 00.3969 00.3969	0.3160 0.2864 0.2864 0.2721 0.2721 0.23444 0.1937 0.1708 0.1708 0.1708 0.1302 0.1312 0.125
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
223.3.3.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3	
1.000000000000000000000000000000000000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	រាស្សសាសាសាសាសាសាសាសាសាសាសាសាសាសា
22222222222222222222222222222222222222	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
00.9833 00.9833	20000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	តែកាត់ក្រោតស្រាស្សាសាសាសាសាសាសាសាសាសាសា
00440000440000440000044000004400000	00000000000000000000000000000000000000

11.33	100.0	ν.υ. α.υ.ν	7 (A)	7.843	7.321	6.820	6.34B		5,443	727	4.633	7.25	210	100 100 100 100 100 100 100 100 100 100	3,226	0.00	7.0	7.1.2 46.1	,,,	212	1.815	1.633	1.466	1,313	1.173	1.046	0,	ω.	1,	w.		រស	ייי) [*]	0.2936	(7	iń
.096	0.0822	ğ	8	828	.05	948	4	046	036	23	2	2	2	2	2		20.02	2 5	2 (2	2	889	200	900	885	802	884	803	003	002	882	001	801	801	000	000	000	988	000
0.8858	0.8387	N. 7871	0.7597	0.7315	0.7026	0.6732	0.6434	0.6135	0.5835	0.5537	0.5241	D. 4948	D. 4661	0.4379	0.4105	0.3838	A.3588	B. 3331	2885.8	0.2863	0.2644	0.2437	0.2240	0.2054	0.1878	0.1714	0.1560	0.1417	0.1283	0.1160	0.1045	0.0940	0.0843	0.0754	0.0673	0.0600	0.0533	0.0472
11.17	9.982	8.847	8,382	7.776	7.267	6.777	6.308	5,858	5.429	5.021	4.633	4.267	3.921	3.595	3,289	3.003	2.736	2,487	2.256	2.042	1.845	1.662	1.495	1.341	1.201	٠-	٠:	Ψ.	٠.	۳.	۳,	":	٧.	ν.	1.,	ניו	ü	.4
8,8	0.0844	ومو	ğ	8	ġ	ģ	ġ	ġ	ø	Ö	Ø	8	g	ø	<u>@</u>	2	<u>c</u>	Ø	2	2	8	g	g	ģ	8	8	8	8	8	8	8	8	8	8	8	8	8	8
.887	8414 8414	796	763	73	797.	.678	2.	.618	583	555	538	.501	472	44.	417	398	364	339	315	292	278	249	230	211	193	176	161	45	133	120	108	860	888	829	070	963	920	849
10.98 18.48	9.829		`;	۳.	•		`:	۳.	٠.	٠.	۳.	٠.	٠:	Ψ.	, .,	۳.	٠.	4	.,	œ.	٠٠٠	w,	.,,	יייי	i i	۳. ر		١٠	7	3	Ö,	ψ,	4.	4	36	0.3225	Ŋ,	,
8.1813 8.8938	~~		۳.	٠.	٠,	٠,	٠.	٠.	٠	٠	w.	يت	œ	<u>ب</u>	يت	œ.	יש	يت	يت	اتد	، تح	י עט	ויב	اتحا	ט עב	א ני	27 (20 (20 0	23 (Z) (Ø ((2)	Ø (Ø 1	@ (20 (20
0.8889 0.8672	တ်ထ	~	7	Ň	Çì	õ	ő	اق	Ų,	ŭ	'n.	ល្ល	4	4	4	וניו	ķ	ķ	Ŋ	N	Č,	N	V (7	71 -		 	111	· · · ·	7:		<u> </u>	20 1	80	0	800	2) (U I	20
128 122	124 126	128	130	132	154	136	158	140	4.	44	146	148	150		154	126	158	168	162	164	166	168	178	7.7	1. 4.0	27.	200	200	ν ς Ο C	ส (ซ (ος Ο (1	188 8 6	2,5	192	Д Э (196	ກຸດ	ZDD

... N

damage and/or electronic energy calculations for

nd brief

	time consumed (seconds)	
1.5981e+83 8.6191e+83 2.6471e+84 5.7773e+84 1.8499e+85 1.7107e+85 3.6710e+85 3.6710e+85 5.0119e+85 6.6194e+85 1.0693e+85	program : damqe2 : 2080 : 558 : 558 : 0.03483	1
2.9711e+03 1.4866e+04 3.8320e+04 7.8217e+04 1.3857e+05 2.2342e+05 3.3843e+05 6.7606e+05 6.7606e+05 1.1855e+06	(millisec.)	
1 0.118329 2 0.282388 3 0.282388 4 0.280371 5 0.32899 6 0.32889 7 0.334875 9 0.359578 10 0.379669 11 0.379669	task: damae2 cpu time io sus time left task time	
1444 mar magard	ν ν	

dxmom3(i)

xmom3(i)

dpct

2.07513

Appendix E

Values of the Three Parameters of Brice's Stopping Power Formula for Some Ion-Target Combinations

SETA

Values of Z to be Used in the Stopping Power Formula, Eq. (2.37)

	<u> </u>											
TON	TARGEI	C	Al	Ti	Ni	Ge	Zr	Ag	Eu	Та	Au	U
He	1.245	1.444	1.342	1.423	2.236	1.988	1.798	2.671	2.313	3.166	3.272	2.745
Ве	.8134	•9257	.8948	1.062	1.254	1.224	1.268	1.321	1.773	1.928	2.055	2.245
C	.7589	.8406	•7794	.9242	1.044	1.038	1.065	1.101	1.426	1.543	1.604	1.740
Al	.8093	.8238	•7332	•7934	.8717	.8581	.8653	.8828	1.099	1.170	1.222	1.302
Ti	,8530	.8524	•7179	•7479	.8066	.7869	.7814	.7890	•9597	1.012	1.051	1.131
N1	,9002	.8921	•7349	•7349	.8052	.7819	.7701	.7740	•9318	.9780	1.013	1.085
Ge	,9365	.9232	•7522	.7632	.8127	.7871	•7733	.7736	•9258	.9692	1.024	1.071
Zr	1.004	•9819	.7859	.7846	.8303	.8006	.7804	•7773	•9489	.9826	1.012	1.054
Ag	1.055	1.047	.8121	.8035	.8700	.8380	.7878	.7817	•9470	-9774	1.005	1.043
Eu	1,172	1.137	.8589	.8366	.8960	.8584	.8014	.7898	•9436	.9678	•9913	1.022
Ta	1,229	1.184	.8871	.8563	•9142	.8737	.8131	.7987	.9478	.9690	.9908	1.018
Au	1.235	1.212	•9042	.8718	•9260	.8837	.8212	.8052	.95 21	•9718	.9929	1.019
U	1.304	1.279	•9360	.8975	•9482	.9028	.8364	.8172	.9603	•9772	.9966	1.029

ALP

Values of a' to be Used in the Stopping Power Formula, Eq. (2.37)

\ 	Values of a' to be Used in the Stopping Power Formula, Eq. (2.37)											
\ <u>\</u> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
TARGET	Ве	C	A1	Ti	Ni	Ge	Zr	Ag	Eu	Ta	Au	U
He	.4439	.3707	.4538	.4078	.3318	•3925	.3832	.3125	.3701	.3223	.3163	•3490
Be	.4425	.3765	.4261	·3 937	. 3627	.3738	•3737	.3680	.3187	.3072	.2940	.2850
C	.4224	.3560	.4085	.3653	.3487	-3494	.3511	.3470	-3034	.2894	.2883	.2764
Al	•3582	.3089	·3453	.3169	.3018	.3025	.3054	.3025	.2627	.2523	.2453	.2358
Ti	- 3452	.2921	.3337	.3034	.2880	.2889	. 2931	.2909	-2501	•2399	.2331	.2160
NH	.3318	.2787	.3213	.2902	.2749	.2759	.2805	.2786	.2 377	.2276	.2211	.2037
Ge	. 3215	.2693	.3116	.2808	.2653	.2 663	.2693	.2694	.2 286	.2187	.2028	.1948
Zr	.3041	.2533	.2955	.2667	.2494	.2504	.2555	.2541	.2003	.1934	.1879	.1804
Ag	.2 923	.2304	.2847	.2540	.2249	.2248	.2450	.2438	.1902	.1834	.1780	.1705
Eu	.2653	.2145	.2690	.2373	.2091	.2091	.2289	.2281	.1746	.1680	.1627	.1553
Ta	.2 536	.2062	.2609	.2286	.2009	.2009	.2204	.2199	.1663	.1598	.1546	.1473
Au	.2585	.2016	.2563	.2236	.1963	.1963	.2156	.2153	.1617	.1552	.1500	.1428
U	.2430	.1866	.2490	.2151	.1884	.1885	.2075	.2075	.1536	.1471	.1420	.1311

EN

Values of n to be Used in the Stopping Power Formula, Eq. (2.37)

	¥ :		<u>yaracı</u>	5 Q1 II	30 .De. De	ed: TH-	110- 2 FOL	oping Po	wer for	mula, i	sq. (2,	37)
lion)	TARGET	C.	Al	Ti [®] .	Ni	Ge	Zr	Ag	Eu	Ta	Au	U
Не	3 • 395	3.639	3.040	3.246	3.232	2.994	3.280	3.258	3.071	3.065	2.963	3.069
Ве	3.239		3.097				2.986					
C.	3.094	3.185	2.952	2.906	2.887	2.862	2.860	2.870	2.837	2.854	2.828	2.824
Al	2,839	2.934	2.702	2.650	2.637	2.610	2.605	2.616	2.601	2.607	2.614	2.615
Ti	2.619	2.725	2.479	2.431	2.420	2.393	2.384	2.393	2.384	2.390	2.398	2.431
Ni	2.539	2.653	2.398	2.358	2.344	2.316	2.306	2.315	2.311	2.320	2.328	2.370
Ge	2,501	2.619	2.359	2.319	2.310	2.282	2.281	2.279	2.281	2.290	2.343	2.348
Zr	2:440	2.568	2.296	2.248	2.254	2.224	2.212	2.220	2.294	2.298	2.308	2.317
Ag											2.280	
Eu											2.206	
Ta	2.281	2.441	2.087	2.063	2.118	2.090	2.013	2.020	2.136	2.148	2.165	2.182
Au	2.220	2.414	2.055	2.033	2.088	2.060	1.983	1.988	2.112	2.124	2.142	2.161
<u> </u>	2.201	2.397	1.987	1.970	2.025	1.996	1.918	1.922	2.056	2.070	2.091	2.152

STOPPING POWER FORMULA PARAMETERS FOR INCIDENT HELIUM IONS BASED ON DATA OF ZIEGLER AND CHU.

H 1 1.202 0.4384 3.683 2.0 He 2 1.438 0.3757 3.650 0.5 L1 3 1.283 0.4230 3.440 1.7 Be 4 1.245 0.4339 3.395 1.0 B 5 1.267 0.4124 3.512 0.5 C 6 1.444 0.3707 3.639 0.5 N 7 1.206 0.4064 3.521 0.7 O 8 1.358 0.3840 3.459 0.6 F 9 1.585 0.3582 3.364 0.7 Ne 10 1.677 0.3581 3.230 0.7 Na 11 1.627 0.3858 3.095 1.0 Mg 12 1.290 0.4458 3.073 0.0 Al 13 1.342 0.4538 3.040 1.0 Si 14 1.201 0.4562 3.236 0.0 S 16 1.581 0.3772 3.378 0.0 C 1 17 1.242 0.4362 3.377 1.0 Ar 18 1.301 0.4237 3.428 1.0 K 19 1.461 0.3804 3.462 1.0 Ca 20 1.350 0.4030 3.398 1.0 Sc 21 1.398 0.4016 3.348 1.0 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 Ni 28 2.236 0.3318 3.232 1.7			SETA	ALP	EN	
He 2 1.438 0.3757 3.650 0.5 L1 3 1.283 0.4230 3.440 1.5 Be 4 1.245 0.4339 3.395 1.6 B 5 1.267 0.4124 3.512 0.5 C 6 1.444 0.3707 3.639 0.5 N 7 1.206 0.4064 3.521 0.5 O 8 1.358 0.3840 3.459 0.6 F 9 1.585 0.3582 3.364 0.5 Ne 10 1.677 0.3581 3.230 0.5 Na 11 1.627 0.3858 3.095 1.6 Mg 12 1.290 0.4458 3.073 0.6 Al 13 1.342 0.4538 3.040 1.5 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.5 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.6 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 Ni 28 2.236 0.3318 3.232 1.7 Cu 29 2.390 0.3327 2.962	TARGET	AT. NO.	, <u>Z</u>	<u>A</u>	$\overline{\mathbf{n}}$	<u>%</u>
Li 3 1.283 0.4230 3.440 1.6 Be 4 1.245 0.4339 3.395 1.6 B 5 1.267 0.4124 3.512 0.6 C 6 1.444 0.3707 3.639 0.6 N 7 1.206 0.4064 3.521 0.6 O 8 1.358 0.3840 3.459 0.6 F 9 1.585 0.3582 3.364 0.6 Ne 10 1.677 0.3581 3.230 0.6 Na 11 1.627 0.3858 3.095 1.6 Mg 12 1.290 0.4458 3.073 0.6 Al 13 1.342 0.4538 3.040 1.6 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.6 S 16 1.581 0.3772 3.378 0.6 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.6 Ar 18 1.301 0.4237 3.428 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.350 0.4030 3.348 1.6 Ca 20 1.398 0.4016 3.348 1.6 Ca 20 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.6 Cr 24 1.659 0.3909 3.116 0.6 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.6 Co 27 1.961 0.3655 3.067 0.7 N1 28 2.236 0.3318 3.232 1.7 Cu 29 2.390 0.3327 2.962 0.6	H	1	1.202	0.4384	3.683	2.0
Be	He	2	1.438	0.3757	3.650	0.9
B 5 1.267 0.4124 3.512 0.9 C 6 1.444 0.3707 3.639 0.9 N 7 1.206 0.4064 3.521 0.0 O 8 1.358 0.3840 3.459 0.9 F 9 1.585 0.3582 3.364 0.0 Ne 10 1.677 0.3581 3.230 0.0 Na 11 1.627 0.3858 3.095 1.0 Mg 12 1.290 0.4458 3.073 0.0 A1 13 1.342 0.4538 3.040 1.0 S1 14 1.201 0.4562 3.236 0.0 S1 14 1.201 0.4562 3.236 0.0 S1 14 1.201 0.4562 3.236 0.0 C 1 17 1.242 0.4362 3.377 1.0 Ar 18 1.301 0.4237 3.428 1.0 K 19 1.461 0.3804 3.462 1.0 Ca 20 1.350 0.4030 3.398 1.0 Sc 21 1.398 0.4016 3.348 1.0 T1 22 1.423 0.4078 3.246 0.0 V 23 1.494 0.4114 3.154 0.0 Cr 24 1.659 0.3909 3.116 0.0 Mn 25 1.722 0.3920 3.069 0.0 Fe 26 1.731 0.3868 3.118 1.0 C0 27 1.961 0.3655 3.067 0.0 N1 28 2.236 0.3318 3.232 1.0 Cu 29 2.390 0.3327 2.962 0.0	Li	3	1.283	0.4230	3.440	1.7
C 6 1.444 0.3707 3.639 0.0 N 7 1.206 0.4064 3.521 0.7 O 8 1.358 0.3840 3.459 0.6 F 9 1.585 0.3582 3.364 0.7 Ne 10 1.677 0.3581 3.230 0.7 Na 11 1.627 0.3858 3.095 1.6 Mg 12 1.290 0.4458 3.073 0.8 Al 13 1.342 0.4538 3.040 1.9 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.8 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.6 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 21 1.398 0.4016 3.348 1.6 Ca 24 1.659 0.3909 3.116 0.6 Mn 25 1.722 0.3920 3.069 0.6 Fe 26 1.731 0.3868 3.118 1.6 Co 27 1.961 0.3655 3.067 0.7 N1 28 2.236 0.3318 3.232 1.6 Cu 29 2.390 0.3327 2.962 0.6	Ве	14	1.245	0.4339	3.395	1.6
N 7 1.206 0.4064 3.521 0.00 8 1.358 0.3840 3.459 0.00 8 1.585 0.3582 3.364 0.00 Ne 10 1.677 0.3581 3.230 0.00 Na 11 1.627 0.3858 3.095 1.00 Ng 12 1.290 0.4458 3.073 0.40 1.351 14 1.201 0.4562 3.236 0.00 Na 14 1.201 0.4562 3.236 0.00 Na 15 1.201 0.4562 3.236 0.00 Na 16 1.201 0.4562 3.236 0.00 Na 17 1.201 0.4562 3.236 0.00 Na 18 1.201 0.4562 3.377 1.00 Na 18 1.301 0.4237 3.428 1.00 Na 18 1.00	В .	5	1.267	0.4124	3.512	0.9
0 8 1.358 0.3840 3.459 0.6 F 9 1.585 0.3582 3.364 0.7 Ne 10 1.677 0.3581 3.230 0.7 Na 11 1.627 0.3858 3.095 1.6 Mg 12 1.290 0.4458 3.073 0.8 Al 13 1.342 0.4538 3.040 1.3 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.5 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.7 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Ca 20 1.350 0.3655 3.067 0.6 Ca 20 1.350 0.3318 3.232 1.6 Ca 20 2.390 0.3327 2.962 0.6	C	6	1.444	0.3707	3.639	0.9
F 9 1.585 0.3582 3.364 0.00 Ne 10 1.677 0.3581 3.230 0.00 Na 11 1.627 0.3858 3.095 1.60 Na 11 1.627 0.3858 3.095 1.60 Na 11 1.6290 0.4458 3.073 0.60 Na 11 1.342 0.4538 3.040 1.60 Na 11 1.342 0.4562 3.236 0.60 Na 11 1.581 0.4562 3.236 0.60 Na 12 1.581 0.4562 3.236 0.60 Na 12 1.581 0.4562 3.236 0.60 Na 12 1.581 0.4562 3.378 0.60 Na 12 1.581 0.4562 3.377 1.60 Na 12 1.598 0.4016 3.348 1.60 Na 12 1.598 0.4016 3.348 1.60 Na 12 1.598 0.4016 3.348 1.60 Na 12 1.599 0.4078 3.246 0.60 Na 12 1.599 0.60 Na 1	N	7	1.206	0.4064	3.521	0.7
Ne 10 1.677 0.3581 3.230 0.3 Na 11 1.627 0.3858 3.095 1.1 Mg 12 1.290 0.4458 3.073 0.8 Al 13 1.342 0.4538 3.040 1.5 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.6 S 16 1.581 0.3772 3.378 0.6 C1 17 1.242 0.4362 3.377 1.7 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.6 Mn 25 1.722 0.3920 3.069 <td>0</td> <td>8</td> <td>1.358</td> <td>0.3840</td> <td>3.459</td> <td>0.6</td>	0	8	1.358	0.3840	3.459	0.6
Na 11 1.627 0.3858 3.095 1.0 Mg 12 1.290 0.4458 3.073 0.4 Al 13 1.342 0.4538 3.040 1.9 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.7 S 16 1.581 0.3772 3.378 0.6 C1 17 1.242 0.4362 3.377 1.7 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Se 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mn 25 1.722 0.3920 3.069 <td>F</td> <td>9 ,</td> <td>1.585</td> <td>0.3582</td> <td>3.364</td> <td>0.7</td>	F	9 ,	1.585	0.3582	3.364	0.7
Mg 12 1.290 0.4458 3.073 0.6 Al 13 1.342 0.4538 3.040 1.9 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.6 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.6 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.6 V 23 1.494 0.4114 3.154 0.6 Cr 24 1.659 0.3909 3.116 0.6 Mm 25 1.722 0.3920 3.069 0.6 Fe 26 1.731 0.3868 3.118 1.6 Co 27 1.961 0.3655 3.067 0.6 N1 28 2.236 0.3318 3.232 1.6 Cu 29 2.390 0.3327 2.962 0.6	Ne	10	1.677	0.3581	3.230	0.7
Al 13 1.342 0.4538 3.040 1.9 Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.5 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.9 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.6 V 23 1.494 0.4114 3.154 0.6 Cr 24 1.659 0.3909 3.116 0.6 Mm 25 1.722 0.3920 3.069 0.6 Mm 25 1.722 0.3920 3.069 0.6 Fe 26 1.731 0.3868 3.118 1.6 Co 27 1.961 0.3655 3.067 0.6 N1 28 2.236 0.3318 3.232 1.6 Cu 29 2.390 0.3327 2.962 0.6	Na	11	1.627	0.3858	3.095	1.6
Si 14 1.201 0.4562 3.236 0.6 P 15 1.403 0.4143 3.276 0.5 S 16 1.581 0.3772 3.378 0.6 Cl 17 1.242 0.4362 3.377 1.7 Ar 18 1.301 0.4237 3.428 1.8 K 19 1.461 0.3804 3.462 1.7 Ca 20 1.350 0.4030 3.398 1.7 Sc 21 1.398 0.4016 3.348 1.7 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 N1 28 2.236 0.3318 3.232 <td>Mg</td> <td>12</td> <td>1.290</td> <td>0.4458</td> <td>3.073</td> <td>0.8</td>	Mg	12	1.290	0.4458	3.073	0.8
P 15 1.403 0.4143 3.276 0.5 S 16 1.581 0.3772 3.378 0.4 C1 17 1.242 0.4362 3.377 1.5 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.6 Cr 24 1.659 0.3909 3.116 0.6 Mn 25 1.722 0.3920 3.069 0.6 Fe 26 1.731 0.3868 3.118 1.6 C0 27 1.961 0.3655 3.067 0.6 N1 28 2.236 0.3318 3.232 1.6 Cu 29 2.390 0.3327 2.962 0.6	Al	13 p	1.342	0.4538	3.040	1.9
S 16 1.581 0.3772 3.378 0.4 Cl 17 1.242 0.4362 3.377 1.5 Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 2l 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.6 V 23 1.494 0.4114 3.154 0.6 Cr 24 1.659 0.3909 3.116 0.6 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 N1 28 2.236 0.3318 3.232 1.7 Cu 29 2.390 0.3327 2.962 0.	Si	14	1.201	0.4562	. 3.236	0.6
Cl 17	P	15	1.403	0.4143	3.276	0.3
Ar 18 1.301 0.4237 3.428 1.6 K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mm 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 Ni 28 2.236 0.3318 3.232 1.7 Cu 29 2.390 0.3327 2.962 0.	, S	16	1.581	0.3772	3.378	0.4
K 19 1.461 0.3804 3.462 1.6 Ca 20 1.350 0.4030 3.398 1.6 Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.3 V 23 1.494 0.4114 3.154 0.3 Cr 24 1.659 0.3909 3.116 0.3 Mn 25 1.722 0.3920 3.069 0.3 Fe 26 1.731 0.3868 3.118 1.3 Co 27 1.961 0.3655 3.067 0.3 N1 28 2.236 0.3318 3.232 1.3 Cu 29 2.390 0.3327 2.962 0.3	Cl	17	1.242	0.4362	3.377	1.2
Ca 20 1.350 0.4030 3.398 1.0 Sc 21 1.398 0.4016 3.348 1.0 Ti 22 1.423 0.4078 3.246 0.1 V 23 1.494 0.4114 3.154 0.1 Cr 24 1.659 0.3909 3.116 0.1 Mn 25 1.722 0.3920 3.069 0.1 Fe 26 1.731 0.3868 3.118 1.1 Co 27 1.961 0.3655 3.067 0.1 Ni 28 2.236 0.3318 3.232 1.1 Cu 29 2.390 0.3327 2.962 0.1	Ar	18	1.301	0.4237	3.428	1.8
Sc 21 1.398 0.4016 3.348 1.6 Ti 22 1.423 0.4078 3.246 0.3 V 23 1.494 0.4114 3.154 0.3 Cr 24 1.659 0.3909 3.116 0.3 Mn 25 1.722 0.3920 3.069 0.3 Fe 26 1.731 0.3868 3.118 1.3 Co 27 1.961 0.3655 3.067 0.3 Ni 28 2.236 0.3318 3.232 1.3 Cu 29 2.390 0.3327 2.962 0.3	K	19	1.461	0.3804	3.462	1.0
Ti 22 1.423 0.4078 3.246 0.7 V 23 1.494 0.4114 3.154 0.7 Cr 24 1.659 0.3909 3.116 0.7 Mn 25 1.722 0.3920 3.069 0.7 Fe 26 1.731 0.3868 3.118 1.7 Co 27 1.961 0.3655 3.067 0.7 N1 28 2.236 0.3318 3.232 1.7 Cu 29 2.390 0.3327 2.962 0.	Ca.	20	1.350	0.4030	3.398	1.0
V 23 1.494 0.4114 3.154 0.* Cr 24 1.659 0.3909 3.116 0.* Mn 25 1.722 0.3920 3.069 0. Fe 26 1.731 0.3868 3.118 1. Co 27 1.961 0.3655 3.067 0.* Ni 28 2.236 0.3318 3.232 1. Cu 29 2.390 0.3327 2.962 0.	Sc	21	1.398	0.4016	3.348	1.0
Cr 24 1.659 0.3909 3.116 0.3909 Mn 25 1.722 0.3920 3.069 0.3069 Fe 26 1.731 0.3868 3.118 1.3069 Co 27 1.961 0.3655 3.067 0.3655 Ni 28 2.236 0.3318 3.232 1.3069 Cu 29 2.390 0.3327 2.962 0.3327	Ti	22	1.423	0.4078	3.246	0.7
Mn 25 1.722 0.3920 3.069 0. Fe 26 1.731 0.3868 3.118 1. Co 27 1.961 0.3655 3.067 0. Ni 28 2.236 0.3318 3.232 1. Cu 29 2.390 0.3327 2.962 0.	v	23	1.494	0.4114	3.154	0.7
Fe 26 1.731 0.3868 3.118 1. Co 27 1.961 0.3655 3.067 0. Ni 28 2.236 0.3318 3.232 1. Cu 29 2.390 0.3327 2.962 0.	Cr	24	1.659	0.3909	3.116	0.7
Co 27 1.961 0.3655 3.067 0.7 Ni 28 2.236 0.3318 3.232 1. Cu 29 2.390 0.3327 2.962 0.	Mn	25	1.722	0.3920	3.069	0.4
Ni 28 2.236 0.3318 3.232 1. Cu 29 2.390 0.3327 2.962 0.	Fe	26	1.731	0.3868	3.118	1.2
Cu 29 2.390 0.3327 2.962 0.	Co	27	1.961	0.3655	3.067	0.7
	Ni	28	2.236	0.3318	3.232	1.3
Zn 30 2.264 0.3584 2.946 0.	Cu	29	2.390	0.3327	2.962	0.9
	Zn	30	2.264	0.3584	2.946	0.7
Ga 31 2.021 0.3889 2.949 0.0	Ga	. 31	2.021	0.3889	2.949	0.7
Ge 32 1.988 0.3925 2.994 0.	Ge	32 .	1.988	0.3925	2.994	0.6
As 33 1.993 0.3845 3.055 0.	As	33	1.993	0.3845	3.055	0.4

TARGET	AT. NO.	<u>z</u>	A	$\overline{\mathbf{N}}$	<u>%</u>
Se	34	1.965	0.3933	3.063	0.3
Br	35	1.753	0.4168	3.135	1.2
Kr	36	1.693	0.4218	3.144	1.3
Rb	37	1.926	0.3745	3.269	1.0
Sr	38	1.786	0.3911	3.264	0.7
. Y	39	1.789	0.3921	3.233	1.3
Zr	40	1.798	0.3832	3.280	0.7
Nb	41	1.780	0.3889	3.236	0.5
Мо	142	1.945	0.3731	3.235	0.5
. Te	43	1.911	0.3724	3.293	0.9
Ru	44	2.165	0.3481	3.283	0.9
Rh	45	2.254	0.3438	3.241	0.9
Pd	46	2.572	0.3182	3.255	2.5
Ag	47	2.671	0.3125	3.258	1.7
Cd	48	2.462	0.3354	3.144	1.0
In	49	2.280	0.3590	2.998	1.3
Su	50	2.162	0.3779	2.983	0.7
Sb	51	1.933	0.4198	2.865	0.3
Te	52	1.870	0.4294	2.897	0.1
I	53	1.718	0.4424	3.049	1.9
Хe	54	1.627	0.4565	2.985	1.1
Cs	55	2.010	0.3850	3.105	0.7
Ba	56	1.882	0.3994	3.116	0.6
La	57	1.882	0.3957	3.160	1.0
Ce	58	2.010	• 0.3880	3.110	0.5
Pr	59	2.073	0.3832	3.106	0.5
Nd	60	2.135	0.3791	3.099	0.5
Pm	61	2.199	0.3752	3.093	0.5
Sm	62	2.254	0.3729	3.081	0.4
Eu	63	2.313	0.3701	3.071	0.4
Gđ	64	2.284	0.3708	3.083	0.4
ТЪ	65	2.433	0.3651	3.051	0.4
Dy	66	2.764	0.3347	3.086	0.5
Но	67	2.894	0.3317	3.077	0.4

TARGET	AT. NO.	<u>Z</u>	<u>A</u>	N	<u>%</u>
Er	68	2.962	0.3300	3.064	0.4
Tm	69	3.030	0.3286	3.051	0.3
Yb	70	3.098	0.3271	3.040	0.3
Lu	71	3.052	0.3300	3.048	0.3
Hf	72	3.015	0.3297	3.062	0.3
Ta	73	3.166	0.3223	3.065	0.4
W	74	3.265	0.3210	3.028	0.2
Re	75	3.015	0.3291	3.065	0.2
Os	76	3.123	0.3216	3.073	0.2
Ir	77	3.230	0.3145	3.076	0.2
Pt	78	3.573	0.2916	3.105	0.3
Au	79	3.272	0.3163	2.963	0.3
Hg	80	3.587	0.2982	3.036	0.1
T	81	3.240	0.3218	2.978	0.1
Pb	82	2.914	0.3398	2.963	0.1
Bi	83	2.949	0.3437	2.957	0.1
Po	84	2.918	0.3447	2.974	0.3
At	85	2.950	0.3396	3.005	0.6
Rn	86	3.025	0.3310	3.044	0.9
Fr	87	2.687	0.3553	3.044	0.6
Rg	88	3.503	0.3699	3.050	0.5
Ac	89	2.509	0.3664	3.078	0.6
Th	90	2.544	0.3604	3.106	0.6
Pa	91	3.669	0.3538	3.076	0.5
υ	92	2.745	0.3490	3.069	0.5