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ABSTRACT

The theoretical, experimental and philosophical principles underlying the
self-perturbation of a generalized neutron detector on its own spectrum
measurements within an experimental medium are examined. It is shown that, in
the classical 1imit, there are two fundamental and physically different as-
pects of perturbation, namely an "absolute perturbation" which is defined as
the change in the neutron transport operator of the system and, more im-
portantly, a "detectable perturbation" which is defined as the difference be-
tween the measured detector spectrum and an ideal calculation of the unper-
turbed system, assuming an otherwise ideal detector. In particular, it is
demonstrated that while a detector will always cause an absolute perturbation
of the neutron flux by virtue of the detection interactions, this does not
necessarily imply that the measured spectrum will show any difference from an
ideal calculation of the unperturbed system, irrespective of the detector
dimensions. Extension of these arguments through definition of the detector
response function establishes that a detectable perturbation will only occur
when the interaction processes in the detector subsequently change the ingoing
neutron current to the detector surface over that for the equivalent volume of
unperturbed medium. Resulting redefinition of the problem of neutron flux
perturbation to one of ingoing neutron current perturbation reveals that the
neutron-sensitive volume of the detector plays a fundamenta11y different role
to that of the associated outer structure (casing, preamplifier, photomulti-
plier voids, etc.) Finally, it is shown that, in general, the detectable
perturbation may be minimized by selecting a detector with characteristic
dimensions small relative to the generalized scattering mean free path of the

external medium.



1. INTRODUCTION

Neutron spectrometers have been widely employed for in-situ scalar flux
determinations within integral benchmark experimental assemb]ies.(l'G)
Usually, the resulting measurements are compared with corresponding neutron
transport calculations for the system. Providing that the overall uncertain-
ties in both the experimental measurements and the methodology of the theo-
retical calculations are small relative to the uncertainties in the integral
nuclear data employed in these calculations, the comparison of experiment and
theory provides a direct test of the integrity of this data.(7) One factor
which influences the accuracy of the measurements is the perturbation of the
neutron field by the neutron spectrometer itself. It might be expected that
if this perturbation is large, the neutron transport calculations for the
system must include the detector explicitly, a factor which will greatly
increase their computational complexity.

Detector perturbation has occasionally received acknowledgement in the
literature in that the use of large active spectrometers (e.g., 5 x 5 cm NE
213 scintillation spectrometers) has, in some cases, been rejected in favor of
smaller passive techniques such as threshold foils, etc.(s’g) In a recent
publication, for example, Sekimoto et al.(lo) considered the perturbation of
the neutron spectrum in an experimental assembly due to the presence of an NE
213 neutron scintillation spectrometer. Their conclusions included the obser-
vation that the perturbing effect due to the neutron-sensitive volume (i.e.,
the NE 213 organic scintillant) is smaller than that due to associated ma-

terials of the spectrometer (e.g., structural case, photomultiplier, etc.).



It is very important, however, to pause here and ask the following
questions:
e Just what does the term "perturbation" actually mean when applied to the
insertion of a neutron detector into a neutron field?
® Irrespective of its magnitude, would this perturbation necessarily be
apparent in the measured spectrum when compared with an ideal calculation
of the unperturbed spectrum, assuming an ideal measurement in all other
respects?
Examination of these questions will show that there are two fundamental
and physically different aspects of detector perturbation and that, under

certain conditions, the effect of a finite perturbation is not necessarily

detectable in the measured spectrum from an otherwise ideal instrument (i.e.,
infinite resolution and sensitivity, etc.)

2.  WHAT DO WE MEAN BY DETECTOR "PERTURBATION"?

When a detector is introduced, for measurement purposes, into a neutron
field, there are two aspects of the resulting perturbation to consider, name-
ly:

e An "absolute perturbation" which may be defined as the change in the
neutron transport operator of the system; this simply expresses the change
in the neutron field due to the physical presence of the detector and could
be obtained, for example, from two transport calculations of the neutron
spectrum with and without the detector.

e A "detectable perturbation" which may be defined as the difference between

the measured neutron spectrum and an ideal calculation of the unperturbed



neutron spectrum, assuming that, apart from its perturbing effects, the
detector is able to perform an ideal measurement.”
By "ideal" calculation, it is meant that no errors or approximations occur due
to computational models, cross section data, etc.

The distinction between these two definitions of perturbation is subtle
and should be appreciated. It should be noted that in those references on
detector perturbation in the literature discussed above, only the phenomenon
of absolute perturbation was considered, whereas it is the detectable pertur-
bation which is central to the assessment of the perturbing effects of a
neutron spectrometer. In the application of a miniature NE 213 neutron
spectrometer to a lithium fluoride integral benchmark experiment,(l) this
author has investigated the implications of both these effects. (2) This will
be discussed later.

3. A SIMPLE ILLUSTRATION OF "ABSOLUTE" AND "DETECTABLE" PERTURBATIONS

When a spectrometer is placed in an experimental medium, it must, by
definition, cause an absolute perturbation of the neutron flux in order to
effect a measurement. This is so, since neutrons entering the neutron-
sensitive volume of the detector will undergo different interactions with this
volume than with the equivalent volume of medium material replaced by the
detector. Therefore, the magnitude of the absolute flux perturbation will
depend on the difference between the neutronic properties of the detector and

the original material replaced by the detector.

*The fact that the detector causes an absolute perturbation of the neutron
spectrum does not necessarily preclude it from an otherwise ideal measurement
in terms of infinitely fine resolution and sensitivity, etc. This will be
discussed later.



However, the fact that the flux has been absolutely perturbed does not
necessarily imply that a detectable perturbation has occurred; i.e., the
absolute perturbation does not necessarily imply that the spectrum measured by
the spectrometer will show any difference from an ideal calculation of the
unperturbed spectrum.

As an initial illustration of these arguments, consider Fig. 1. This
shows a point neutron source isotropically emitting n neutrons per solid angle
per unit time into a vacuum. The vacuum may be considered an infinitely
dilute scattering medium. A spectrometer system consisting of two neutron
detectors, detector 1 and detector 2, is positioned in the evacuated medium
with detector 2 placed behind detector 1 and coaxially with respect to the
source. Let detector 1 and 2 subtend solid angles 9 and 92 with respect to
the source and let their front face areas be A; and Ar, respectively. Assume
also that both detectors are 100% efficient so they appear "black" to incident
neutrons.

The neutron flux as measured by detector 1 will be

Now since an ideal calculation of the flux at the spatial coordinate
corresponding to the front face of detector 1 gives exactly the same result,
it can be seen, from the definition above, that there is no detectable pertur-
bation at detector 1, irrespective of the size of the latter. Therefore, a

perturbation correction to the experimental measurement is not required.
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Detector 1 has, of course, produced an absolute perturbation of the flux
in its vicinity due to the detection process and this absolute perturbation is

clearly apparent at detector 2 where the measured flux is now

0 (9-9) H(Rp-g))
B A

¢ (2)
2 2
where H(Sz2 - 91) is the Heavyside function.
An ideal calculation at detector 2 would predict

To summarize this example, detector 1 has produced an absolute pertur-
bation in the neutron flux in its vicinity, but the results of its measurement
show no effect of this perturbation (i.e., no detectable perturbation) since
they are identical to the ideal calculation. The absolute perturbation due to
detector 1 is, however, evident at detector 2.

4. ABSOLUTE AND DETECTABLE PERTURBATION IN A PHYSICALLY-REALIZABLE SITUATION

In order to enhance our appreciation of the physical difference between
absolute and detectable perturbations, the example in Fig. 1 will now be ex-
tended to a real detector in a physical medium. Consider Fig. 2. This shows
a neutron detector of arbitrary efficiency comprising a neutron-sensitive
volume (e.g., NE 213 organic scintillator, BF3 gas, etc.) and its associated
structure (e.g., outer case, photomultiplier, preamplifier, etc.). The
detector is positioned in a neutron scattering medium for purposes of flux

determination.
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From the considerations above it can be seen that, unless the neutronic
properties of the detector are identical to those of the scattering medium in
which it is situated, an absolute perturbation of the neutron flux in the
system must occur. However, to assess the degree of detectable perturbation
of this spectrometer, it is important to appreciate that such detectors pro-
vide quantification of the neutron spectrum not from the neutron flux
¢(r,E) in their vicinity, but from the ingoing neutron current at the detector

surface.(2’12) This ingoing current may be written

C(E) = [ ds+d(r,E) = [ [ ds-2 e(r,Q,E) dg (4)
- - A4x
where J(r,E) is the neutron current density, ds is a vector element of the
detector surface with direction along the outward normal, o(r,Q,E) is the
neutron angular flux and the negative sign on the integral denotes that the
surface integration is to be carried out only where ds - 2 is negative. By

contrast, the surface integral of the scalar flux would be

S(E) = [ o(r,E) ds = ff o(r,2,E) dgds . (5)

4n

Extending Eq. (4), the response R(E') of the detector to the ingoing current

C(E) can be expressed by the Fredholm integral

R(E) = [ [ [ ds - @ olr,2E) M(r,2,E,E') dg dE (6)
E - 4«

where M(r,Q,E,E') is the detector "response function" and expresses the proba-

bility that an incident neutron of energy in the range dE about E will give



rise to a detector response signal dE' about E'.(Z) Note that the response

function is formally dependent on the incident neutron direction of travel

2 and of its coordinate of inward entry r through the detector surface.
Formally, in order to extract the original neutron spectrum information

from the measured response R(E'), the latter must be deconvoluted with the aid

of the detector response function. The measured ingoing neutron current

spectrum from the detector can, therefore, be written
Cd(E) = U [R(E") , M(r,Q,E,E')] (7)

where UL , ] represents the deconvolution operation. If, for example, the
integral in Eq. (6) was to be formulated in matrix notation, then Eq. (7)
would represent the multiplication of the matrix R(E') by the inverse of the
response function matrix M'l(g,g,E,E').

From Eq. (5), the absolute perturbation of the detector can now be

written
Pp = S(E) - SPE) = [ 4(r,E) ds - [ oP(r,E) ds (8)

where ¢(r,E) is the unperturbed scalar flux where no detector is present and
¢p(£,E) is the perturbed scalar flux due to the presence of the detector.
Clearly Py =0 and ¢(r,E) = ¢p([,E) only when the neutronic properties of the
detector are identical to those of the external scattering medium. The

detectable perturbation on the other hand can be written

Py = C(E) - C,(E) (9)



where C(E) is the ingoing current from the ideal calculation of the unper-
turbed system and Cd(E) is the corresponding measured value from the ideal
detector. Substituting the expression for the detector response R(E') from
Eq. (6) into Eq. (7), enables the deconvoluted detector spectrum to be

expressed by
Cq(E) = U[J dE {f do [ ds-q o(r,2,E)} M(r,Q,E,E') , M(r,g,E,E')] .  (10)
E 4n -

Notice, however, that since the detector has been defined as "ideal" apart
from a possible detectable perturbation effect, then both the response
function M(r,Q,E,E') and the deconvolution process U[ , ] contain no errors or
uncertainties. Thus, the detectable perturbation Py in Eq. (9) is only non-
zero when the ingoing neutron current enclosed within the inner braces in Eq.
(10) differs from the value C(E) obtained from the ideal calculation of the
unperturbed system.

Therefore, if and only if the detection interactions in the spectrometer
subsequently change the ingoing current over that current entering the equiva-
lent volume of unperturbed scattering medium, will there by any detectable
perturbation between the measured spectrum and that of an ideal calculation.
Note that the fact that the ingoing neutron current will undergo interactions
within the spectrometer necessary for the detection process, thereby changing
the outgoing current and yielding a perturbed flux ¢p(£,E) (and, therefore,
always causing an absolute perturbation), is irrelevant since this is ac-
counted for in the response function M(r,Q,E,E') of the detector (see later).
Therefore, the important consideration in experimental measurements is not

flux perturbation but rather ingoing neutron current perturbation.

10



Consider now those processes of detection which may change the ingoing
neutron current and, therefore, contribute to a detectable perturbation. 1In
Fig. 1, detector 1 was defined as 100% efficient such that all neutrons enter-
ing this detector were completely absorbed. Therefore, although there was an
absolute flux perturbation at the detector, the ingoing neutron current was
unchanged and no detectable perturbation occurred. In the case of the real
detector in the scattering medium in Fig. 2 there are various processes to
consider. Neutron number 1 in this figure enters the sensitive volume and is
completely absorbed, giving all its energy to the detector response. Neutron
number 2 undergoes a scattering interaction in the sensitive volume, gives up
a fraction of its energy to the detector response and leaves the detector to
be absorbed somewhere in the outside medium. Since both these detection
interactions do not affect the ingoing neutron current, there is no detectable
perturbation of the measured flux. Neutron number 3 scatters out of the
sensitive volume and, as number 2, provides a fractional contribution to the
response. However, it re-enters the detector due to a subsequent nearby
scattering reaction in the medium, thereby perturbing the ingoing current and
directly contributing to a detectable perturbation between the measured
spectrum and the ideal calculation.

Neutron number 4 in Fig. 2 presents an interesting situation since it
scatters in the outer structure of the detector before being absorbed in the
sensitive volume. There is no doubt that this neutron has perturbed the
ingoing current to the sensitive volume since the outer structure possesses
different neutronic properties to the equivalent volume of medium that it
replaces. However, note that unless this neutron subsequently scatters out of

the sensitive volume and scatters back in again from the medium, it can be

11



seen that the ingoing current to the detector as a whole (i.e., sensitive
volume plus outer structure) is unchanged. It is important, therefore, to
define just what is meant by "detector" when assessing changes in ingoing
current.

It should be noted here that scattering events 2, 3 and 4 are really
special cases of general secondary neutron production events in which one or
more neutrons may be produced, e.g. (n,n), (n,2n), (n,np), etc. In this
context, identical considerations apply in that only those secondary neutrons
produced in the detector which escape to the outside medium and subsequently
scatter back in (or, equivalently, give rise to further secondary neutrons
which enter the detector) will contribute to a detectable perturbation.

5. WHAT CONSTITUTES A "DETECTOR"?

For a detector which consists purely of a sensitive volume (e.g., a
threshold foil), the definition of the "detecting-portion", for which the
ingoing neutron current must remain unchanged for no detectable perturbation,
would appear to present no problem. All active spectrometers, however, have
some associated structure (see Fig. 2) and the definition of their "detecting-
portion" requires consideration of how they are initially calibrated as
follows.

It was shown in Eq. (7) above that in order to obtain the required
neutron information from a neutron detector, the measured response R(E') must
be deconvoluted by means of the detector response function M(r,Q,E,E'). For a
simple integral flux monitor, for example, the response function may merely be
a set of energy-dependent efficiency corrections. However, for a spectrom-
eter, the required neutron spectrum must be "unfolded" from the measured

response by means of a response function consisting of a complex matrix of

12



individual response vectors.(z’ll’ls) These individual energy-dependent
responses can be obtained either by numerical Monte Carlo mode]ing(lz) or
measured experimentally by way of monoenergetic neutron sources of known

(13) Therefore, provided that the outer structural material of the

intensity.
spectrometer is included in the response function determination, it would
appear that a detectable perturbation occurs only for a change in the ingoing
current for the whole detector and not just the sensitive volume.

Unfortunately, response functions are invariably determined either from
isotropic fluxes, or, in the case of experimental calibrations, from mono-
directional monoenergetic fluxes incident on one face of the sensitive volume
(usually the front)(l’Z), whereas the formal response function M(r,2,E,E')
in Eqs. (6) and (7) above is a function of both the direction of travel 2 of
the incident neutron and the position r of entry through the detector surface.
Therefore, the definition of "detector" applies to those portions of the
spectrometer in which neutrons interact from directions equivalent to those in
the original response function calibration. In fact, the detection efficien-
cies per unit incident current flux of homogeneous neutron-sensitive volumes
of spherical shape, or of cylindrical shape with diameter and height di-
mensions in the same order of magnitude range, are virtually independent of
g.(Z) Therefore, for the vast majority of practical neutron detectors, we may
define our "detector" as the sensitive volume plus those portions of the
associated structure in which neutrons interact from directions equivalent to
those in the original calibration.

If the detector in Fig. 2 was originally calibrated, for example, by

exposure to monoenergetic neutron fluxes incident on the front face, then

neutrons which enter the sensitive volume following a scattering event in the

13



associated structure are compensated for in the response if, and only if, they
originally entered the structure via the front face of the sensitive volume.
It can be seen that neutron number 4 does not obey this constraint and is,
therefore, directly capable of changing the ingoing current of the detector
and thus contributing to a detectable perturbation.

To summarize this section, it can be seen that there are two aspects in
the consideration of contributions to detectable perturbation, namely (1) that
due to the neutron-sensitive volume of the spectrometer which causes a detec-
table perturbation only if the detecting interactions in this volume subse-
quently change the ingoing neutron current and (2) that due to any associated
structures (including voids) which, unless compensated for in the response
calibration, directly perturb the initial ingoing current to the sensitive
volume.

6. CONCLUSION: THE DEPENDENCE ON THE SCATTERING MEAN FREE PATH OF THE

EXTERNAL MEDIUM

Having now defined the two aspects of detector perturbation (i.e.,
absolute perturbation and detectable perturbation) and contrasted the various
contributing processes, it is clear that the important consideration in the
assessment of spectrometer perturbation effects between experiment and calcu-
lation is the degree of detectable perturbation. Since this is dependent on
the change of the ingoing neutron current over that entering the equivalent
volume of unperturbed medium, it is evident that this change will, in turn, be
dependent on the neutron scattering mean free path of the medium external to
the detector. In particular, to ensure that the detectable perturbation is
small relative to other uncertainties in a given measurement and associated

calculation, the characteristic dimensions of the detector must be small

14



compared with the neutron scattering* mean free path in the external system.
Notice that the absolute perturbation at the detector is dependent on the
difference between the neutronic properties of the detector and the experi-
mental system, whereas the detectable perturbation can be independent of these
differences in neutronics properties provided the above condition is ful-
filled.

In Fig. 1, for example, since the external medium is a vacuum, its scat-
tering mean free path is infinitely large. It is, therefore, now possible to
relax the constraint that detector 1 is 100% efficient, and still maintain the
situation of no detectable perturbation since it is clearly impossible for
neutrons scattered out of the detector to re-enter the sensitive volume and
subsequently perturb the ingoing current. Due to scattering in the associated
detector structure this situation is, of course, now contingent on the effi-
ciency of detector 1 being determined from monoenergetic neutrons incident on
the front face, and formally requires that the volume of detector 2 tends to
zero so that back-scattered neutrons are eliminated.

In Fig. 2, deployment of a detector with characteristic dimensions small
relative to the neutron mean free path in the scattering medium, minimizes
those events analogous to neutron number 3, while neutrons number 1 and 2 do
not contribute to the detectable perturbation, irrespective of the detector
size (see above). Events such as neutron number 4 set a fundamental lower
1imit to the detectable perturbation since, if they cannot be allowed for in
the detector response, they cause a detectable perturbation irrespective of

the mean free path of the medium.

*“Scattering" here includes generalized secondary neutron production events
(see Section 5 above).

15



This author has considered the detectable perturbation effects of a mini-
ature (1.5 x 1.5 cm) NE 213 organic scintillation spectrometer employed in a
Tithium fluoride integral assembly for purposes of fusion reactor data assess-
ment.(l’Z) The neutron mean free path in this integral assembly was ~ 15 cm
at 14 MeV reducing to only ~ 3 cm at 0.25 MeV and, as might be expected, the
magnitude of the detectable perturbation in the measured neutron spectrum was
a function of the neutron energy. Clearly, the requirement that the detect-
able perturbation be small in this experiment precluded the deployment of the
more common larger (> 5 x 5 cm) NE 213 spectrometers, especially at lower
energies.

One last consideration here is the procedure one should adopt to predict
the detectable perturbation of a prospective detector in a given experimental
assembly. From the arguments above, it is evident that the difference in
scalar fluxes from two formal transport calculations of the assembly, with and
without the detector, does not provide the required result since this merely
acknowledges the change in the system transport operator and, by Eq. (8), com-
putes the absolute perturbation. In other words, this simply characterizes
the perturbing effect of the detector on the neutron flux in the system and
says nothing about the perturbing effect of the detector on its own measure-
ments. Rather, from Eqs. (9) and (10), the expected difference between the
perturbed experimental measurement and the ideal calculation (i.e., the ex-
pected detectable perturbation) follows from consideration of the change of
the ingoing neutron current at the spatial coordinates of the detector surface
with and without the presence of the detector. Due to the physical complexi-
ties of modeling a spectrometer in an experimental system, Eq. (9) will not

usually be amenable to precise solution by either analytical analysis or
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numerical finite difference techniques and recourse is necessary to Monte
Carlo methods.(14) This would, however, require that conventional neutron
Monte Carlo transport codes such as MORSE, TART, MCNP, etc., be modified from
their conventional role of spectral flux determination to one of expressly
scoring neutrons which cross the detector boundary two or more times in one
history. Only in this way can the perturbation of the ingoing current and,

therefore, the detectable perturbation, be determined.
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