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Abstract

Irradiation of solids by energetic particles produces a system far from
its thermodynamic equilibrium. The evolution of these systems can be
described by either stochastic differential equations or master equations.
Often, the latter can be replaced by a so-called nonlinear Fokker-Planck
equation, containing drift and diffusion functions which depend on the state
variables of the system. The conditions for this replacement are briefly
discussed.

Path sums and path integral solutions have recently been proposed for
nonlinear Fokker-Planck equations, and their equivalence has been demon-
strated. The path sums are particularly suited for numerical methods. Such a
method is developed and applied to various one-dimensional Fokker-Planck
equations for which analytical solutions exist. It is shown thét the present
numerical method gives excellent agreement with the analytical results pro-
vided the diffusion function is bounded over the entire domain of the state

variables.



I. Introduction

Radiation damage to materials at elevated temperatures represents a
special example of a system driven far from its thermodynamic equilibrium but
attaining at the same time a quasi-stationary state. This state is charac-
terized by an almost constant concentration of a supersaturation of vacancies
and interstitials maintained in balance by the continuous generation of point
defects through radiation-induced displacements and by the loss through re-
combination and absorption at internal sinks.

Nevertheless, from this quasi-stationary state emerges over time scales
much Tonger than the one to reach this state new processes such as
a) the creation of a new sink structure consisting of dislocation loops,

voids, and network dislocations [17;
b) the creation of a new precipitate structure in alloys either through

segregation at sinks or through decomposition [2,3];
c) and in some cases and for appropriate conditions the creation of a new

long-ranged order in the form of void lattices and Toop lattices [4-10].
The last process in particular is a striking example of cooperative phenomena
which have been termed dissipative structures by Prigogine and co-workers
[10,11]. The universal significance of dissipative structures in any system
driven far from equilibrium and ranging from inverted electron populations in
laser systems to gene evolution in human populations has been expounded by
Prigogine and co-workers (the Brussels school) and by Haken and co-workers
(the Stuttgart school), and the latter have given this field of interdiscipli-
nary research the name of Synergetics [12,13].

In order to describe mathematically such non-equilibrium systems both

deterministic and stochastic aspects must be included into the evolution



equations for the parameters which characterize the dissipative or ordered
structures. If we call these parameters loosely order-parameters d
(e« = 1,2...n), then two ways have been developed to describe their evolution.
a) Llangevin Method or Stochastic Differential Equations

The rate of change for the order parameters, éa, is assumed to consist of

a deterministic part plus a fluctuating part,

q, = k (@t) + g (@L(t) . (1)
Here, ka(a,t) is a smooth function of all the order parameters and the
time, whereas La(t) is a random function which is not differentiable at
certain points or even anywhere. As a result, the Langevin method requires
additional rules to deal with these stochastic functions La(t), such as the
Ito or Stratanovich calculus. This approach is particularly suitable when the
“noise" is externally generated. For fluctuations generated internally, i.e.
by the system itself, the Langevin method suffers from the ambiguity that
there may exist no unique prescription to separate the deterministic from the
fluctuating parts. Furthermore, when the stochastic processes are restricted,
i.e. when the order parameters are defined only in a finite space and need to
satisfy additional boundary conditions, there does not seem to be a well de-
fined mathematical procedure to construct the stochastic differential
equations (1) such that the fluctuations L,(t) do not drive the order para-
meters beyond the boundaries. For these reasons the following method appears

to have a broader validity.



b) Master Equations

In this approach it is recognized from the very outset that the state of
a system cannot be precisely ascertained because of the ever present fluctu-
ations. Therefore, one introduces a probability distribution such that
P(a,t)dql...dqn is the probability that the system is found to be in a state
where the order parameters are between qp and gp + dgy, etc. The evolution of
the system is then described by transition probabilities W(g,p)dt from a
initial state p to a new state § within the time interval dt. As a result,

the state probability function P satisfies the so-called master equation

P3>t) = ] W(E,3-5) P(3-5,t) - P(a,t) [ W(G§+5,d) )
S

S

where the summation extends over all possible transition steps S. When the
order parameters are continuous variables, the sums are replaced by integrals.

The challenges one faces with the master equation approach are first the
very detailed specification of the transition probability W, and second, the
extraction of the deterministic and the stochastic components from the master
equation.

We shall assume that the physical processes leading to transitions are
clearly defined so that W can in principle be specified. When the master
equation can be solved and P(G,t) is known, the deterministic or average path

is for example given by

@ = [d"q'3" P(3',t) . (3)



In most cases, however, the master equation is too complicated and cannot
easily be solved. In these more common cases, the master equation must either
be solved approximately or approximated first by a simpler evolution equation.
The latter approach has proved to be the most fruitful, and it leads to a so-
called Fokker-Planck equation according to the derivation presented in Section
IT. Although the derivation of the Fokker-Planck equation will appear
straightforward, it has been and still is the subject of a lively controversy.
Furthermore, the Fokker-Planck equation is not always a good approximation to
the master equation over the entire space of the order parameters. Therefore,
one would Tike to retain the master equation in that sensitive part of the
parameter space, and use the Fokker-Planck equation in the remainder. How-
ever, it is presently not clear how to properly match the solutions of master
and Fokker-Planck equations at their mutual boundaries.

The Fokker-Planck equation lends itself to a formal solution in terms of
a path integral when the parameter domain is unrestricted. When this formal
solution is expressed as a so-called path sum, however, it can be evaluated
numerically. A procedure to do this is presented in Section IV, and several
Fokker-Planck equations, whose analytical solutions are known, are also solved
numerically. These results are presented in Section V.

Returning to the path integral formulation, it is important to note
several aspects discussed in Section III. First, different path integral
derivations have been given in the literature which do not always lead to the
same end result. The reasons associated with these differences have, however,
been illuminated more recently, and it was found that all derivations are
equivalent (unless they contained an obvious mistake) as far as the path inte-

gral is concerned. However, these differences do not disappear in the path



sum formulation, and they provide additional flexibility in the choice of the
numerical procedure. This flexibility will be exploited in future research to
improve the accuracy of the numerical evaluation. The second point worth
mentioning is that all path integral formulations presented so far are either
for unrestricted processes of for those with natural boundary conditions.

What is meant by the latter is that the functional form of the Fokker-Planck
equation is such that it admits solutions only in a restricted domain without
imposing boundary conditions. For processes restricted by extraneous or regu-
lar boundary conditions, however, a path integral formulation does not yet
exist in general. For a one-dimensional process restricted to the positive
axis, we present the appropriate path integral formulation in Section V. In
the future, this will be generalized to multi-dimensional restricted

processes.



II. The Kramers-Moyal Expansion and the Fokker-Planck Equation

Consider an arbitrary function R(Q) of the order parameters and multiply
the master equation (2) with R. Upon integration over the entire order para-

meter domain we obtain
fd" R(3) P(3,t) = [d"q [ HEEE PEL (RE+3) - R@) - @

Next, we expand R(q + S) into the Taylor series

R(343) - ngo 259" R(E) (5)
where
= _ a _
7 = (ﬁ?’_f’g—z—’“') = (359ps00) (6)

is the gradient operator. Then, we shift the gradient operators to act on the

function
Q(a,s) = W(g+s,q) P(q,t) (7)

by repeated partial integrations and obtain for the right-hand side of eq. (4)

the result

o n
jahaR@ I G 1 E9" 0@
n =

£y fas )y L
S n=1 k=0



The second integral is over the surface of the order parameter domain, where
d@ is the vector normal to the surface and of magnitude equal to the local

surface element.

We introduce now the notation

wn!
.

<]
it

S 9 s

where summation is implied over repeated indices, and the tensor functions

SRINCIEE SRR R (9)
S

where the tensor rank n is equal to the number of indices. Then the

expression (8) may be written as

Let us introduce the tensor currents

() _ n-4 (n) -
J = -1 . P(g,t
Z( ) 9 9 (q )

OLB... v * Q,Bo.ou\)ooo
n=g no

so that we can finally write for eq. (4)

' R@) @ - T D" 0, P
n:

3,9_...R(q)



In order for the r.h.s of eq. (10) to vanish we must require either of two
conditions:
a) Natural Boundaries

A11 tensor currents must vanish on the boundary 5q, i.e.

n {8 = 0onoa for - 1,2... (11)
where n, is the normal vector on the boundary. The function R(g) can be
completely arbitrary both in the interior and on the boundary where it may
also have arbitrary derivatives of any order.

b) Regular Boundaries
The function R is only arbitrary in the interior but not on the boundary

where it is required to satisfy the conditions

aBaY...R(a) =0 ongq for k =0,1,2,.e.. . (12)

k

For both kinds of boundaries (or a mixture thereof) the r.h.s. of eq. (10)
vanishes and since R(q) is an arbitrary function in the interior it follows

that

- - -
aP .t = _1 (n) -
3t L o TN GRS : (13)

Equation (13) is the so-called Kramers-Moyal expansion, and it is an



equivalent description of the stochastic process expressed by the master
equation.
When the K-M expansion is truncated after the second term one obtains the

so-called Fokker-Planck equation

) - taltp1 40 p 1aley (14)
If this truncation is based on the smallness of higher order moments A(”), a
theorem by Pawula [14] asserts that if for an even n, A(M) = 0, then A(M) = 0
for all n > 3. If, on the other hand, the higher order even moments AN are
of the same order as A(Z), the truncation can only be made when Aln) p for

n > 2 is a sufficiently smooth function so that it can be adequately approxi-
mated by a second order polynomial in the order parameters at any given point.

In the following we shall call the vector

a(l) _F (15)
a a
the drift force and the tensor
a(2) . (16)
af af

the diffusion tensor.

Natural boundary conditions imply that

nD P=0 on 3@



and that the probability flux
naJa= na(FaP - aBDaBP) =0 on 3Q

where 3 is the boundary of the order parameter domain @ and n, its surface

normal vector.

10



ITI. Path Sum and Path Integral for Unrestricted Processes

Let us consider a one-dimensional unrestricted process (or restricted

process with natural boundaries) described by the Fokker-Planck equation
PALE) - - 2 [F(q) - 2 D(a)] P(ast) (17)

which can be interpreted as a diffusion equation with spatially dependent dif-
fusion coefficient and drift coefficients. If F and D were constant, the

solution to eq. (17) would be given by

P(g5t) = [ G(a,q »t-t ) P(q st ) dq (18)

where the Green's function or the so-called propagator is given by

(t -t,) q-q
G(q,qo,t-to) = L exp{- 5 ° [t - g - F]2} . (19)
YaxD(t - tos 0

If F and D depend on g, however, eq. (18) may be expected to still hold for
very small time steps t =t - t,, and for F and D taken at the prepoint qg,

i.e.
Plapstyte) = [ G(apsq.,7) Pla st ) dq - (20)

We may now iterate eq. (2) by assuming P(qq,t+t) is known and compute

P(gp,t+21), etc. The path sum is in this manner obtained and given by

o ) dqn_1 dqO n-1 21
qn,t0+nr) = f— s [ — exp{-.Z ALir} P(qoto) (21)
/4nDan_15 /4nDZq05 i=0

11



where

oL = LSS T (22)

T 1

If we now go to the Timit n » =, T > 0 such that nt remains finite, the path

integral is obtained, and it can be written in the symbolic manner

t

t hd ]

P(g,t) = f D=Ly exp(- [ L(&,q)dt'} P(q,t,) (23)
4nD(q) t,

where q(t') is any path starting at q(t,) = q, and ending at q(t) = g, and the

integration symbol D( ) indicates a summation of all such possible paths. The

Lagrange functional is given by

[ 1 ° 2
L(g,q) = - F 24
(G,q) gy [q (q)1] (24)
t
and its integral [ Ldt' is referred to as the Onsager-Machlup functional.
t
0

The above formulation of the path integral is due to Dekker [15].
Unfortunately, other path-integral formulations have appeared in the

literature which do not agree with the one outlined above [16-21]. The

reasons for the differences (if not simply due to errors) are associated with

two issues:

a) In the discrete (or time) lattice representation of the path integral, eq.
(21), the drift and diffusion coefficients need not necessarily be taken

at the prepoint gq;. In fact, they can be taken also at the postpoint

12



Qj+1» at a point in between, or a combination of values at the prepoint
and the postpoint may be taken. This will in general result in a differ-
ent Lagrangian and a different integral measure D( ).

b) A particular Lagrangian with its appropriate measure D( ) demands a
specific discrete representation of the path integral by a path sum of the
form of eq. (21). What particular form one likes to choose depends on how
one wants to evaluate the path integral or path sum.

Unfortunately, 1ittle can be said in quantitative terms at the present
time as to what form of the Lagrangian is best suited for numerical or ana-
lytical evaluation.

Without further discussing the various path integral representation, we
give a list of some of the Lagrangians proposed in the lTiterature together
with their path sum counterparts and measures in Table 1. As shown in ref.
[26], all these are equivalent representations in the sense that the path
integrals give identical results. However, the different path sums are ex-
pected to yield somewhat different results. This is analogous to the differ-
ent numerical procedures to evaluate Riemannian integrals by discrete sums.
Different numerical procedures result in identical answers only in the limit
of infinitesimally small intervals. Similarly, different path sums converge
to the same path integral in the Timit of an infinitely Targe number of

iterations.

13
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IV. Numerical Procedure to Solve the Path Sum

A numerical procedure to solve the Fokker-Planck eq. (17) is to carry out
repeated iterations of eq. (20) by solving the integral numerically. To ac-
complish this in the most economic fashion, the integral in eq. (20) should be
replaced by a sum containing a propagator matrix whose elements are determined
only once and which can be used in every iteration. To find this propagator
matrix, we assume first that the probability density can be represented with

sufficient accuracy by a histogram as given by

P(gst) =

m(q - q;) Pi(t) (25)
;

i~ 2
—

and as shown schematically in Fig. 1. Here

1 1
1 for 95= 3 AG;_1 < q < q;* 5 Aq,
m(q - q.) = (26)
0 otherwise .

The grid points need not be equally spaced, i.e. the intervals aAq; need not be
equal. In fact, as we shall show shortly, when the diffusion function D(q) is
not constant, a variable grid spacing is required.

After substitution of the histogram representation into eq. (20) we inte-

grate over the interval centered at the grid point q; and obtain

(q-+%Aq-) (qj+%aqj)
Pi(t + ) 5 (aa;_y +8g,) = ] P.(t) [ dg fda' G(a,q's7)

1
_1) (qj' 7 qu-l)



0-.-

e e o o - — ————
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Histogram representation of the distribution function.
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We may now define the propagator matrix as

(q1+%Aq1) (qj+%qu)
- 2 | .
T'ij(T) = Aqi-l T Aq'i f fq f (1jq G(9,q9',1) (27)
(qj_ 7 Aq'i-].) (qJ— Vi AqJ-l)
so that
N
Pt + 1) = jleij(T) Ps(t) (28)

Note that for a given time step the propagator matrix needs to be evaluated
only once, and it can then be used repeatedly to compute the time evolution of
the histogram with eq. (28).

For the present selection of the path sum, F and D depend on the prepoint

1

g'. As a result we can carry out the integration over the postpoint q in

closed form, and we obtain

1
(q.+ » 4Aq.)
327 q; *+ 5 8q; - q' - F(q")
[ dq' {erf[
YaxD(q")

1
(qj- 7 qu—l)

The remaining integration over the prepoint interval is carried out numerical-

18



ly. The resulting propagator matrix is banded, with the dominant elements
along the diagonal and off-diagonal elements decreasing rapidly with increas-
ing distance from the diagonal. In the 1imit of t + 0, the propagator matrix
degenerates into the unity matrix 61j. The width of the band of significant
elements in Tij increases with t. The banded structure of Tij implies that
much fewer than N2 elements need to be computed and stored, and that the
matrix operations involved in eq. (28) require much less computations.

Since eq. (28) is an approximation to the path sum of eq. (20), some
numerical error is incurred in each iteration. If this error is biased, as
one must expect, repeated iterations with eq. (28) will lead to a rapid ac-
cumulation of errors, and the discrete probability distribution P; will either
decrease or increase exponentially with time.

A simple correction procedure can be employed to avoid this numerical
instability in case the probability distribution is normalizable. After each
iteration, the sum

N
} P.(t) aq; =1 + ¢ (30)
i=1 | ! |
is determined. The exact probability distribution, when integrated over the
order parameter q, will of course result in a value of unity without an error

e. Therefore, the discrete probability distribution is first renormalized to

before being used on the r.h.s. of eq. (28) for a new iteration. It was found

19



in all cases considered and tested that this renormalization is essential,
indicating that the error is always biased.

In restricted stochastic processes, probability may not always be con-
served. For such cases other renormalization or correction procedures must be
developed.

The choice of the time step t and the interval spacing and sizes AqQ; are
intimately related. This can easily be seen by considering only a diffusion

process without drift. According to the Einstein relation

(8a)2/c (31)

N =

D(q) =

where (Aq)2 is the mean square displacement during a time interval of t.

We may view the histogram Pi(t) as an approximation for a discrete super-
position of Gaussian distributions centered around the grid points. During
the time 1, these distributions broaden, and, when a drift exists, they also
shift. To determine t, we now require that the drift of the mean of one of
these Gaussians will be less than the width, or the interval size aq.

Since the drift is given by F(q)t, this requirement implies that
Aq < F(q)t

Using the Einstein relation (31), we find

v <200 (32)

[F(a)]
The condition (32) is used to select a time step t. We require it to be ful-

20



filled over the region of q where the distribution function P(g,t) has an
appreciable value. Once t is selected, eq. (31) is used to find a compatible

interval spacing according to
Aq; = VZ2<D(q.) (33)

where the grid points gy are in the center of the interval aq;.

21



V. Results

In order to test the usefulness, accuracy, and limitations of the
numerical path sum methods, various Fokker-Planck equations were solved by
this method and compared to the exact analytical solutions known for these
cases.
a) The Wiener Process

Wiener processes are characterized by a Fokker-Planck equation with a
constant drift and diffusion coefficient. If the initial distribution is

given by
P(q,o) = 6(q - qO) s (34)

then the probability distribution at t > 0 is

1/2 (q - qO - Ft)z

P(q,t) = [4nDt] exp]{- % }o. (35)

Since both F and D are constant, an equal interval spacing can be chosen in
this case except for the two intervals at either end which extend to infinity.
However, the end intervals are chosen such that the value of the probability
function is negligibly small.

The initial delta function was approximated by a rectangular distribution
within one interval, centered at the position indicated by the vertical arrow
in Fig. 2. The spreading and shift of the initial delta-distribution is shown
in Fig. 2 after 80 iterations. The histogram distribution is in excellent

agreement with the exact distribution.

22
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b) The Ornstein-Uhlenbeck Process
For this stochastic process, the diffusion function is a constant, where-

as the drift is a linear function, i.e.

F=-a9 . (36)

The exact distribution for an initial delta-distribution is given by [27]

2
P(q,t) = [21rV2(t)]'1/2 exp{- [q - m(t)] (37)
2V©(t)
where the mean is changing with time according to
m(t) = xoexp(at) (38)
and the covariance according to
2 _ D
Ve(t) = )1 - exp(-2at)] . (39)

If we want to use eq. (32) to determine the maximum allowable time step =
we need to define first those values of qg,, for which the distribution
function becomes negligible. Since the drift is negative for positive a, the
distribution will tend to shift towards the origin. Thus, we may assume that

dnax = 29¢s Where gy is the center of the initial s-distribution. Hence

2D

T‘Tz—z'
ocqo

24



Since D is constant, the intervals can again be made equidistant and selected
in accordance with eq. (33).

The relaxation of a delta-function located initially at Qo = 10 according
to the Ornstein-Uhlenbeck process is shown in Fig. 3. Again, excellent agree-
ment is obtained between the exact and the path sum method.

c) A Restricted Ornstein-Uhlenbeck Process

In order to test the path sum approach for a restricted process, an

Ornstein-Uhlenbeck process is considered for the positive domain 0 < q < =

only. The distribution function must therefore satisfy the boundary condition

dP(0,t) - o (40)

This can be accomplished by selecting the new propagator [28]

2
(@ -q, - F(q.))
1/2 ,
{expl- ——prgy——

G(q,qo,T) = [4HTD(qO)]—

qF (a,) (9 +q,+ rF(qo))2
+ eXpEU(__T_ exp[- TD(q,) ] (41)

F(a,) aF (a,) 3% TF(qO)]
* Ioggyy) el- —(—r] e g

which is then integrated over both q and q, within the intervals Aq; and AQ5s
respectively. The resulting expression for the propagator matrix T: J( 1) is
too lengthy and will be omitted here.

The closed form solution to this restricted Ornstein-Uhlenbeck process is

given by [27]

25
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. -ztézllfi + expl- 2 m()”

2V

P(q.t) = [8nv2(t) T /2 {expl- 1} 42)
when the initial distribution is a delta-function. Figure 4 shows the com-
parison between the exact result (solid smooth curve) and the numerical path
sum result. Again, the overall agreement is excellent.
d) The Rayleigh Gas

The Rayleigh gas is a model system consisting of a dilute concentration
of heavy atoms in a gas of Tight atoms [29]. Assuming hard sphere collisions,
the Boltzmann collision equation can be reduced to a Fokker-Planck equation
for the energy spectrum of the heavy particles. This equation has a drift

function of

F=-q +.% (43)
and a diffusion function of

D=gq . (44)

Since the particle energy can only be positive, this Fokker-Planck equation
describes a restricted process, 0 < q < =, with an inaccessible natural
boundary at q = 0.

When the initial energy distribution of the heavy particles is a delta-

function 6(q - q,), then the distribution function is given by [29]

P(ast) = 5 exp ()Ing oT /2 % {expl-o"L(q}/2 - p1/2)2]

1,172

+ p1/%%)
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where o =1 - exp(-t) (46)

p = qexp(-t) . (47)
When the initial distribution is a Maxwellian, i.e.

P(a,0) = 212 & 3% exp(- L (48)
0

the relaxed distribution is given by [29]
P(ast) = 212 a3/% exp(- ) . (49)

Here, a, is a parameter characterizing the temperature of the initial distri-

bution, and
aft) =1+ (ao - 1) exp(-t) . (50)
When we apply the criterion for choosing the time step t, we find that

r<2D(a) . 2q (51)
F2(q) (g - 97

which cannot be satisfied with a non-zero value of t over the entire domain

0 < q<» For 1t =0.01, the numerical procedure can be expected to be accu-
rate only in the range 0.011 < q < 203, and for t = 0.0025 in the range
0.0028 < q < 803.

Figure 5 gives an example for the relaxation of a delta-function. For

the partial relaxation after a time of t = 0.3, the distribution function has

29
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Fig. 5. Rayleighgas relaxation from an initial delta-function distri-
bution. The time step is T = 0.01 and the time elapsed to the
relaxed distribution is t = 0.3.
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negligible value below q =~ 1.5. As a result, the numerical path sum method
agrees closely with the analytical solution of eq. (45).

When the relaxation of an initial Maxwellian distribution is considered,
however, a close agreement can no longer be achieved, because the distribution
function has large finite values for very small values of q where our numeri-
cal path sum method breaks down.

Figures 6 and 7 illustrate the degree of discrepancy obtained. Curve b
in Fig. 7 represents the initial distribution. After a short time of t = 0.25
has elapsed, the agreement between the exact result of eq. (49) (curve a) and
the numerical result (curve c) is still satisfactory. However, for t = 1.0,

the disagreement has become substantial as shown in Fig. 7.
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VI. Conclusions

The evolution of systems far from a thermodynamic equilibrium is best
formulated in terms of a master equation. This equation can often be replaced
by the simpler Fokker-Planck equation with a drift and a diffusion function
depending on the parameters of the system. The Fokker-Planck equation can be
solved by a path sum for which different formulations have been presented in
the recent literature.

A procedure is developed for a one-dimensional Fokker-Planck equation
which provides a highly efficient way for numerical solution. This numerical
method is compared with existing analytical solutions of certain Fokker-Planck
equations. Excellent agreement is obtained provided the diffusion function of
the Fokker-Planck equation remains finite over the entire parameter space.
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