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The accurate estimation of the ranges and damage of primary
knock on atoms or injected ions in materials 1is critical to the
successful operation of fusion reactors. Recent measurements of
the ranges and damage of ions in material show that theré are
large differenceg between theory and experiment.

In this work, a three-dimensional Ménte-Carlo model, HERAD,
has been developed to study the ranges and the damage of ions in
materials. The model incorporates the options to use a large
number of nuclear and electronic stopping models. The HERAD
code takes into account the presence of caviﬁies on the range
and - ion distribution. The results of the HERAD model were
compared to the otﬁer current computational models, énd the
effect of cavities on the range as well as the distribution of
damage was studied. The HERAD code yields a closer agreement
between experiments and theory than other computational
models. The code is also shown to be less expensive to run and
more versatile than present Monte Carlo codes for radiation

damage calculations. A reduction of more than 80Z of the LSS
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electronic cross section was found to produce better agreement

between theory and experiment.
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CHAPTER 1

INTRODUCTION

Most current theories of the production of defects in solids
neglect the evolutionary nature of the microstructure and the effect
that it can have on the ultimate spatial distribution of defects.
This pfoblem is especially critical for solids irradiated with
charged particles which have rather short ranges in the material.
These charged particles could emanate from nuclear fission reactions
or from the leakage of plasma dgbris (D+, T+, He++, etc.) from a
thermonuclear reaction. Another source of such short range charged
particles would be an accelerator used for research or commercial
applications in the solid state industry.

There are at least two areas where a proper treatment of the
emerging microstructure is very important. ' The first is the produc-
tion of gas bubbles below the surface of a fusion reactor first wall
bombarded with low energy (10-1000 KeV) helium atoms, and the second
is the production of voids in heavy ion bombarded metals. In both of
these examples the production of defects varies considerably as the
particle travels into the solid and it theoretically drops to zero at
the end of the particle range. However, if voids or bubblés form in
the damage zone, then it is reasonable to expect that the average
range of the particle (as measured from the front surface) will in-
crease as the bombarding particles now encounter, on the average,

fewer atoms per cm3 in their path.



Such observations have indeed been made experimentally. For
example, it has been normally accepted that the blister thickness of
a metal irradiated with helium atoms would be roughly equal to the

projected range in the unirradiated metal. However, in some studies

(1], the blister skin thickness was found to be larger than the range
of the helium ions. In those studies, no corrections were made be-
cause of the fact that a very high density of helium gas bubbles re-
duced the average density of metallic atoms in the ion's path. A
similar situation has recently arisen in the ion bombardment simu-
lation studies. Whitley et al. [2] and Narayan et al. [3] have found
that damage can be observed well beyond the projected range in an
unirradiated metal. It is possible that there may be other expla-
nations for this behavior, such as overestimates of the electronic
stopping powers, chanmneling, etc., but it is also possible that the
less dense microstructure near the surface can have an effect on
ultimate spread in the range of particles.

There have been previous attempts to include the presence of the
cavities on the damage calculations [4,5] but the proposed correc—
tions have been merely first order, one-dimensional gross demnsity
ad justments. In the present study, a three-dimensional Monte Carlo
code, HERAD (Heterogeneous Radiation Damage) has been developed to
study such effects.

A great deal of this thesis research (Chapters 2, 3, 4) has been
devoted to study the previous theories and codes which have been de-

veloped to describe the production of damage in unirradiated



materials. In general it was found that the present codes are inade-
quate to describe the problems studied here. Therefore, a large ef-
fort was required to identify the best features from the theories
available, and second, to write a computer code (Chapter 5) which
would be at the same time both accurate and inexpensive to run. The
flexibility to use different interatomic potentials, different energy
loss models, and to take into account the presence of cavities on the
ion transport and the damage production was deemed to be a vital
feature of such a universal code. The usefulness of the HERAD code
in this respect will be illustrated by comparison to other widely
used codes including both qualitative and quantitative observations
on test problems (Chapter 6). Finally, the HERAD code will be
compared in Chapter 6 to recent experimenfal measurements of the
ranges of ions, and the damage produced by ions.

To summarize, the objective of this thesis is to construct a
model which will be inexpensive and simple to run on a standard com
puter and will give the greatest amount of the information about the
ranges of incident ions in materials and the damage they produce in
solids which are either homogeneous or contain randomly placed

heterogeneities.
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CHAPTER II

SLOWING DOWN OF IONS IN MATERIALS

II-1. Introduction

A description of the interaction of ions with target atoms is
essential for a clear understanding of the slowing down of ions in
material. The nature of ionic interactions is also important to
obtain the associated quantities of interest in this study, such as
the range and damage. In general, this interaction involves all the
constituents of the two interacting particles, i.e. electrons and
nuclei, and presents a complicated many-body problem. Because of the
possible excitation and/or ejection of one or more of the involved
electrons, the interaction can be inelastic.

As was suggested first by Bohr [l], this problem can be simpli-
fied by separating the interaction into an inelastic part, in which
energy is transferred to individual electrons of the atoms (electron—
ic stopping), and a quasi-elastic part in which momentum and kinetic
energy are transferred to translatory motiom of the stopping atom.

In the latter process the presence of electrons merely involves an
electrostatic screening of the nuclear field of force (nuclear stop-
ping).

Such a separation procedure is a justifiable approximation be-
cause of the negligible amount of momentum an electron can have com~
pared to that of the nucleus, and because the inelastic energy loss

in individual collisions is often small [2]. Both parts, i.e.



nuclear and electronic stoppings, are energy dependent. Figure 2-1

shows the dependence of both on the ion velocity.

dE/dx

Electronic

Nuclear

Ion velocity vy

Fig. 2-1. The behavior of the nuclear and electronic contributions
to the total energy loss as a function of the ion
velocity vy



I1-2, Electronic¢ Stopping and Screening of the Ion

For highly energetic ions whose velocity is greater than any

orbital velocity of the ion-core electromns, i.e. when vy ? Zlvo*, the

ion acts as a point charge with a value equal to Zye. In this case,
the electronic stopping dominates and is described adequately by the

Bethe-Bloch equation [3]:

dE 4wZZZ e4 2m v2
L. 12 g, b (2.1)
dx 2 LI> ’ ¢
m v
el

for nonrelativistic energies, where <I> is the average excitation
energy of the stopping atom, Zj.

As the ion energy is reduced so that v, ® Z%/3 Vs where

Z%/3 v, is the mean electron velocity, the ion starts to acquire
bound electrons, and its nuclear charge begins to be screened by
these electrons. No precise theoretical treatment for the electronic
energy loss exists for this case due to the complications and the

uncertainties of the ion wave function introduced by the acquired

electrons (their orbitals are highly distorted and it is difficult to

*Throughout this thesis we will abide, unless otherwise stated, with
the following notations and symbols:

Zi, Zo atomic number of the ion and the target atom, respectively;
M;, My atomic mass of the ion and the target atom, respectively;
E1, vy energy and velocity of the ion, respectively;

e, m, electron charge and electron_?7ss, respectively;
h Plank's constant = 6,63 x 10 erg-sec;

h = h/27;

a, Bohr radius = h%/g’m_ = 0.529 x 1078 cm

v Bohr velocity = e“/h.



assign velocities for them [4]). The ion, in this velocity range,
could be thought of as an ion with an effective charge Ziaffe < 278,
which can then be used in Eq. (l). Brandt [5] and Ziegler et al. [4]
reviewed the concept of the effecti&e charge. The effective charge is
assumed to include the charge state of the ion as well as all the
effects of the screening and all the perturbations of the ion's
electrons [4].

In practice, the effective charge 1s obtained by a simple

empirical formula given by Northcliff [6] as

v
1 .
Zleff = Zl(l - exp (- V—ZTTB-)) . (2.2)
o1

A similar empirical method (7] to obtain the effective charge is
to scale the electronic stopping of an ion to that of the proton of

the same velocity, i.e.

2 _ _
Zieps? = 5¢(22021381)/5, 2y, 1iE M) (2.3)

We notice that the effective charge is independent of the target ma-

terial. A similar empirical formula [7] for the effective charge is

Z
1/2
n (- =25 - a2 - @ P, 2.4)
Z1 e 1771
which utilizes a threshold energy Q; given by
1.376

Q = v M2

(2.5)

1.376

= [27,211 eV] MlZ1 .



Ziegler et al. [4] have recently reviewed the electronic
stopping in this velocity range (i.e. vy ® VOZZ/3) and presented a
compilation of extensive experimental data for many ion—target
combinations.

As the ion velocity reduces further, v, < Vo» the ion is covered
with an electron cloud that dynamically screens the ion charge over a
distance a few times the screening length of the static atoms. For
the long-range interaction with target electrons, the ion is effec-
tively considered as a neutral atom.

Lindhard and Scharff [8] proposed that in this energy region Se

is proportional to the velocity as

2
Se 8me aoge(ZIZZ/Z) v/vo , (2.6)
where
2/3 _ 2/3 2/3
z 217 + 23 ,
and
1/6
Ee = Zl .

They suggested that the upper limit for the validity of this expres-
sion is VOZZ/3.

Firsov [9] also proposed a similar dependence of Se on the velo-
city. Firsov's theory is based on some theoretical formulation. In
this theory, a binary collision between an ion and an atom leads to

mutual transfer of the ion's and atom's electrons which results in a
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transfer of momentum, slowing down the ion. The flux of the
electrons crossing an imaginary plane between the two particles could
be calculated using the electron density and the electron velocity
derived from the Thomas—Fermi stastical model. Firsov's formula is

given by:
Se = 7.51 (3% h a,/32)(z) + 2p) vy . (2.7)

The more accurate Haréree-Fock electronic representation has
been used [10] in a modification of Firsov's theory. Also Brice
[11], using a precise quantum~mechanical definition of the flux,
defined a bound state wave function which contains only that portion
of the electronic motion. that contributes to the flux in one direc-
tion across the Firsov plane, and then used three adjustable para-
meters to fit hils resulting expression of So for all nonrelativistic
velocities.

Neither Lindhard's theory nor Firsov's theory could predict the
oscillatory dependence of S, on the ion charge Zj;. Northcliff and
Schilling [12] have employed the available experimental data to
develop a semi-empirical correlation procedure which permits the
estimation of the electronic stopping for many ion-target combi-
nations.

Robinson [7] reviewed the electronic stopping and concluded
that: "The electronic stopping Se rises proportionally to the pro-
jectile velocity, at least approximately in accord with Lindhard

theory (Eq. 2.6), at energies below about Q; (Eq. 2.5). Near Qp, Se
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commences to increase more rapidly, reaching a broad maximum near
Vl = Vozz /3 "

The above discussion 1llustrates the uncertainties of electronic
stopping powers and the need for more accurate theoretical estimation

and experimental verification of such quantities.

II-3. Nuclear Stopping

When considering the collision of an ion with a target nucleus,
one has to consider the interaction force between the two particles.
This force is best described by a potential energy V(r) which arises
from many-body interactions involving the electrons and the nuclei.
From the basic principles [17], the interatomic potential for two
atoms or ions containing a total of n electrons and separated by a

distance ryj, is

1 n e2 n Zle2 Zze2 2122e2
V(rlz) =5 I ——=- I (r + - ) + - . (2.8)
izj=1 “ij i=1 il i2 12

It is not practical or even possible to solve the collision problem
with such a potential form when n (the number of electrons) is large.
However, the many~body problem has been treated for simple systems
like He~He. The interatomic potential will be discussed later in a
separate section, and it is sufficient now to consider V(r) as a
simple screened Coulomb potential

2
leze
V(r) 3—;—'—4’ . (2.9)

where r is the distance of separation, and ¢ is a screening function
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which would include all the effects of the screening of the ion's and
atom's electrons to the nuclear charges. The screening function ¢
should approach unity when r goes to zero, i.é. for‘a very small dis-
tance of separation one has a simple Coulomb potential for the
interaction of the two nuclei at the other extreme, ¢ must vanish as
T > =,

Apparently the nuclear charge of the target atom is always com
pletely screened by the atomic electrons at large distances, but as
shown in Section (II-2), the screening of the ion is velocity depend-
ent. For the velocity region v > Vo2, l.e. for a completely stripped
nucleus, and for a small distance of separation the unscreened
Coulomb field would lead to a Rutherford scattering which is small.

For vy < VOZZ/3

the screening of the ion's nuclear charge begins to
take place. Thus, the screening function ¢ should depend on the
velocity. Despite this fact, and for the sake of simplicity, the
screening functions are always considered to be that of static atom-

atom interaction.

Bohr [1] suggested that ¢ takes the simple form
r

where a is the screening parameter or the screening length, given by

2/3

- 2/3.,-1/2
a a, (Z1 + Z )

2 ’ (2.11)

although some authors used empirical values of a up to three times

the Bohr value [13]. This 1s because when r > a, the Bohr potential
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decreases more rapidly than does the actual iom—~atom interaction.
Lindhard et al. [l4] used Thomas-Fermi potential with the screening

length, a, slightly different from Bohr's and given by
a=0.8853 & (223 4 227371/ (2.12)

Firsov [15] on the other hand, used a screening length given by

a =0.8853 a_ <zi/2 + zé/"')‘?’/2 . (2.13)

It 1s convenient to introduce the collision diameter b, which is
the distance of closest approach in a head-on collison for the case

of Coulomb interaction, defined as

_ 2,,1 2
b = Z,Z,€ /(5 Movl) , (2.14)
where M0 is the reduced mass defined as
Mo = Mle/(M1 + MZ) . (2.15)
Bohr [1] used the ratio of b to the screening length a

£ =bla , (2.16)

as a measure of the degree of screening, while Lindhard et al. [14]

used the inverse of the same ratio

=22 1. 2 |
e =3 77 MV . (2.17)
leze

as a measure of the energy.
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II-3-1. Applicability of Classical Mechanics

If we wish to apply the classical mechanics to the collision
problem, two conditions must be satisfied [16]. The first is that
the orbit of the particle must be well-defined in relation to dis-—
tance, and the second is that the deflection due to the collision
must be well defined. The first requires that the DeBroglie wave-—
length % of the particle should be less than the minimum dimension
associated with the collision. A suitable choice of this distance is

the collison diameter b. Thus,

x =0 _«bp . (2.18)
Movl
Defining
X ’% » (2.19)

Equation (2.17) becomes
x>>1 . ' (2.20)

The second condition requires that, if Ap is the momentum trans-

fer in the collision, one must have
bap >> h . (2.21)
dp is the order of V(b)/vy, and hence we have

p V(b 55 1 (2.22)
Vlh
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In terms of the angle of scattering 8, which is of the order
V(b)/Movz, this condition can be written as 6 >> h/mva. Since 6 is
of the order of unity, and in case of Coulomb interaction, the first
condition, Eq. (2.20), is a necessary and sufficient condition for
using classical mechanics, leading to Rutherford scattering [1].

For the case of minimum screening, i.e. £ < 1, ¢ >> 1, or mini-
mum distance of separation, and when condition (2.20) is satisfied,
classical mechanics can be applied and leads to Rutherford scattering
for all angles larger than a minimum angle. This minimum angle
corresponds to an impact parameter in the order of the screening

length and is given by Bohr [l] to be

leze2
B, ™ E = ——— (2.23)
min 2
M vsa
ol

and by Mott and Massey [16] as

3.8 24/3 e2
- 2
min M v2a
o

. (2,24)
)
If Eq. (2.20) is not fulfilled, i.e. when X > b and still £ << 1,
i.e. (b << a), the Born approximation can be used and there will be a
region of scattering angles confined to Rutherford scattering with a
minimum angle given by
8 . =X | (Bohr)

and (2.25)

Omin = 2.1 25/3 h/(Movlao) . (Mott and Massey)



16

In the case of excessive screening, i.e. b > a, coandition (2.20)
would not be sufficient for the classical mechanics to be applied,
and we require A << a rather than X << b. 1In this case, it would be

impossible to trace angles smaller than

8, ~Xa& | | (2.26)
X

min a

and the scattering will be essentially different from that in the
ungcreened fields. The scattering then tends towards a spherically
symmetrical angular distribution. Thus the condition for classical
mechanics to be applied in this case is 6p;, << 1. From Eq. (2.26),

this implies that
X >> & . (2,27)

When % > a, the quantum mechanics treatment should be used.
However, there exists a region where the Born approximation can still

be used where y < %/2a or
x << /E . (2.28)

The criteria specified are best illustrated in Fig. 2-2 where a
schematic diagram represents the different cases. Also, Fig. 2-3

shows the different regions in terms of y and Z.



17

a) * < b < a, Rutherford
scattering with

1
emin @ 2
v

b) b<x, a>b, Born
Approximation

b') a >> %', Rutherford
with 6 . a-lL
min v2

¢) a > X, Classical
Mechanics

dy £€>x>/E, or

kl<>\<9c2;

acl=a,x2=/£

Quantum Mechanics

- -
Sermmm=”

Fig. 2-2. Schematic diagram of the relationship between the colli-
sion diameter b, the screening length a, and the wave

length .
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mechanics should be applied.
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1I-3-2., The Interatomic Potential

Unfortunately there is no single analytical expression for
interatomic potential that can precisely describe the interaction
between ions and/or atoms along all distances of separation between
them. Because the subject of the interatomic potential is so rele-
vant to many fields of study, one can find a large number of approxi-
mate formulae that have been devised to describe it. An extensive
review for the theories and the approximations associated with these
formulae has been made by Torrens [17].

The aproximation of the many-body interaction described in Eq.
(2.8) by a simple central two-body potential, like Bohr potential
(Eq. 2.9 and Eq. 2.10), can be justified in cases of large or very
small distances of separation, i.e. when nucleus—mucleus interaction
is predominant. In the case of intermediate distances of separation,
when some degree of merging between the two particles’ electrons
occurs, the approximation is not as good.

The nature of the interaction between ions and/or atoms can be
described qualitatively as follows. For high energy atomic colli-
sions and small distances of separation the nuclear—-nuclear repulsion
plays the major role. If the atoms are just "touching”, the nuclear
repulsion is negligible compared to the interaction between the
electron clouds. If the atoms are ionized, the interaction can be
treated as if the ions are charges. For large separatious, the
interaction depends on the host medium. In a vacuum it arises from

the polarizations that take place between the two atoms. In metals
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the separated ions interact via the intervening electron charge
clouds.

If the electron clouds are overlapping, a short range inter-
action arises due to the Pauli principle. In this case, as was
mentioned previously, it is impossible to solve the collision problem
accurately, and substantial approximations are required. In such
cases, various approximate atomic models are combined with experi-
mental data to yield reasonable pair-wise interatomic potentials in
some ranges of atomic separation. Figure 2-4 shows a schematic dia-
gram of a typical two—body interatomic potential. It should be
mentioned that there 1is also a large amount of experimental data for

the region of r >> r, and for the nuclear repulsion region, i.e.

o
r << r,, but there is a lack of information in the region between
these two extremes. In this region the potential is constructed by
extrapolation of either the high energy or equilibrium potentials.
Many of the existing forms of interatomic potentials have been
theoretically based on the Thomas—Fermi model of the atom. In this '
model the atomic systems consist of one or more Coulomb nuclei, sur;
rounded by an electron gas of variable density which is considered

uniform on the microscopic scale [18]. The potential of a neutral

atom in this model with charge number Z is given by
V(r) =-%E & (r/a) , (2.29)
with

a = 0.8853 a_ 73 (2.30)
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V(r)

Fig. 2-4. Schematic representation of a simple interatomic two-body,
potential.
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and ¢ (r/a) is the solution of the nonlinear differential equation
& 3/2,.1/2
SX = 2oy

s (2.31)
dx2

with x = r/a, and with boundary conditions

x(0) =1 | x(=) =yx'(=) =0 , (2.32)

where x' = dy/dx. The screening function ¢ (r/a) can be approximated

by (18]

$ =1-5.8 x , (for small x) ,
and (2.33)
¢ = 144/x3 (for large x) .

Numerous extensions have been applied to TF models of the atom
because of the multitude of ways that the electron gas can be de-
scribed. Also there are many analytical approximations to the ap—
proximate screening function ¢. Table 2-1 lists some of these
approximate solutions [17]. Although TF potential describes the po-
tential of a neutral atom it has been extended by Lindhard et al. [8]
and Firsov [15] to describe the interaction between atoms or ions.
Their results differ only in the choice of the screening parameter a
(Eqss 2.12 and 2.13). The screening functions based on either
Lindhard or Firsov estimate of the screening length differ by 10%,
i.e. they agree within the accuracy of TF approach.

There exist families of potential forms which are based on

simple analytical expressions that may or may not be justified from
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Table 2-1. {17]

Analytical Solutions of the TF Equation.

(All references are that of Ref. [17].)

Author "Analytical expression for the screening
function #(x), (x = r/a)
% A =3/%2 X =0.772 (Sommerfeld [ZQ])
l. Sommerfeld [20] [1 + ( 2/3) A = 0.8034 (March [21])
12 - X = 0.8371 (Umeda {[22)])

9.
10,
11.

12,

Kerner [24]

Brinkman [25]
Tietz [26]
Rozental [28]
Rozental [28]
Moliere [29]
Csavinsky [30]
Roberts [31,32]
Wedepohl [33]
Lindhard [23]

Lindhard [23]

(1 + Bx)™} B = 1.3501 (Kerner [24])
B = 1,3679 (Umeda [22])

cx! /2%, (24x1/2)

(1 + (8/61/2) « x)72

0.73456=0+562% 4 §.26550=3+392%

0.255¢7+0286x 4 0,581¢70:947% 4 o, 164e™%+356x
0.35e70+3% 4 0,55¢71+2% 4+ 0,10¢76-0%
(0.7111e0-175% 4 (,2889¢=1+6625%y2

(1 + 1.7822x172)y exp [-1.7822%x!72]

317x exp [-6.62x1/%]

1 - x/(3 + x2)1/2

1 -1/2x
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theory, and which contain one or more parameters adjusted to experi-
mental information. Some of these potentials are: the simple hard
sphere potential, the square well potential and the following more
realistic pdtentials: ‘
i) Lennard-Jones Potential,
V(r) =2 /2" - /2t (2.34)
ii) Morse Potential,

V(r) =D exp (-2a (r - ro)) - 2D exp (~a (r - ro)) , (2.35)
i1ii) Buckingham Potential,

V(r) = A exp (-Br) - J?./r6 - 2'/r8 . (2.36)
All these potentials can be described schematically as in Fig. 2.4.
They are repulsive at small r then decrease to an attractive minimum,
then approach zero at very large r. Thus, they may describe poten-—
tials between atoms in equilibrium or for very low energy.

iv) Born-Mayer Potential,

V(r) = A exp (-Br) , (2.37)
which may be valid only for a very small overlap of the closed shell
;ince it does not contain a nuclear repulsion. The constants A and B .
are determined from the compressibility data. This potential can be
used for energies less than the parameter A.

For high energies, the above mentioned potentials are usually
inaccurate and other potentials are needed. Due to lack of experi-
mental data in the high energy range of interest, different poten—
tials, based on pure theoretical considerations, have been intro-

duced. It should be mentioned that for energies above few electron
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volts, the attractive part of the potential is of no importance and
can be neglected.

Figure 2-5 shows the screening functions of some of the po—
tentials mentioned above. The Thomas-Fermi potential (Eq. 2.29)
describes the interaction at small distances of separation fairly
well, but for larger separations it decays too slowly. A more accu-
rate choice 1s the Moliere potential (Table 2-1) which decays more
rapidly. Figure 2-6 shows the potentials of Thomas—-Fermi, Born-—
Mayer, and Bohr compared to Coulomb potential., Figure 2-7 shows
Thomas—Fermi screening function and different approximations by the
inverse powers potential, V(r) ar S which has a screening function

given by
s s—1
9 (r/a) = e (a/r) . (2.38)

where xg 1s a counstant.

It should be mentioned that there are several sources of inaccu-
racy and uncertainty in the interatomic.potential which are intro-
duced by ionization or excitation of the atoms in collision. Most of

these uncertainties cannot be taken into consideration in any of the

above mentioned potentials.
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(Vir)/2,2, 0%, SCREENING FUNCTION

/0p ,INTERNUCLEAR SEPARATION

Fig. 2-5. Screening functions of Moliere, Thomas-Fermi, Bohr
potentials and related functions for Cu-Cu and Au-Au
BM potentials. The unit of distance is the Firsov

screening length ap; D represents the nearest-neighbor
distance in the lattice {17].
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Fig. 2-6. Several commonly used approximations to the interatomic
potential.
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mations by inverse powers.
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I1I-3-3. Scattering Cross Section

If we know the potential V(r), the impact parameter p, and ener—
gy of the incident particle E, then the scattering angle in the rela-
tive coordinate system can be determined. Thus,

8 =0 (p,V(r),vl,Mo) s - (2.39)
where v; is the velocity of the incident particle, M, is the reduced
mass given by Eq. (2.15).

The differential cross section do is defined as

do = 2mp dp

(2.40)
= 27mp %% e
and with the information in Eq. (2.39), do could be evaluated. Since

the energy transfer is related to the scattering angle via
T=T sin2 8/2 , (2.41)

where Tm is the maximum energy transfer in the collision and equals
4 MM
Tm = —__i._z_—zE , (2.42)
(M, +M,)

the scattering cross section do can also be stated as
= do
do IT dr . (2.43)

Lindhard et al. [8] obtained an approximate representation for the
differential scattering cross section from the inverse power poten—
tial (Eq. 2.38). For this potential the differential scattering

cross section is
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C

n dT
do (T) Tl_l/§~T(1+l/s) , for s » 1 (2.44)
max
where
1 "2 eZaOZIZZM1
C_ = (1 -=) . (2.45)
n 2,718 (Z%/3 + Z.;/3)1/2 (Ml + Mz)

If the TF potential is used, Lindhard et al. [8] showed that the

differential cross section can be written as

do =-% T a2 tl/2 f(tl/z) dt , (2.46)

where t = 52

sin? 8/2, € 1is the reduced energy (defined in Eq. 2.15)
and the function f(tl/z) has been evaluated numerically by Lindhard
et al. [8].

An approximate interpolated formula for f(tl/z) used by

Winterbon et al. [19] is
£(e1/2y = ael/6 (1 + @ae2/3)2/317372 (2.47)

where A = 1.309.

Figure 2-8 shows the function f(tl/z) for the TF potential
produced by Eq. (2.47) and that originally given by Lindhard.
Another form of the function f(tl/z) which can fit some of the

potentials mentioned earlier is

£(e1/2) = a2 s @it ™y (2.48)

where A, m, and q are constants given in Table 2-2 for different

potentials [20]..
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Fig. 2-8. Reduced differential cross sections from TF potential.

Thick solid line: Lindhard’'s numerical result. Dashed
line: Eq. (2.47). Thin solid lines: power cross
section (Eq. 2.44). [19]
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The Constants A, m, and q for Different Potentials [24]

Table 2-2-

31

A m q

1. Thomas-Fermi-Sommerfeld 1.70 0.311 0.588
2. Bohr 2.37 0.103 0.570
3. Lenz-Jensen 2.92 0.191 0.512
4. Lindhard, c? = 1.8 0.625 0.333 1,24
5. Lindhard, c? = 3 0.879 0.333 1.24
6. Moliere 3.07 0.216 0.530
7. Thomas-Fermi [21] 3.3498 0.216 0.530
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CHAPTER III

ION TRANSPORT

III-1. Introduction

There are two maln functions of interest in any radiation damage
study using ion bombardment techniques. The first is the penetration
distribution function, which gives the spatial distribution of the
ions after they come to rest in the target material. The second is
the deposited energy distribution function, which describes the
spatial distribution of the deposited energy in the material. If we
consider a single ion history, we find that after the ion has pene-
trated the target surface, it may suffer a collision with a target
atom at or close to the surféce and will be deflected into a new
direction. During its penetration the ion loses energy through
electronic ionization and excitation. At the collision point, the
amount of energy lost in collision will depend on the ion energy, the
impact parameter with target atom at that point, and the interaction
potential with this atom. The collision is generally inelastic, i.e.
energy may be dissipated in excitation and ionization of the target
atom during the collision itself. On its new trajectory, the ion may
travel some distance, while losing energy to electrons before it en~
counters another target atom, again suffering a collision, some
energy loss, and is deflected. This process is continued until the
ion, which henceforth will be called the primary, no longer has
enough energy to surmount the potential energy barriers offered by

the target atoms. If this history is repeated with the same initial
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conditions, the trajectory of the new primary may be different.
Figure 3-1 shows two possible histories of a single primary.

For a large number of histories one can expect that the end
points of the trajectories will have some spatial distribution, which
is the penetration distribution function mentioned previously.
Clearly all the information necessary to get this function can be ob-
tained from the end points of the trajectories.

The deposited energy distribution functions, e.g. the nuclear
energy loss or the electronic energy loss, are obtained along all the
trajectories. To predict these distribution functions theoretically,
some assumptions have to be made to get tractable solutions. These

assumptions are discussed below.

Fig. 3-1.  The possible paths of two ions broken up into linear
segments.
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III~2. Assumptions of Theoretical Methods

Before reviewing the theoretical methods it is important to
spell out the general approximations and assumptions which are
usually used. These assumptions are:

(a) Homogeneity and infiniteness of the target.

These assumptions allow for integration over the space to reduce
the number of variables in the equations governing the distribution
function and its moments. These are basic assumptions in almost all
analytical approaches except for the work of Williams [29] and
Winterborn [31], where in some limited cases, the ion tramsport is
conside;ed in multi~layer targets.

(b) No allowance for damage overlap.

Damage caused by collisions between ions and lattice atoms will
be in the form of atoms displaced from their normal lattice sites
which, in turn, result in the formation of vacancies and intersti-
tials. The displaced atoms, PKAs, may produce more damage. Damage
is also caused by the ions tﬂemselves as interstitials after they
come to rest in the lattice. The damage according to this assumption
1s additive, i.e. we consider the material for each ion as defect
free with no account made for the damage caused by any preceding
ions. The damage is then summed to constitute the overall damage in
the material. However, the presence of vacancies, interstitials, and
deposited ions will affect the trajectories of any subsequent injec—

tion of ions. This approach is justified by the assumption that
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prior damage effect will not be important until an extremely large
number of ions have entered the lattice, or for high dpa values.

(¢) No annealing effect.

Some of the damage produced may be annealed out due to recombi-
nation of interstitials and vacancies, but this is difficult to treat
theoretically because it requires a knowledge of the exact position
of previously produced defects in relation to the trajectory of the
injected iops.

(d) Randomization of the lattice.

All of the theoretical methods assume random lattices or amor—
phous solids. No account is made for the arrangement of the lattice
atoms in solids, i.e. the lattice effects, channeling and focusing,
are ignored.

The effect of channeling can be ignored for ion implantation
along low—-index directions in a crystalline target. Moreover, ion
impiantation for sufficient doses will produce enough defects to
disrupt the crystallinity of the lattice, rendering it "semi-
amorphous”. Figure 3-2 shows a highly ordered Cu-Pd target before
and after irradiation with Cu ions up to only 0.25 dpa. Apparently,
irradiation has destroyed the loﬁg range order of the target.

(e) Mean free path assumption.

The use of the mean free path assumption in thé kinetic theory
of gases 1s justified since, in gases, there are large distances of
separation between the gas atoms, compared to the small distance of

influence at which interatomic forces play a role. In solids, how—



Fig- 3-20

The diffraction pattern of Cu-Pd before (Top) and after
(bottom) irradiation with Cu for .25 dpa. The diffuse
rings in the lower diffraction pattern indicate that
irradiation has eliminated the long range order of the
target.
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ever, due to the smaller distance of separation'between atoms, the
interatomic forces affect the primary before, during and after the
collision with any lattice atom. If g(E) is the total collision
cross section and N 1s the atomic density then the averége distance

between collisions is given by
A(E) = 1/(No(E)) , (3.1)

with the probability of having a path length between % and £ + df

given by
P(R) dg S exp (- _g,) de (3.2)
A(E) A(E) ) )

With these equations, the length of the segments of the path, shown
in Fig. 3-1, can be obtained.

(f) Two—body collision approximation.

As was mentioned in Chapter II, it is difficult to handle the
real interaction of the primary, or any moving atom, with the lattice
atoms when it is a many=-body interaction in nature. However, due to
the fact that the interaction force decreases rapidly when the dis-
tance of approach is beyond the order of an atomic diameter, this
assumption is probably reasonable. For very low energy interaction,
the cross section becomes large so that the moving atom interacts
with more than one target atom simultaneously. The‘energy limit
below which the many—-body effects become of importance can be esti-
mated by equating the velocity of the longitudinal sound waves in the

solid to the velocity of the moving atom [l]. This energy limit
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ranges from 5.5 eV for aluminum in aluminum to 28.4 eV for tungsten
in tungsten. Such energies are less than the displacement threshold.

(g) Separation of nuclear and electronic interactions.

This assumption has been discussed in detail in the previous
chapter.

(h) Continuous electronic stopping approximation.

The use of the Lindhard [2] or Firsov [3] formulae for the
electronic stopping introduces all the inherent approximations of
these formulae [4]. Unfortunately, experimental results show that
these formulae do not have the correct dependence on the ion velo-
city, nor on the charges of the ion and the target atoms [4].

III-3. Specific Energy Loss Method = LSS Theory [5]

ITI-3-1. Range Distribution

With all the approximations mentioned in the previous section,
Lindhard, Scharff, and Schiott [5] made a further assumption that the
slowing down of the moving atom (ion or atom) is continucus. In this
assumption, the primary loses its energy continuously along its path.
Thus, the average energy loss per unit path length is equal to the
average energy loss per collision times the average number of colli-
sions per unit path. The first quantity is given by

T
m

T=1/o [T do (T) , (3.3)
0

where: ¢ = total collision cross section,

T = energy transferred to the struck atom,
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do (T) = differential scattering cross section for energy
transfer T,
and T = maxXimum energy transfer in the collision.

m

The average number of collisions per unit path length, using Eq.

(3.1) is

1/x = No(E) . (3.4)
Therefore,

dE/&R =N [ do T = NS , (3.5)

where S = f do T = stopping cross section per scattering center. The

range is then obtained by integrating dE/dR.to get

E E
R(E) = [ dE'/(E'/dR) = 1/N [ &"/SE") . (3.6)
0 0

The energy straggling in dR is given by

B ]

(4E2 2

) =N dR [ do TZ = N 4R @° . (3.7)

The range straggling is related to (AEZ) via

— ——

(r?) = a£? (aR/dE)% = § 4R 9% (d4r/dE)2

(3.8)
2. 3
= NQ° dE (dR/d4E)™ .
The straggling in the total path length is then given by
—7 _E 2 3
R” = [ dE' N Q“(E'")(dR/dE")
0
(3.9)

- [ @ En/asiEn .
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We then introduce the reduced energy and the reduced range, given by
€ = EaM,/(Z,Z,e> (M, + 1,)]
2 172 1 2 ’
and (3.10)
= RNM, 4ma’ M /01, +1,)°
P 2 Mo T,

where My, Z;, M5, and Zy are mass and charge of the primary and the

target, respectively, and a = Thomas—Ferml screening radius given by

_ 2/3 2/3.,=1/2
a=a, .8853 (Z1 + 1z, ) .
a, = Bohr radius = h®/e’m, = 0.529 x 1078 cm,
m, = electron mass,

and - e = electron charge.

With this notation, one obtains the universal differential cross

section
do = 0.5ma? t /2 g(e1/?y ar (3.11)
where tl/2 equals € sin 6/2 and 9 equals the deflection angle in the

center of mass system. The function f(tl/z) is shown in Fig. 3-3,
for Thomas-Fermi potential and for a (l/rz) potential.

The nuclear stopping cross section, then, can be given by
(de/do) = £(x) el ax (3.12)

where x = ¢ sin (6/2). The electronic stopping cross section [2] can

be written in ¢ and p units as

(de/dp)_ = Rel/? | (3.13)
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where
£ 0.973 zi/z zé/z (A, + A )3/2
R =—= 373 273374 3§2 1?2 ,
(zl + 25 ) AT A,

with A; and A being the mass numbers for the primary and the target
atoms, respectively, and €e 1s a constant of the order of Z%/6.
Figure 3-4 shows S, and S, for k = 0.15.
If we take the effect of both nuclear and electronic stopping we
get the total stopping
- 1/2 '
de/dp = (de/dp)n + Ke . (3.14)

A numerical solution for the range p is shown in Fig. 3-5.
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Fig. 3-5. Reduced range-energy plots for various values of the
electronic parameter k [5].
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To account for large fluctuations in ranges, the range distribu-
tion function p(R,E) dR, which specifies the probabilitiy of pri-
maries with initial energy E reaching the path lengths between R and
R + dR, is introduced. The function p(R,E) satisfies the following

equations:
[PRE)R =1 , & =[RrR"pR,E) R , (3.15)
and

Ip(R,E)/R = [ N do_ . [p(R,E-Tn—ETei) - p(R,E)] , (3.16)

’ i
where <R® is the m‘D moment of the distribution p(R,E), and dcn,e is
the differential cross section for energy transfer T, to struck atom
and i Tei to electrons.

Equation (3.16) has been obtained from a simple and general
argument. Consider the trajectories of many particles all at the
start of their slowing—down process. Their range distribution is
p(E,R). Let all the particles travel a small path length segment
SR. Some of the particles may have undergone a collision, the

probability of which is N6R do The final range distribution

n,e’

cannot have changed, hence p(E,R);{ i,441 = P(E,R)  frarsrs Le€o

p(E,R) = N&R | don’e p(R-aR,E-Tn-;Te )

1

i

+ (1 - N8R [ do_ ) p(R=6R,E) .
n,e

The first term on the right hand side expresses the probability for a

collision specified by elastic energy loss T, and inelastic energy
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loss I 'I'e to the target electrons, as well as the fact that the

i
i
particles need to travel a length R ~ 8R to come to rest at R. The
second term represents the complementary continuation probability for
not making a collision. In the limit as éR + O, Eq. (3.16) is ob~

tained. From Eq. (3.16) the moments of the range are obtained on

multiplying by R™® and integrating by parts. The result is

n ®RTLE) =N [ do_  [RTE) - ®UE - )] . (3.17)

For m = 1,
1=V [do _ [RE)-RE-DI] , (3.18)

with T = Tn + I Tei' When R(E - T) is expanded in powers of T then,
i

L=N[do [T aR/E - 1/2 17 d'R/E" + ...] . (3.19)

?

If we keep only the first order terms, we get

1 = N(de/dE)'[ T dcn’e , (3.20)
and
@R /A = INS(E) , R =[ @S@E)N aE' (3.21)
th

where S = total stopping power = Se + 8,, and R, denotes the n
approximation in R, i.e. n is the number of terms to be kept in Eq.
(3.19).

Equation (3.21) is just the same as Eq. (3.6) derived without

the aid of the distribution p(R,E). A higher order approximation for
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<{R> can be obtained by allowing more terms in the expansion of Eq.

(3.19). For example, R2 is given by
Ry(®) = [ &' (OSE'NTIL +5 2@ dI/SENDI/E'] . (3.22)

The average square fluctuation in the range, i.e.

AR2 = R2 - §2’ is obtained by multiplying Eq. (3.18) by 2 R(E) and

subtracting the result from Eq. (3.17) withm = 2, i.e.

2RE) =N [ do__ [2 B(E) - 2 RE) RE - 1] (3.23a)

=N [ do [®E) -RE-D+ ®E -RE -,
and

2RE) =N [ do_ _ [®E> - ®FE - 1] . (3.23b)

’

This implies that

f do_ (@R @) - i - 1) = [ do LRE) - RE - ™m? .

] ’

(3.23¢)

Expanding the quantities of (E - T) in powers of T, we get for the

first approximation in AR2

d( AR2 ) 1
T dE

2 (3.24)

S(E) = QZ(E)(dR(E)/dE) ,

with R(E) ='§1(E). The second order approximation is obtained by the

same procedure and is equal to
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— 2 2

2 _ (o2 3 w2 K _50°yds . 1 da
d(aR™), /& = (27 (E)/ST(ENT)(1 + (.Q_Z_S ;S_z_) Ftw )

’

(3.25)

with K = [ do T,

It is important to notice that in all the expansions that have
been made in powers of T, where T is the enérgy transfer to nucleus
and electrons, it is assumed that T is small, a condition which is
not justified when M; = My, since in this case T may take any value
between E and 0, However, since the cross section is forward peaked,
the average T is small which justifies the expansion.

Lindhard et al. [5] solved these equations for the power law
scattering and did not take into consideration the electronic energy
loss. Such an assumption allows for simple integrations. The pro-
jected range can be obtained by a similar procedurs. The equation

for the projected range similar to Eq. (3.18) is

1 =N do_ (‘ﬁp(E) —ip(E -T) cos %) (3.26)

3

where ¢ is the deflection angle of the primary in the laboratory
system. For small T, i.e. M; <K My or My << M;, Eq. (3.26) can be
expanded in powers of T to give, for a first order approximation

1 = N(Rpl(E) f dcn,e (1 = cos ¢)

(3.27)
+ dﬁél(E)/dE [T do_  cos ¢) .

Introducing the transport mean free path A¢r and the transport

stopping cross section S.., defined as
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L, =N/ dcn,e (1 - cos¢) ,

and (3.28)
Str = f dcn,e T cos ¢ ,

Eq. (3.27) reduces to
1 = Rpl (E)/ltr(E) + Nstr(E) dRpi (E)/E , (3.29)

which has the solution

E E'
— ! "'1 " " "
Rpl(E) = g dE (NStr(E)) exp [é E" (A (E) Ns__(E"))

.

(3.30)

Lindhard et al. [5] computed the first order correction from the
average projected range to average range along the path, in the case
when the mass ratio u = Mp/M; 1is small, i.e. for small angle of
scattering, and with Thomas-Fermi potential, for various values of
the electronic stopping constant k. Neglecting the electronic energy

loss, and using power scattering law, (1/r%), the value‘§f§p is given

by
RE =1+ us? /1425 - 1)] . (3.31)

Schiott [6,7] calculated this ratio, i.e. iné, for y <K' 1 and
p>> 1, for different values of k. He calculated also the fluctu-
ation in Rp. He showed that at low energies the range rgtio
fp/i and the relative straggling ZE?)Ri are independent of the

stopping substance when the reduced energy measure was used and are

not strongly dependent on the atomic number of the projectile. He
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found also that the distribution in the projected range was very
broad.

The higher order moments for the projected range are difficult
“to be obtained in LSS theory. However, Sanders (8] generalized this
method and used the inverse power—law potential to obtain more
moments of the distribution. This will be reviewed under the WSS
theory.

I111-3-2, 1Integral Equations for the Damage

Lindhard et al. [9] developed an integral equation which governs
the damage as represented by deposited energy, or number of vacan-
cies, or any similar quantity associated with the irradiation pro-
cess. Denoting such a quantity by ¢, the final average of ¢ after
irradiation with a particle of energy E,'E(E), can be obtained, with
all the assumptions of LSS theory, as follows. Suppose that a parti-
cle having the same mass and charge as the target atom, enters the
target surface with energy E, and moves a distance dR. Then there is
a probability N 4R d°n,e for collision after which the particle

energy will be reduced to E - T, where T = T, + z Tei' The particle
i

will have a ¢-value of ;TTn = U), where U is the binding energy of
the atom in the lattice. The electrons produced by collisions will
have another contribution to ¢, i.e. E;(Tei - Ui)’ where U; equals
the ionization energy of the 1th ioniied electron in the collision.

There is also a probability (1 - 4R f d°n,e) that no collision

happens in dR so that the particle leaves dR without change in its
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energy E nor its'E. Summing all these quantities we get the

following integral equation

/ dcn,e (6CE -~ T) - 3(E) + $(T_ - 1) +§ 8, (T, - Ui)) =0 .,

(3.32)

Usually the damage produced by the ionized electrons is small and can

normally be neglected. In this case, the equation which describes

the function ¢ of the electrons, i.e. E; is given by
! - -4 e - =
f [ do} (Ee(x-: T) ~0(E) +5 (T -U)) =0 , (3.33)

where dcé is the differential cross section of the collision of an

electron with energy E with the target atom. This equation can be

solved separately inlge, then the solution is used to solve Eq.

(3.32) for ¢.

If the ion is different from the target atom, i.e. M # My and

2 # Z,, then the equation which describes its average E-is given by

[ doy_ . (o) & = T) = ¢; (B +o(r - U)

(3.34)

E Tb.e('rei - Ui)) =0

where d°1n e is the differential collision cross section of the inci-
b}

dent ion with the target atom.
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The following successive apﬁroximations are than made:

the damage produced by electrons is neglected,

the atomic binding energy U is neglected so that'$(Tn -U)
equals Ekrn),

it is assumgd that I Tei is small and after expanding

i
$(E - Tn - i Tei) in powers of i Tei’ we keep only the first two
_‘7- - =— - -—' -
terms. Then ¢(E Tn i Tei) ¢ (E Tn) ¢'(E Tn) i Tei’

where'E' denotes the differentiation with respect to E,

the electronic and nuclear energy loss can be separated, i.e.
d°n,e = do, + do,, and finally
it is assumed that T, is small compared to E, and often ex-

panding $(E = T ) in powers of T, only the first three terms

are kept, i.e.

- - -, 1= 2
3E - T) =FE) - FE_+5 5@ (3.35)

Applying these approximations, and using Eq. (3.53), we get

L3S

-7 ¢7(E) I (E) + 3" (E)(S, (E) +5_(E))

(3.36a)

B f dan}’(Tn) M f doe ? ¢e(Tei N Ui) i

where Fn(E) = f do, Tg. For lower order approximations in Eq.

(3.35), i.e. keeping only two terms in the series, Eq. (3.36a) reads

$'(EXE, +8 ) = / do_ o(T ) + [ do, f 8, (T, = U) . (3.36D)
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¢e enters these equations as an inhoﬁogeneOus source term,
Finding the solution for?e from Eq. (3.33), and the solution of the
homogeneous part of Eq. (3.35), the general solution for ¢ can be
obtained. $'and E; are then used to obtain the solution for Ei of
the ion (Eq. 3.34).

Although Lindhard represented the probability distribution func-—
tion from which higher order averages of ¢ (i.e. <¢™), can be ob~
tained, he was concerned mainly with the second moment and the
straggling in ¢, i.e. <¢2> - <¢>2. To obtain this quantity, an

equation similar to that of ¢, Eq. (3.32), is deduced for <¢>2 viz

/ don’e (-<¢2(E)> + <(¢(E - T) + $(T )
‘ (3.37)
2
+§ $o(T gy ~ Ui)) >) =0 .
Noting that <$(E = T) ¢(T)> = <¢(E = T)><¢(T,)>, then
2 2 2 2
f do, o [Q¢(E -T) - Q¢(E) + Q¢(Tn) + i Q¢e(Tei - U]
(3.38)

- - 2 =2
= - do, o [(CE - T) + (T ) + i 8y (Toy = U - ®]

where Qi(E) = <¢2(E)> - EQ(E). Simple algebraic operations using

Eqs. (3.32) and (3.37) produce
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2

¢e(Tei B U')}

2 2 2
f do_ [Q¢(E) - Q¢(Tn) - Q¢(E -7 -IaQ :

i i
(3.39)
= - _ - - — _ 2
/ do_ (b - 1) ¢<E) + (T )+ i 8o (Tgy U)o

An equation in 92 can be obtained in the same way. Applying the

e

five approximations mentioned above, we get

2 2 2
So(E) —4— = [ do_ (& = T = 9, (&) + QL))
(3.40)

+ a0 (5 - 1) -F®) +3a)) .

For an ion which is different from the target, the average

square straggling in ¢, Qil’ is given by

2
¢

d

2 2 2
510 @ Y1 ®) = [ doy (9¢1(E ST T E) + 0 (T ))

(3.41)

- — 2
| + [ do; (EI(E =T ) -9 (E)+ ¢(Tn)) ,

where dcln is the differential scattering cross section of the ion
with the target atom.

Lindhard et al. [9] solved the above equations for the case of
power—law potential and for Se = El/z. This leads to a second order
differential equation inig, which has a solution in the form of a
hypergeometric function. That solution was given for the case of

Zy = 25 and My = My. They also solved this case numerically for
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Thomas-Fermi potential. They found that if ¢(E) equals the total
deposited energy, where V(E) is the deposited energy in nuclear
collision, and n(E) is the deposited energy into electronic colli-
sion, then $(E) = V(E) +';(E),‘and a simple formula'can be used to

fit the oEtained solution. This formula in € - p units 1is
Te) = e + kgleN ™, (3.42)

where g + 0 as e » 0, and g + € as € + 103. The value of ¢ = 103
corresponds roughly to the maximum of the electronic energy loss
rate.

When Z; # Z;, the energy is limited by the upper bound energy
selected such that €) or ye) equals 4.75, where ¢; is the reduced
energy of the ion and y = MM,/ (M + Mz)z. This limit ensures that
the electronic energy loss for both the ion and the recoil target
atoms 1s proportional to El/z and the nuclear stopping, for both, is
« E172/8 44 case of the power law potential.

The LSS method is rather limited for obtaining higher moments.
For example, the first and second moments for the range distribution
enable one to construct a simple distribution function, e.g. a
Gaussian. However, measured distributions show deviation from the
simple Gaussian distribution.

I1I-4, WSS Method

The collective work of Winterbon, Sigmund, and Sanders, denoted
here by WSS, represents a more accurate estimate for either ranges or

damage distributions. The reason is that the WSS method enables one
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to obtain more moments of the distributions, and in turn they can
describe the distributions themselves more accurately. Also the
formulation adopted in the method helps to predict the projected
range distribution, which is the quantity that is measured experi-
mentally rather than the path length.

II-4-1, Range Distribution

Sanders [8] generalized the LSS method, and he introduced the
vector range probability distribution rather than the path length
probability distribution defined in Eq. (2.16). In this treatment
(8], he considered low energy projectiles, neglected the electronic
energy loss, and used the inverse power potential. These assump-
tions, as usual, led to a closed form analytical solution.

Sigmund et al. [10] generalized this method even further to
include electronic loss, assuming that it is continuous along the
particle path. Sigmund et al. [l10] then used numerical techniques to
solve for only the first and the second moments. A very high numeri-
cal accuracy was required to obtain higher érder moments. We will
now concentrate on the Sanders [8] and Sigmund [l10] treatment, which
has been developed by Winterbon [12] to obtain up to the fifth
moment, because it represents the basic idea of this method.

Consider for the first case, an incident ion of the same type as
the target. Define é function F(E,e,T) as the probability that an
ion, with initial energy E, and velocity vector v is in direction of
unit vector e, i.e. e = ¥/|V|, comes to rest at a vector distance T

from its starting point ¥ = 0. Generalizing the argument that had
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led to Eq. (3-16) we get an equation in F

- eV F(E,e,r) =N [ do [F(E,s,T) - F(E-T,a',D)]
| (3.43a)
+ NS _(E) 9/3E (F(E,e,T))

with

/ Er F(E,e,r) =1 , (3.43b)
where e' is the velocity unit vector of the scattered ion, i.e.

e.e' = cos ¢' , (3.44)

with ¢' being the laboratory scattering angle.

Equation (3.43a) has been derived in a more rigorous way by
Mazur and Sanders [13] on the basis of the hypothesis that the be-
havior of the penetrating ions can be considered as a Markoff pro-—
cess. The projected length Rp, the traverse distance R;, the chord
range R,, and the penetration depth x are shown in Fig. 3-6 for a
general incidence angle 6 of the ion with the normal to the target

surface.

L (E)

RLE,casd)

? RyIE, s3]

Fig. 3-6. Illustration of connection between different range
concepts.
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If we integrate Eq. (3-43a) over the z and y coordinates, the

result will be

- cos 9 Eg; F(E,e,x)] =N [ do (F(E,e,x) - F(E-T,;“,x))
(3.45)

+ NS _(E) (—gf F(E,5,x))

where 9§ is the angle of incidence.
Due to the symmetry of the azimuthal angle, we have
F(E,e,x) = F(E,cos 6,x) or simply F(E,8,x). To account for the back-
scattering the normalization condition on F(E,8,x) is
+oo

[ dx F(E,8,x) =1 . (3.46)

-

Assuming that the penetrated material is isotropic, uniform, and
infinite, the three variables E, 8, x, can be reduced to only one
variable, that is E. This is done by expanding F(E,9,x), first in
Legendre polynomials, such that

F(E,9,x) = (2k + 1) Pk(cos 8) Fk(E,x) . (3.47)

k

Substituting Eq. (3.47) into Eq. (3.45) and noting that
cos 8 = Py(cos 68), we get

A - 3
RSP I R

- a_
Fk+l) = 2k + 1) se =5 (Fk)

(3.48)
+ 2k + 1) ¥ [ do [F, - P (cos 8) FLE-T)] ,
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with Fi. = F| . (E,x). Taking the moments in x defined as
FQ(E) = [ dx F (E,x) (3.49)

one obtains

3

n -
GFk(E) = Se °F

(FR(E)) + N [ do [FL(E) - P, (cos 8) F (EN]
(3.50)

where GFE stands for

n—-1

1
1 k+1

(EY+ (k+ 1) F

n(kFy_ (E))/(2k + 1) .

Due to mathematical constraints, FE exists only for n + k even, and
n > k.

With the electronic loss included and with a realistic po-
tential, e.g. Thomas—Fermi potential, very high numerical accuracy is
required to go beyond the second moment, since small errors in the
solutions of the lower moments accumulate in the higher ones.

Sigmund, Mathies, and Phillips [10] solved the above equation
(Eq. 3-50) for the first and second moments only and for equal ion-
target masses. Gibbons et al. [l4] solved this equation for general
ion—target combinations, and up to the third moment, but with a
different numerical technique.

The last two groups of authors used a power series expansion in
energy to solve for the moments. Winterbon [12,15] reduced the above

equation of the moments to a set of algebraic equations and thus



60

attained more accuracy in the solution. Moreover, he obtained up to
the fifth moment, with electronic energy loss included.

The basic idea in Winterbon's treatment [15] is to express Eq.
(3.48) as a function of E and t = T/E. He then expands FJ as a
double power series, one variable being the incident energy E, and
the other being, essentially, the ratio of the strengths of the in—
elastic interaction, and the elastic interaction. The differential
cross section do is also expanded, for the inverse power cross sec—
tion, as a power series in (Et) after factoring out a function of t.
Substituting these expansions in Eq. (3.48), one gets a set of
recursion relations for the unknown coefficients, aij(k,n) in the
expansion of FE. The resulting integrals over the variable t may
then be evaluated by known methods [16]. Hence the coefficients of
FE, which are double power series in E and t, can be obtained to any
desired degree of accuracy. Convergence of the series is expected to
be good within a limited range of energies ¢ = 10-100.

It should be mentioned that there is not much difference between
the case of equal ion and target masses and the case of different
masses. In the former, the integration over the energy transfer T
extends from O to E, the energy of the incident ion. In the latter,
the integration extends from O to the maximum energy transfer
Tp = YE. Once the moments are obtained the density distribution can

be constructed. This will be discussed later.
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II-4-2, Damage Distribution [21,18,25]

The equations which govern the deposited energy can be obtained
with the same arguments used previously in the LSS method review.
Consider the function F(TY,v), which is defined so that F(?,V)dr3 is
the average amount of energy deposited in the volume element dr3
around r, due to and after an ion had started its motion at time
t = 0, at the point r = 0, with energy = 1/2 M1|;|2 in the direction

v/|v], where ¥ is the initial velocity, and comes to rest at t = o,

Then F(T,V) must obey the condition
3 -
[ &r F(r,v) =E .

During time St from the beginning the ion may undergo a colli-.
sion with a probability |vst] N f doy, where N is the atomic density
of the target, and do; is the differential collision cross section.
Now there will be two particles in motion, the scattered particle and
the struck atom, each of which has its own function F, i.e. F(T,v')
of the scattered particle and F,(T,v") of the struck atom, where V'
and v" are the velocities of each particle, respectively. There is
also a probability that the incident particle will not suffer a
collision; this probability equals (1 - |v| 8t [ doj). In this case,
the particle's F function will be F(Tr-vét,v). Summing these proba-

bilities we have on the average
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F(r,v) = [vét| N [ doy [F(T,v') + F (r,v")]
(3.52)

+ (1 = Nlvet] [ do) F(r-vde,v) .

Separating the electronic stopping from the cross section doy,
assuming it is continuous along the path with a well defined rate,

i.e.
dE/dR =-Se@) R
or

M, vl &lvl/sR = M, dv/dt = - 5. (E) (3.53)

1

then, according to this assumption, v in the last term of Eq. (3.52)
is replaced by v = §v = v = Sth/Ml. Expanding the first term in

(8t) and keeping only two terms, Eq. (3.52) becomes

Y EED) 2y f o, FED - G - FET]
vl ar

(3.54)

+Se aF (x,v) .

vl alvl

A similar equation that describes the recoil term F., which

enters the above equation as a source term, is presented by
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e aFt(r,v)

o e )N e B G - G - F ]

_ (3.55)
, Set oF (¥, V)

(vl alvl

where the suffix t denotes the associated quantities for the target.
Clearly, if the incident ion is the same as the target atom, Eq.
(3.55) is used alone.

Equation (3.54) is used as well for obtaining the range distri-
bution. This 1is achieved by accompanying the recoil term F. by a
factor g, which is zero in case of range distribution, and unity for
damage distribution. Making the same steps described after Eq.
(3.43a) we obtain

n

aF
SFR(E) = S_(555) + N [ do) [FD(E) - P, (cos ¢') FL(E')
' (3.56)

- ¢, (cos ") F (EM]

where ¢', E', ¢", and E" are the laboratory scattering angle and the
energy of the scattered and recoil atoms, respectively.

The solution of this equation follows the same procedure de-
scribed above for the range distribution, except for the unequal
target-projectile combination, where thé solution of Eq. (3-55), for
the target—on~target, is required first before solving for the ion.
The fact that the deposited energy distributions are much less

symmetric than the range distribution, and consequently require
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moments much higher than that of the range, indicates the importance

of the Winterbon method.

III-4-3, Construction of Distributions

Several methods can be used to obtain the distribution function,
depending on the number of moments available. Due to the limitatiomns
on obtaining more than the second moment in the early studies, the
only approximation that had been used for the distribution function

was the Gaussian approximation [10], given by

2
F(x) = (———L———)l/z exp [:ii_:_éfil_] . (3.57)

2w<Ax2> 2<ax >
If the first n moments are known, one can improve Eq. (3.57) by
n
F(x) = Fn(x) = ¥(x) mio Cmpm(x) , (3.58)
where pm(x) form a set of orthogonal polynomials, and ¥ is given by
Eq. (3.57). If the assumption that ¥ is Gaussian is correct, the
proper polynomials p, are the Hermite polynomials of the same argu-
ment as that of the exponential in ¥(x). Due to the slow comnvergence
of the series in Eq. (3.58), Winterbon proposed also another method

to obtain the distribution with a more rapid comvergence [12].
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III-5. Brice Method [17-22]

Brice first formulated the transport equations governing the ion
distribution during the slowing down process and solved them for the
first and second moments to obtain the spatial distribution of the

lons as a function of their instantaneous energy. These distri-

butions, which are all assumed to be Gaussian, are then used to cal-
culate the depth distribution of the energy deposited into atomic
processes (damage energy) or electronic processes. In the early work
of Brice [17-19], the energy transported by the recoils was ne-
glected, but he considered this effect in a more recent work [20-22].

I11-5-1, First Step: Spatial Distribution as a Function of the

Instantaneous Energy

In this method we need to define the following quantities:

(a) P3(E,E',r) dr is the probability that an ion will be located in
the volume element dT, centered at T, when its instantaneous
energy is E', The initial energy is E, and the initial velocity
direction is parallel to the x~axis of the coordinate system.
The initial condition on P3 is P3(E,E,r) = &(T) where § is the
three—dimensional Dirac delta function.

(b) Py(E,E',x) dx is the probability that an ion, with the same
initial conditions described in (a) above, will be located in
the interval x to x + dx when its energy is E'. P; is related
to Py through the relation

+oo oo

P, (E,E',x) =[ f P3(E,E',?) dydz . (3.59)

-t =00
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The initial condition for P; is: P;(E,E,x) = §(x).

(¢) P(E,E',R) dR, the path length distribution function, is the
probability that the ion will have traveled a path length lying
in the interval R to R + dR, when its energy is E'.

(d) p(E,E',x,cos 8) dx is thevprobability that an ién, with initial
energy E and initial direction cos 8 with respect to the x—axis,
will lie in the interval x to x + dx, when its energy is E'.

‘ (e) q(E,E',s,cos 9) 2ws ds is the probability that the ion, with the

initial conditions described ini(d), will lie in the interval

s, s + ds away from the x-axis when its energy is E' where

s = (y2 + 22)1/2. The probability P; is related to p by
Pl(E,E',x) = p(E,E',x,1) . (3.60)

The moments of the projected range distribution ®R™>, can be

obtained from

3E R S B |
i1
iT—¢

<RI;(E,E')> 0 P,(E,E',T) dxdydz
x" P, (E,E',x) dx (3.61)

x5 p(E,E",x,1) dx .

[
j—

8

Also the moment of the perpendicular range, <RT(E,E')>, can be

obtained from
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. o ke
QL(E,E » o= [ [ "+ 2

-0 =00 -0

m/2

) P3(E,E';;) dxdydz

(3.62)

= 21 | sm+1 q(E,E',s,1) ds .

The moment of the path length distribution is
®R™(E,E')> = [ R® P(E,E'",R) &R . (3.63)

The equations which govern the distribution functions P(E,E',R),
P3(E,E',r), and P{(E,E',x) can be derived similarly as in the LSS and
WSS methods. In these methods we were dealing with the same func-—
tions with E' = 0. Due to the condition imposed by the presence of

E', the integration over do should be taken only over the values

n,e
of energy transfer T, (T =T  + To), such that the scattered particle
energy (E = T) should be greater than E'. Also another effect arises
at the origin when it happens that the particle may attain the energy
E' in a collision.

If we account for both of these effects the equation which

governs the path length distribution P(E,E',R) reads

_ 3P(E,E',R) _

1
1 - - t
35 N(P(E,E',R) [ do, o / do P(E-T,E',R)

.
S8 ®) [ dop ), (3.64)

where the prime over the integral sign denotes the integration over

only the energy transfer T such that E - T > E', and the double
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primed integral indicates the integration over T such that

(E-T) E'", and §* is the Dirac delta function. The moments

equation is

m1 m
m R (E,E')> =N RU(E,E') [ don,e
(3.65)

?
- N[ do_  RUGE-T,E')> .

3
The integral equations governing the moments of Pl(E,E',x) and
P3(E,E',T) are obtained by deriving the equations which govern
p(E,E',x,cos ) and q(E,E',s,cos 8), both having been derived by

Schiott [6], and then using Eqs. (3.61) and (3.62) with cos 8 = 1.

These steps lead to the first and second moments given by
. ' ! | '
1= N[<Rp(E,E »> dcn,e - dcn,e cos ¢ <Rp(E-T,E »l o,
(3.66a)

2
2<RP(E,E')> = N(<Rr(E,E')> / don,e
(3.66b)
- -3 .2 2 g
f do . (1 -3 sin"¢) R_(E-T,E ),

’

and
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2 t
2R (E,E')> = N(®R(E,E')> [ do

ye
(3.66¢)
2
- dan’e <RC(E-T,E')>) ,
where
2 'YS = enl ) 2 '
<RC(E,E » = <RP(E,E » + <Rl(E,E » o, (3.67)
and
®REE,E')> = REE,E')> - L ®PE.E' ) (3.68)
r ] p b 2 J. b H .

with ¢ being the scattering angle in the laboratory system. For the

path length moments, from Eq. (3.65) with m = 1, we get
' ' ' 3.69
1 = N(<R(E,E")> | dop o~ / do o R(E-T,E')>) . (3.69)

Equations (3.66) and (3.69) have the same form, and can be

written in the general form
' .
g(E,E') = N[f dan’e X(E,E') - f dcn’e £(¢) X(E-T,E")] ,
(3.70)

where £(¢) is a function of the scattering angle ¢ in the laboratory
systems It equals "cos ¢" in Eq. (3.66a), "(1 - 3/2 sin2¢)" in Eq.
(3.66b), and "1" in Egs. (3.66c) and (3.69).

The general form of the integral equation, Eq. (3.70), can be

converted into a differential equation by expanding X(E~-T,E') in
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is forward

powers of T. This is justified by the fact that do, o
9

peaked. The obtained equation is

-] mn '
g(E,E') = 1 B (EE) L XEED (3.71)
m=0 = dEIn
with
B (E,E') = N(f do) e~ [ £($) don’e) , (3.72)
and
Bl(E,E') = (-1)m+l ch) f' (o) don’e . (3.73)

The solution of Eq. (3.71) can be obtained to any order in the
series through an iterative process. Brice solved this equation only
to the second order, and gave estimations for the third order
correction to <Rp(E,E')> and R(E,E')> to be ~ 1% of <RP(E,O)> and
<R(E,0)>.

Brice assumed the separability of the electronic and nuclear

contributions to the collision cross section dan, i.e.

e?

[ C ) do, .= C )do +[ () do_ (3.74)

b

where do, and do, are the separate nuclear and electronic scattering
cross sections, respectively. Moreover, due to the fact that the

energy transfer to the individual electrons, T is small and the

e’

scattering angle in this event is negligible (= 2m,/M}), Brice con-

sidered the contribution of electrons only to the first order, i.e.
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B,(E,E") N[f' do TE($) + f' do TF ()]

R

N f' do | TE(4) + NS_£(¢) (3.75)
=N j' do  TE(p) + NS
where
s, = /T do_ (3.76)

assuming that E = E' is greater than the maximum energy tramsfer to
an electron. | |

At this stage the distributions P; and P3 can be obtained, with
the assumption that they are Gaussian. From the solutions of the

above equations we can define

AR = (RZ _ §2)1/2 ,
P P p
and (3.77)
2.1/2
AR (Rl) .

P; and P3 are then readily obtained from

2

- -(x=-R)) :
PL(E,EN,x) = @mari) M2 exp [—2—] (3.78)

P 2AR

p

and
- 2 -1 -(y% + z%)
Py(E,E',T) = P (E,E',x)(raR) " exp [—Y—Z———] . (3.79)
AR

L
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II1I-5-2. Second Step: Damage Distribution

Once the distribution functions P;, P3, and P are obtained, the
damagg distribution can be evaluated as follows. If the incident
ions and the ﬁarget atoms interact with some energy dependent cross
section do to produce some quantity of interest Q, the average amount

of Q produced in a volume element dr around T is given by

d3'6= (93(3,5',}') dr N(%—.—) [ a(T) do (E',T)) dE' , (3.80)

MO

where the q(T) is the average amount of Q produced in the element dT
of the differential cross section do (E',T), and dR is the average
distance moved by the ion with energy E' ih losing an amount of
energy dE'. Since dF is not a function of E', Eq. (3.80) can be

written as

3 0 —_
d ] dR ] t
—ﬁdr = Q(E,r) = Né (B B,E', 1) () «(T) do (E',T)) &'

(3.81)

which describes the spatial distribution of Q, Q(E,r). The depth

distribution of Q can be obtained similarly as

dR

0
Q(E,x) = N [ (Pl(E,E',x)(-gE—,] q(T) do (E',T)) dE' . (3.82)
E .

The derivative dR/JE' is obtained from Eq. (3.63), i.e.

0

dR - RELE")> _ d (/ RP(E,E',R) dR) / &' . (3.83)
E

dE' dE'

For fixed E, we have
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drR
dR r - ¢dR ' dR
(HET) dE = (a;).(afg-)-df: = (TR—p-) d.Rp . (3.84)
Q(E,r) and Q(E,x) can then be written as
R_(E,O0)
P v Ty dR ]
Q(E,r) = g P,(E,E ,r)@zﬁg) £ (E") R, (3.85)
and
R_(E,0)
P r oy (dR :
QE,x) = [ P (EE ,x>(3§;J T (E") dRp , (3.86)
with
T(E') =N[qT) do E',T) . ’ (3.87)

Equations (3.84) and (3.85) do not consider the effect of
recoils, i.e. the quantity dQ was assumed to be deposited at the
point of interaction [17,18]. To account for the recoil effect,
Brice considered only the depth distribution, i.e. Q(E,x), and
assumed that all ions travel parallel to the x—-axis. Then the
initial deposition of the quantity dO0 in the interval x to x + dx.
will be distributed in the depth, x', with a normalized distribution
D(E',x'=x). The relative depth distribution of dQ, for all ions
which have instantaneous energy E', is given by S(E,E',x') where

+o
S(E,E',x') = [ P, (E,E',x) D(E',x'-x) dx . (3.88)
The final depth distribution is then obtained by substituting

S(E,E',x) in Eq. (3.82) in place of P;(E,E',x), i.e.

E dr
Q(E,x) = [ S(E,E',x) L (E") (EETJ d&E' . (3.89)
0
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To solve the above equation, S(E,E',x) should be known. The
first few moments of S were used to construct an approximate repre—
sentation of S, which is then used to solve Eq. (3.89). Using the
following definitions for the spatial moments of the distributions

Py, D, S, and Q:

Moo (BB = <R;(E,E')>
= [ x"P (E,E',x) dx , (3.90)
M ED = [ x"D(E',x) dx (3.91)
M G(E,E') = [ x'S(E,E',x) dx , (3.92)
and M (E) = [ x"QE,x) dx , | (3.93)

and combining Eqs. (3.91) and (3.88), we get
n
'y = '
Mns(E,E ) i C i Mkp(E,E ) M(n_k)D , (3.94)

where C, ;. are binomial coefficients. Hence, the moments My (E,E")
depend on <R3(E,E')> of the ion, which is already known from the
first step calculations, and the moments of the recoil atom M,p(E").
These moments are evaluated by a weighted average over the inter—
action cross section do (E',T) via

f Mpq(Tsn) a(T) do (E',T)

(J «(T) do (E',T))

(3.95)

MpED =

where n is the direction cosine with respect to the x—~axis of the

initial velocity vector of a target atom recoiled with energy T, and
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N noment of the depth distribution of the deposited

MﬁQ(T,n) is the nt
quantity of interest by the recoil atom.

In the calculation of the damage distributions, q(T) and Q(E,x)
are, respectively, the damage energy of a recoil atom with initial
energy T (the portion of T which will ultimately be deposited into
atomic process), and the depth distribution of energy deposited into
atomic process. Brice used two moments to calculate the moments of
the depth distribution of the damage energy of the recoil atom, MﬁQ.
In the first method [29], he assumed that the recoil atoms deposit
their damage energy, as well as the ionization energy, uniformly
along a straight line from the position of the initial interaction
and the position at which the atoms come to rest. If RP(T) is the
average projected range of a recoill initially with kinetic energy T,
and ARP(T) along with ARt(T) are the standard deviations in the

parallel and the transverse directions with respect to the initial

direction of the recoil, then the first and second moments are
MI(T,n) = 5 iR _(T)
1 2 Tp ’

and

M0 =3 [ ()P + (ar 2!/
(3.96)

£ =@ (],

respectively.
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In the second method, Brice ma&e use of the results obtained by
Sigmund et al. [10] and which were exact for the case of M; = My,
which is certainly the case of the recoil atom in the target. In
this calculation [10], the ratio of the average projected <{xg”> to the
average damage depth <xp> ranged from 1.2 to 1.27 for e in the range
of 0.01 to 1.0. This range of the reduced energy includes most of
the primary recoils. Consequently, Brice [20] used for the average
and the standard deviation of the damage d%stribution (of the

recoils) the estimates

MiQ(T) = 0.8 Rp(T) ,

2

t - ! 2 =
and MzQ(T) M4 (T)) 0.8 (<Rp

- 2
19 > (<Rp(T)>) ) . (3.97)

However, in his recent treatment [20] he averaged first over the pro-
jected range of the recoils and then used an expression similar to
Eq. (3.97). This can be described as follows.

Let RP(T,O), ARP(T,O) and ARL(T,O) be the range and the
straggling parameters of the recoiling target atom of energy T, and .
let n be the cosine of the recoil angle in the laboratory coordi-
nates, relative to the direction of the ion before the collision

which created the recoil atom. Then define

rp(T) = an(T,O) s (3.98)
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and
r (T = [R_(T,01% + [nar (1,012 + (1 - n?) &2(T,0)/2]
p2 p p L :
(3.99)
Then
Tm Tm
G (&) =[x (T) a(T) o(E,T) dT / [ q(T) o(E,T) 4T ,  (3.100)
0 0
and

T T
m m

G,(E) = é rpz(T) q(T) o(E,T) dT / é q(T) o(E,T) 4T , (3.101)
represent the weighted averages of the recoil range and its square
projected on the direction of motion of the incident ions, which are

related to MfQ(T) and MiQ(T) by the approximations

MiQ(T) = 0.8 G (3.102)

1 3
and

. - o 2 . - ¢?
M3 (T) = G, (T))° = 0.64 (6, = 671 . (3.103)

These values are then used in Eq. (3.93) to obtain M,p(E') which are
used in turn in Eq. (3.92) along with RP(E,E') and <R%(E,E")> of the
incident ion to obtain M g(E,E"). This latter term is used to con-
struct the required distribution S(E,E',x). The same procedure is
used to evaluate the distribution of the energy deposited into

ionization and excitation.
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III-6. Other Analytical Methods

Thus far we have considered methods which have reasonable as—
sumptions and approximations, which make them the most popular in the
field. However, there are many other methods which'can'be used to
attack the problem. Most of these methods used the assumption of the
hard sphere potential and neglected entirely the electronic energy
loss, and sometimes were restricted to special cases such as the case
of equal ion and target masses.

These methods were developed initially when the nature of radi-
ation damage had not been well explored and understood. Among these
methods is that of Baroody [23-25], whose calculations were based
directly on the moments form of the Boltzmann transport equation to
obtain a range distribution. Leibfried [26] also developed the so—
called operator method to get the averages of the range distri-
butions. A review of such methods ﬁas made by Carter et al. [27].

Finally, very recently Williams ([28-30] attacked the problem
using a completely different method. He derived a set of linear,
coupled Boltzmann transport equations which describe the projectile
and recoil atoms distribution in space, time, and energy. He showed
that Lindhard transport equation which has been derived based on the
simple argument led to Eq. (3.16), is just a partially adjoint equa-
tion in energy and direction to the usual or the forward form of the
. Boltzmann equation. He showed the merits of using the forward form,
which is familiar and well understood in the neutron transport field.

One of the advantages of using the forward form is the applicability



of the method to multi-layers problems [29,31].

Williams reviewed

his ideas in an intensive and extensive review article [30]. The

reader may refer to it for further information.
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CHAPTER 1V

COMPUTER SIMULATION

IV-1. Introduction

Computer simulation has played a significant role in the present
understanding of radiation damage and the directional effects in
crystals. The difficulties of analytical methods increase very
rapidly if one tries to remove any of its basic simplifying approxi-
mations (Section III-2). This fact makes computer simulation tech-
niques the only alternative for a wider and deeper understanding of
radiation damage in materials.

Computer simulation techniques can be categorized into two basic
tyées, depending on how they handle the collision of atoms in materi-
als. The first type, and the older one, is usually known as the
dynamic or the many-body integration (MBI) method, and was developed
by Vineyard and his co-workers [1-3]. The second type was introduced
by Yoshida [4], Robinson and Oen [5,11,12] and Beeler [6,7], and is
usually known as the binary collision approximation (BCA) method.

IV-2, Many-Body Integration Method [1-3]

This method deals only with crystalline solids. A crystal con—
tains a>few hundred to a few thousand atoms, each atom interacting
with other atoms through a two—body central interatomic potential.
The material surrounding the crystal is simulated by special forces
on the atoms comprising the boundaries of the crystal. These forces
simulate the reaction forces of atoms beyond the boundaries caused by

any displacement of atoms in the crystal. Practically, these forces
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are represented by a spring force proportional to the displacement of
the surface atom, a viscous force, proportional to the velocity of
the surface atom, and constant forces which are chosen so that the
set of atoms can be in a static equilibrium.

The Newtonian equations of motion are written for each atom
yielding 3 x N equations, where N is the number of atoms in the
crystals. An event may be initiated by starting one atom in motion
with a specified velocity vector, simulating a "primary knock on
event;" A simple central difference procedure is then used to
integrate these equations of motion until an equilibrium position is
reached, or until the collision process of interest has reached the
crystal boundary. Vineyard's computer program, which was the first
to embody this method, is called GRAPE.

The calculations are considered fully dynamic since all degrees
of freedom are allowed to vary at once in accordance with the
requirements of the interaction forces and the Newtonian laws of
dynamics. This many-body integration approach has proven to be very
useful in demonstrating directional effects such as focusing and
channeling in low index directions of the crystal. The limitations
of this method come from the allowable speed and memory capacities of
computers, and as a result, only a few hundred eV primary knock ons

can be simulated.

IV-3. Binary Collision Approximation Method
Beeler [6] introduced the assumption that the atomic collision

cascade can be described as a branching sequence of binary collision
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‘events. Only moving atoms with kinetic energies above a certain
threshold energy are considered in the cascade, and those which have
kinetic energies below another threshold energy are considered as
interstitials. Recombination between interstitials and vacancies
produced in the cascade is assumed to occur when the distance of
separation between a vacancy and an interstitial lies within a
recombination spacing determined from a separate fully dynamic
calculations.

Beeler's calculations [6] start with a single knock-on endowed
with a momentum in an arbitrary direction. The atom is then followed
to its first encounter with a lattice atom, at which the collision is
treated by two-body classical considerations with a realistic inter—
atomic potential. The products of this collision are then followed
to their collision, and so on. A bookkeeping scheme is used to keep
track of the currently moving atoms in the cascade. Allowance is
made for moving atoms to interact with interstitials already produced
in preceding collisions, so that interference between different
branches in the cascade can occur. The cascade is considered to be
terminated when no moving atom has energy greater than some critical
threshold energy. These calculations enabled scientists to study
cascades produced by PKAs of energies in the order of KeV.

The fate of a beam of ions impinging on a target material can be
simulated. The target may be amorphous or crystalline. In the
latter case, a simple system can be used for creating a small section

of the crystal for each target atom and thereby avoiding the storage
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of the whole crystal. Like Beeler's method, binary collision is
assumed, and the cascades developed by the ions are followed sequen—
tially. For energies in excess of about 1 keV electronic loss is im
cluded. The incident beam can be simulated by selecting many ions
with initial conditions sampled from the overall distribution of
possible systems parameters, then each ion is simulated individually
in the interaction with the target. The distribution of the outcomes
is constructed by adding them together. This sampling procedure is
known as Monte Carlo and will be discussed in the following section.
Recent reviews on the MBI and BCA methods have been made by Beeler
[8] and Jackson [9].

IV-4, Monte Carlo Technique

The Monte Carlo method may briefly be described as an artificial
device of studying a stochastic model of a physical or mathematical
process. This is achieved by a sampling process from the probability
laws which govern the process under consideration. The physical
process of interest in this study is the transport of ions in a
heterogeneous material.

The Monte Carlo method has been applied to ion transport by many
authors. This will be briefly reviewed at the end of this chapter.
First we introduce the method and some necessary definitions, then
simple examples will be given to illustrate the concept of the

nmethod.
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IV~-4~1, Definitions

If a random variable x takes any value in the range (a,b) ac-
cording to a certain function p(x), and if p(x) 1s normalized, i.e.

b

[ p(x) dx =1 (4.1)

a
then p(x) is called the probability density function (PDF). The
cumulative distribution function (CDF) for a continuous random vari-
able x, F(xo), is defined to be the fraction of all x values lying in
the range a < x < x,. The PDF p(x) describes the local density of
the x values in the increment dx in the range (a,b), so that the
probability that the variable x will have the value between X, and
Xy + dx, 1s p(x,) dx,. This means that p(x,) dx, gives the fraction
of all values of x in the interval dx, around x,.
The CDF F(x) is related to the PDF p(x) through the relation

X

£ p(xo) dxo . (4.2)

F(x)

with b(xo) =0 for b < x5 < a and p(x,) > 0 for a < x, < b.
From the definition of F(x) we can state the following
properties of F(x):
(a) F is monotonic nondecreasing function of x;
(b) F(a) =0 and F(b) = 1;
(e) F(xp) = F(x1) = probability that x lies in the interval
x; < x < %9,
We should note that the random variable may be continuous or

discrete. In the latter case if x takes the discrete values
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X1,X2,+ee, With the probabilities p;, py, +.., so that I p; = l, then
i
F(x) is

F(x) = L P; (4.3)

xi<x

In such a case, the CDF is not continuous, but a step function with a
step height p4 at the point X4+ On the other hand, if the random
variable x is continuous, the derivative of F(x) exists and from Eq.

(4.2) we have:
dF (x) = p(x) dx . (4.4)
If g(x) is a function of x, then the mean value (the expectation
value) of g is
g = [ gx) &F(x) . (4.5)
For a continuous random variable (RV) one gets
g = [ g(x) p(x) dx . (4.6)

Sometimes we may transform the variable x to another variable y

which is related to x by a one—to—one relation, i.e.

x= £y , y=flo . @D

Hence, the CDF F(x) may take the form
X x(y)
F(z) = [ &F = | p(u)(j—;) &y (4.8)
a

a

from which we get
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dF = p(x(y)) (dx/dy) dy
(4.9)

= p(x(y)) (df/dy) dy .

The function p(x(y))(df/dy) is actually the PDF of the random vari-
able y which describes the probability density function of the same
set of events which has been described by the random variable x.

More information about the properties of PDF and CDF can be
found in any standard statistical textbook [10].

IV-4-2, Sampling Technique [11-14]

The basic idea of the Monte Carlo (MC) method is to select
samples which are distributed according to a certain probability law.
In other words, how can the values of a certain RV-x be selected so
that these values of x are distributed according to the PDF or the
CDF of x.

Consider a RV-n with PDF p(x) and consider also a sequence of
random numbers (RN) p1,pp,... which satisfy the condition 0 < py <1
and which are drawn indepe%dently from a uniform density on the unit
interval (0,1). The PDF of these sequences of RNs can be described
as

1 0 <pXKl
glp) = { (4.10)
0 otherwise .
Let F(x) be the CDF of n, then

X
F(x) = P[n < x] = [ £(t) dt , (4.11)

-0
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where the notation P[ ] means the probability described by the con-
ditions between the brackets, and we assume that x extends from == to

+e, Consider the equation
F(x) =p . (4.12)

From the properties of the CDF F(x), as x varies from —= to +», p
ranges from O to 1. Now if we define a uniform function ¢(p) such

that

$(p) = x (4.13)
then it is clear that ¢(F(x)) = x so that (Fig. 4-1)

p(p) < x if and only if p < F(x) . (4.14)

The functions ¢ and F are the inverses of each other.

Flxy) F{x)

Fig. 4-1.



90

For the sequence of RNs p;,p9,..., the numbers tj,ty,... are

defined as

ti = ¢(Di) s (4.15)
and will be sampled from the density p(x), since

P[ti,x] = P[¢(pi) <x] = P[pi <F(x)] = F(x) . (4.16)

To illustrate this procedure consider the PDF f(x) given by

Ix

f(x) =% e 0<x<w

? (4.173.)
=0 x<0
which describes the probability that a particle will travel a
distance x before having its first collision between X and x + dx in

an infinite medium of material with a total macroscopic cross section

Z. Then the CDF F(x) is
x -Ix -Ix
F(x) = f e dx =1 - e . 4.17b)
0

To select a sample from f(x) with uniformly distributed RNx, p, we

can find the inverse function ¢(p), as follows:

o =F(x) =1-e X | (4.18)
and hence
x=¢(p) = =) In (1 -p) . (4.19)

Then, for the RNs p;, the numbers ¢(pi) will be exponentially distri-

buted according to Eq. (4.17a).
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Thus, in principle, once we know the PDF or the CDF of the RV,
according to this inversion procedure, we can select a set of values
which obeys the prescribed PDF. There exist other methods for
sampling and a good review of them is given in Reference [12].

IV-4-3. Accuracy of Monte Carlo Method [13]

It can be shown by statistical analysis that the error in the
Monte Carlo solution § for the mean value of a distribution is of the
order

s~ (4.20)
/N
where N equals the number of trials or the number of points in the
sample. This means that the mean value predicted from the sample is
approaching the mean value of the distribution with increasing N. It
can also be shown that the variance ci of the arithmetic mean of a RV

predicted from the sample is related to the variance of the distri-
2

bution ¢ by
o =< (4.21)
° N

It is clear from Eqs. (4.20) and (4.21) that, for example, if a
tenfold increase in the accuracy is required a hundredfold increase
in the number of trials N is required, which means increasing the
computational time by the same amount.

However, the Monte Carlo method remains the only way one can use
to solve multi-dimensional complicated problems when one cannot solve

them by any other tools.
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IV-5. Applications of Monte Carlo Method in Radiation Damage Studies

Yoshida [4] and Oen et al. [15,16] were the first to use the
Monte Carlo technique in radiation damage studies. Since the trajec—
tory of a moving particle in‘the material can be thought of as a
recurrence of a basic cycle, which in turn consists of a step length
and a deflection, the simulation of the deflection, i.e. the scat-
tering event, and the step length between collisions differs from one
model to another. For example, Yoshida assumed that the collisions
of the PKAs produced by neutron irradiation with target atoms are
isotropic. Thus, if E;_1 is the energy of the moving particle after

the (i-1)th collision, then its energy after the il collision is

El = EEi_l , (4.22)
where £ is the random number. The scattering angle in the ith
collision is then readily evaluated to be

-1
= 4,23

8, = cos /Ei7Ei_l , | ( )
The azimuthal scattering angle is

¢i = 27 . (4.24)
Yoshida used exponential distribution for the step length, i.e.

(2,) do, =1 ex (—ii—) de (3.2)

R St P W W S g

li can then be obtained from

2, = "A; log &, (4.25)
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where A; 1s the mean free path given by

A, = (4.26)

1
i -ﬁ-TI'R

2
i
where N is the number of atoms per unit volume, and Ri is the

distance of closest approach. Ry was obtained by equating the PKAs

energy to Bohr potential

R

Zey2
E, = (ﬁi) exp (-<1) . (4.27)

In the model of Oen et al. [15,16], the target was assumed to
consist of touching spheres of influence surrounding each atom. The
diameter of each sphere is equal to the distance of the nearest
neighbor (ZRC). The CM scattering angle was calculated from

U
o

du
o=1-2s , (4.28)
0 {1 - /e, ] - 2"}

where s = the impact parameter which was selected from the distri-

bution
P(s) ds = 254 0<s <R
c
R
c
s (4.29)
= 0 otherwise

u = l/r, where r equals the relative separation, Erel is the relative

energy in CM = MpE/(M; + Mp), M; and My are the masses of the target
atom and the moving particle respectively, and u, is the value of u

for which the denominator of the integrand of Eq. (4.28) vanishes.
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The azimuthal scattering angle was evaluated from Eq. (4.24). Oen et
al. used the hard sphere potential and Bohr potential. They used a
screening length equal to Bohr's screening length multiplied by a
factor to permit a closer fit to experimental results. In the evalu-
ation of the step length they introduced the concept of the "free
flight distance”, Eéf which is the average distance travelled by the
moving particle in the unoccupied space between the atom spheres.
This distance was added to the path of the primary along with the
segments ) and 29 of the asymptotes of the primary at each collision
(Fig. 4-2). The value of IEf is chosen so that the effective mean

free path arising from the calculation matches the ordinary analyti-

cal mean-free path (Eq. 4.26), whose value is given by

- 2y _ 4
Les (1/erc) TR, - (4.30)

‘/ATOMIC SPHERES

Fig. 4-2. Path of a primary atom showing a typical "free flight"
distance lff[IS].



95

The electronic energy loss was neglected in the above models,
which are given here in some detail to illustrate the method. Pavlov

et al. [17] calculated the distribution of defects formed during the

ion bombardment, including the electronic energy loss, and assumed it
was continuous along the path. They followed all the moving atoms in
the cascade and recorded all types of events that may take place in
the collision, i.e. displacement, replacement, reflection, etc.

Skoog et al. [18-19] considered only the nuclear energy loss and

used the universal scattering cross section Eq. (2.10), i.e.

29 = £n) (4.31)
n

where n = t1/2 = esin (8/2). From this equation the CDF F(n) can be
obtained for the variable n. They assumed constant path length given

by

1

ﬂer
o)

where r, is the maximum allowed impact parameter defined by

g = (4.32)

wrg = N-z/3 where N is the atomic density of the target. The

function f(tl/z) is assumed to be approximated to TF potential by
£(n) = 0.25 5 1/3 n> 0.158
, . ' (4.33)
= 0.86 nl/3 n < 0,158
The function that was used is shown in Fig. 4-3. The total cross

section, due to the restriction of a binary collision, is normalized

to

€ deo 2
F e = (o) dn = mr (4.34)
n
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Skoog et al. [18] were interested in studying the angular
distribution of ions incidenﬁ on a thin layer as well as the angular
and thickness dependences of the nuclear stopping cross section.

Many other authors [20-36] used the Monte Carlo technique to
study the range, damage, backscattering, and sputtering of the ions
in solids, and the reader is urged to review those papers for more

information.

finy

L L 1 []
.0eggr .gcor oot a1 4 1 10
8

n=¢£-sin 3

Fig. 4=3. The scaling function £(n) of the TF, used by Skook et al.
[18]. ,
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CHAPTER V

THE COMPUTATIONAL MODEL

V-1. Introduction

To study the effect of the microstructure on the range and
damage of implanted ions in the materials, a three—-dimensional Monte
Carlo Code called HERAD (Eg;erogeneous_Bgdiationuggmage) was de-
veloped which is capable of predicting the range and the damage in
homogeneous or inhomogeneous materials, e.g. materials which contain
voids or bubbles. Even though most of the time spent on this thesis
involved adapting various theoretical models to the computer, only an
outline of the code is given here. Future reports [22] will document
the code in more detail.

V-2. Assumptions

The model is based on the following assumptions:

(a) the moving particle interacts with one atom at a time, i.e. the
elastic binary collision approximation is assumed;

(b) the target is assumed amorphous, i.e. we neglect any lattice
effects;

(¢) the moving particle loses energy to electrons continuously while
it travels between successive collisions;

(d) the magic formula of Lindhard [1] is used to evaluate the scat—
tering angle;

(e) the steps between successive collisions are assumed exponential-
ly distributed according to Eq. (3.2), i.e. the mean free path

assumption is taken;
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(f) the moving particle is assumed to be stopped when its energy
falls below a cutoff energy (~ 25 eV).

V-3, Calculation Procedure

V-3-1. Nuclear Energy Loss in a Scattering Event

The universal differential scattering cross section given by

Lindhard et al. [1] is

do =%—1ra2 32 £ 12y 4 , (5.1)
where a is the screening length given by

= k '
a 0.8853 ao 87_21,—225. . (5.2)

a, is Bohr radius = .529 x 10"8 cm, and g(Zl,Zz) is obtained either

from Lindhard's formula

o (273 2/3.,1/2
8(21’22) (Z1 + 22 ) s (5.3)
or from Firsov's formula
o ,1/2 L 1/2.2/3
g(zl’ZZ) (Z1 + Z1 ) . (5.4)

The factor k in Eq. (5.2) is introduced to study the effect of the

screening length on the calculations results. tl/2 is given by

e1/2 = e sin 6/2, where 6 is the CM scattering angle, ¢ is the

reduced energy

e=E 2 a 3 (5 5)
k) L]
1 M2 leze

M) and Z; are the mass and the atomic number of the moving particle,
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M, and Z, are the mass and the atomic number of the target atom, E is
the energy of the moving particle and e is the electronic charge.

f(tl/z) is given by Winterbon [2] as
£ty = a2 4 aelmayt/a (5.6)

which is wvalid for 0.001 < tl/z < 10, and approaches a simple ana-

lytical form

fL(tl/z) - ltl/z-m - (5.7)

for small values of tl/z. For large values of tl/z (tl/2 > 10), we

use the expression

fU<c1/2) = 0.5 ¢ /2 (5.8)

which corresponds to Rutherford scattering [3]. The three different
regions for f(tl/z) are shown in Fig. 5-1 for the Thomas-Fermi and
Moliere potentials. For very low energies where the screening effect
1s excessive, we use the Born—-Mayer potentiai. The function f(tllz)

of the Born-Mayer potential is given by Sigmund (4] as

1/2y _ o, 172
fBM(t ) = 24¢ . (5.9)

The differential cross section is given by

1/2
2 (24t )
do = (vaBM) —22377—~ dt (5.10)

where apy equals 0.219 A. Sigmund (4] estimated a limiting energy

Egy given by
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2
M1 + M2 (312 3 . leze

E . = 0.0234 (5.11)
™ o | %

-

below which Eq. (5.10) can be used. ajp is the screening length for
the colliding atoms given by Eq. (5.2) and we introduce the factor
kBM to allow for the change of Epy. Alternatively, Epy can be
assigned an input value.

Another choice for very low'energy scattering is assuming

isotropic scattering in the CM [5] with

g
do =% sin g do , (5.12)
where Ig is the total effective cross section given by
2
g =1P7 (5.13)
g c

where 2Pc is the average distance between the target atoms.

The total scattering cross section is given by

172
max
o= [ do , (5.14)
1/2
t .
min

where do-is given by either Eq. (5.1) together with Eqs. (5.6),
(5.7), and (5.8), Eq. (5.10), or Eq. (5.12), depending

on the energy of the particle, the choice of the potential

and the value of tl/z,
min
1/2 _
thin = € sin (emin/z)’
1/2
t =g,

max
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and Omin 15 the minimum angle of scattering which can be calcu-
lated from Eqs. (2.23), (2.24), (2.25), and (2.26), or
assigned a constant value (~ 2°),
The scattering angle is determined from the expression

172 .

[ doloy =0 , (5.15)
1/2

min

where p 1s a random number uniformly distributed from O to l. The

actual value of the scattering angle, 6, is then evaluated from the

value of tl/2 which satisfies Eq. (5.15) via
-1 gl/?

The nuclear energy loss is given by

AT = yE sinz-% , (5.17)

where vy = 4M1M2/(M1 + M2)2, and E is the energy of the particle be-
fore collision.
The polar scattering angle of the scattered particle in the

laboratory, y;, can be obtained from the familiar relation

- A sin ©
tan ¥, T +4 cos &) ° (5.18)

where A = M2/M1. The corresponding angle of the struck particle is
vy =T . (5.19)

Since the scattering in the azimuthal plane is isotropic, the
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azimuthal scattering angle 9 is uniformly distributed from O to =,

and is determined from
¢ = 2mp , (5.20)

where p is another random ﬁumber.

The directions of the scattered particle and the target atom
(the scatterer) after any collision cén be determined from the above
quantites as described below. Consider that the particle moves along
the vector H (see Fig. 5-2) before the collision and has direction
cosines aj, by, and c¢;. If no scattering event occurs, the particle
will continue to move along H. Suppose that the particle at any
point P along'ﬁ suffers a collision which results in a deflection of
its path with respect to H by the angle Y given by Eq. (5.18), and
suppose that the particle continues to travel a unit length S. The
end point of S, due to the fact that the scattering can happen in any
plane containing H, may be at any point along the perimeter of the
base of a cone whose altitude is the extension of H.

The altitude of the cone L and its base radius will be

L = cos wl ’
and (5.21)

R = sin ¢1 ,

respectively. The coordinates of the center of the cone base Xy Yoo

and z, with respect to the point of collision P are given by
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FIGURE 5-2. COORDINATE SYSTEMS USED TO
LOCATE THE PQINT OF COLLISION.
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X, = L. a;
Yo =L b (5.22)
zo = L c1 .

A new coordinate system is used with axes X', Y', Z' chosen such
that the X'Y' plane contains the base of the cone, and Z' coincides

with H, i.e.
ayy = a; s b,, = bl s and c¢,, = ey (5.23)

Since the X' axis is arbitrary, it is chosen to be the line of the

intersection of the plane of the base with the plane Y = y The

o.
equation of the cone base in terms of the direction cosines of the

normal to it (H), and a point in the plane (xo,yo,zo) is then
ajx + by +cpz - (alxo + byt clzo) =0 ., (5.24)

Note that the collision point P is considered as the origin of the
original coordinate system XYZ. The line of intersection of the base

with the plane Y = y, is

ax + c,z = (alx0 + clzo) =0 |, ‘(5.25)

which leads to an equation for the line of the intersection (X'),

given by
2 !
z = (‘ q) + (q)xo + Z° . (5.26)

Therefore, the direction cosines of the X' axis with respect to the
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original axes are

ag: = cos (arctan ("al/cl))

’

bX' cos (n/2) =0 , (5.27)

and Cgr = cos (arctan (—cl/al)) .

The direction cosines of the Y' axis, knowing that of X' and Z' are

ava = bzlcxv ’
bYc = CZ'aX' - cX'aZ' ’ (5.28)
Cy? = "avazv .

The azimuthal angle ¢ 1s chosen with respect to X' axis by Eq.

(?.20). Then the coordinates of the point N (Fig. 5-2) in the X'Y'Z'

system are

Rcos ¢

2

Rsin ¢ (5.29)

which can be transformed back to the original system XYZ whose origin

is the point P to give
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Yy = bgexg tagyg tyg o (5.30)

N
2
]
0
»
+
m
]
<
=z
+
N
o

Finally the new direction cosines of the scattered particle are

a = xn/D , bn = yn/D » ¢ =z /D, (5.31)
where

02 g2 L 24172
D (xN+YN+ZN) . (5.32)

The direction cosines of the scatterer are obtained by solving

the vector equations

s Pl = cos wz s
s . 3é = cos (wl +t ), (5.33)
and (@, xP,) «+s=0

where?l is a unit vector in the direction of the moving particle be-
fore collision,'f'2 is a unit vector in the direction of the particle
after collision,‘g is a unit vector in the direction of the displaced
atom, ¥; 1is the laboratory scattering angle given by Eq. (5.18), and
Yo is the laboratory scattering angle of the scatterer and is given

by Eq. (5.19). Figure 5-3 shows the directional relations among the

three vectors.
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P. (a ,b

1+%1°°10¢ )

Fig. 5-3. Schematic diagram showing the directions of the moving
particle before collision P., after collision P, and

the direction of the recoil atom s. 2
Equation (5.33) can be put in the following form
a2, + bsb1 + S = cos wl
= +
aa, +b.b, + ¢ Sy cos(xp1 wz)

as(blc2 - Clbz) + bs(cla2 - alcz) + cs(alb2 blaz) =0
(5.34)

where (aj,by,c;) are the direction cosines of 51, (ap,bg,cp) are the
direction cosines of f}, and (a3,b3,¢3) are the direction cosines
of s.

V-3-2. Step Length Between Two Successive Collisions and the

Electronic Energy Loss

The step length, £, between two successive nuclear collisions is

assumed to be exponentially distributed, i.e.
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p(V) = =t exp (- 3%) , (5.35)
T

where N is the atomic density of target, and or is the total scat-
tering cross section which is obtained from Eq. (5.14). The value of
%2 1is then evaluated from
t=-g—1n () , (5.36)
Or ,
where p is a random number uniformly distributed between O and 1.0.

A truncated exponential distribution, which limits the minimum
step and/or the maximum step, can also be used. Another constraint
on the step length is made such that the electronic energy loss of
the particle along the step does not exceed some fraction (~ 5%) of
the energy of the particle at the beginning of the step. Such con-
straint was also used by Biersack [6].

The electronic energy loss is assumed to be continuous along the
path of the particle. If the step length is £ and the energy of the
particle is E; at the beginning of the step, then the energy of the

particle, Eg, at the end of the step £ is given by

E,=E, - Gﬁg)e o, (5.37)

f i dz

Ot

and for the first order approximation one gets
L), EDe . (5.38)

The Lindhard (7] or Firsov [8] formulas, Eq. (2.6) and Eq. (2.7)

respectively, can be used for (dE/d2), = S,N, where N is the atomic
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density. The Brice [9] formula for Se can be used also, and is given

by
2
s, = AG, +2,) fb(u)[Ul/z ((30U + 531; + 21)
(3 + 3u7)
(5.39)
+ (10U + 1) arctan (Ul/z)] s
where: A = 0.60961 x 10713 ov cmZ/atom,
v = E/(zPE)),
El = 99.20 KeV
£,0) = (1 + (422 a'2 v)n/2)71

and Z, a', and n are the three parameters for projectile target
combination.

V-3-3, The Displacement Model

The computer program HERAD is designed to study the range
distribution as well as the damage distribution of ions in materials.
In the first case, only the incident ions are followed. An approxi-
mate estimate of the damage energy, i.e. the amount of energy that
results in displacement and defect production, can be made. If AT is
the energy loss by the incident ion upon a collision with a target
atom, Ej i1s the threshold energy of the displacement, and AT is less
than E4, 4T is assumed to be dissipated into phonons, i.e. heat. If
AT is greater than E4, AT is partitioned according to Lindhard [10]

to a damage energy Tp which ultimately goes to displacement and
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electronic energy T, which is lost to electrons. Tp and T, are given

by
T, = AT/ + kg(x)) ,
and (5.40)
T_ = AT - T, ,
where
k= (0.1334 227 l2 (5.41)
x = AT/(0.02693 22/3) , (5.42)
and [11]
g(x) = x + 0.4024 /% + 3.4008 =/5 (5.43)

The damage energy Tp is supposed to be deposited at the point of
collision, such that the spatial distribution of Tp will not include
the recoil effect. The number of defects, v, according to the

Kinchin and Pease displacement model [12] is

T
D
AY) "ii— N (5.44)
d

which is based on the hard sphere potential. For more realistic po-

tentials, Eq. (5.44) becomes ([l1]

V= o (5.45)
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where n k~ 80%) is the displacement efficiency which is a function of
the interatomic potential.

A more precise estimate of the damage can be made by following
the primary knock atoms. In this case, Tp given by Eq. (5.40) is
deposited at the end of the PKA trajectory when its energy is less
than 2E4, i.e. no longer able to produce further displacements.
Finally, the defect distribution can be estimated by following every
atom in the cascade capable of displacing a target atom. Figure 5-4
shows and explains the displacement model adopted in the calcula-
tions. The cutoff energy E. may be either E; or 2E4 and in both
cases a binding energy Ubin may be optionally included to account for
the amount of energy the recoil atom may expend in breaking its bonds
in the lattice. The value of the cutoff energy E. can also take any
pre—assigned value which allows us to compare our results with other
calculations that employ different values for E., E4, and Upine

V-4, Inhomogeneous Target

In dealing with an inhomogeneous material, i.e. a material con-
taining voids or bubbles, we assume that the cavities are randomly
distributed in the material with known distributions of the number
density and the average diameter, or the distributions of the void

fraction of the cavities. It is known {14-16] that

v, =1Ll |, (5.46)

where Vy is the volume fraction of the second phase, and Ly, is the
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Fig. 5-4. a) The displacement model when the cutoff energy = E_;
b) when the cutoff energy = 2E,; P = primary, R = recoil,
I =interstitial results from a primary, I_ = intersti-
t?al results from a secondary; ( ) near defect,
= energetic particle to be followed.
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lineal fraction, i.e. the length of lineal intercepts per unit length
of a random test line.

This fact has been used by Odette et al. [17] to estimate the
effect of voids on the range and damage of ions in materials, but in
that work no difference was made between the path of the ion and its
projected range. In our calculations the steps between collisions,

Eq. (5.36), were increased according to Eq. (5.46) by

AL =% -V (5.47)

V ’

and the particle energy remains the same as it transverses the void.
Thus, in this model the actual path of the moving particles will be
affected by the presence of the cavities, rather than the projected
range as in the model of Odette et al. [17].

V-5. The Computer Code HERAD

Figure 5-5 shows a block diagram of the computer program HERAD.

The name "HERAD" stands for "Heterogeneous Radiation Damage"”. The

following is a brief description of the code and the function of the

procedures used in it.

MAIN, MAIN is the starting procedure. It calls ZCRAYF, AINITIAL,
and AMAINX.

ZCRAYF. ZCRAYF handles the input/output files according to the
computer environments, i.e. if the program is to be run on a
CRAY-1 or CDC-7600 machine.

AINITIAL. This subroutine is called twice, first by MAIN to set the

physical constants needed in the calculatioms, and second by
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AMAINX to set some of the input data to their default values and
read the input data. AINITIAL calls POTEN, ROPNIO, ZBXST,
ASTPRM, and CSTST.

AMAINX. This is the main controller of the program. AMAINX follows
the incident ions only, and it calls ZAPKA to follow the PKAs if
that is requested.

POTEN., POTEN is used to set the potential constants, used in the
calculation of the cross section, A, m, and q in Eq. (5.6).

ROPHIO. ROPHIO is an entry point in the subroutine ENTRYS, and is
called to read the CDF of the potential which resides on an
input file produced by the program POTSET.

ASTPRM. ASTPRM calculates most of the parameters and constaints used
in other procedures. Also, it calls the setting entry points
BEAMST and EODST.

BEAM. BEAM provides the energy of the incident beam of ions. Three
different distFibutions may be used for the incident beam, mono-—
energetic, Gaussian, or Maxwellian. In the case of the Gaussian
distribution the function EGAUSD is used, and in the case of
Maxwellian distribution the function EMXWD is used. In both
cases a call to BXER is made to record the energy.

EGAUSD. The function EGAUSD uses the Monte Carlo method to sample a
Gaussian distribution knowing its mean and its standard devi-

ation. The method employed is known as the sine—cosine method

[18,19].



120

EMXWD. This function also uses the Monte Carlo method to sample a
Maxwellian distribution [18].

BXER. BXER is used to record a variable into its associated
histogram.

CSTPSE. This procedure outputs the step length between two
collisions and the electronic energy loss of the particle along
this step. It calls XSTOT, the random number generator RANF, and
in case that the Brice formula is used for the electromnic energy
loss it calls SECALC.

SECALC. SECALC calculates the electronic energy loss according to
the Brice formula (Eq; 5.39).

XSTOT. XSTOT calculates the total scattering cross section and the
scattering angle.

LOCIR, LOCPOS. LOCDIR determines the direction cosines of the

_scattered partcle after scattering knowing the angle of
scattering. LOCPOS determines the coordinates of the next
collision of the.particle giving the step length and the
direction cosines.

ZSEBXP. ZSEBXP is used to record the electronic energy loss in a
histogram.

COLLIDE. Calculates the laboratory scattering angle and the nuclear
energy loss in the collision.

ZAPKA. This routine follows the PKAs if requested.

SNBXR. Records the nuclear energy loss of the incident ions in the

collisions with respect to the space.
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BCKSC. Records the energy of the backscattered particles.

DEEFF. Calculates the partition of the PKA energy into electronic
and nuclear energy according to Lindhard, Eqs. (5.40)-(5.42).

ENTRYS., It has the entry points, ROPNIO which was mentioned before,
GETIOS, and GETIOM. GETIQS and GETIOM return the values of CDF
and the PDF of the scattering cross section.

SPUTT. Calculates the energy distribution of sputtered atoms.

EMEDIAN. Returns the median of a distribution.

FUNEM. Calculates the minimum angle of scattering.

MOMENT. Calculates the average, the standard deviation, the
skewness, and the kortosis of a distribution.

RANGE. Calculates the vector range, the projected range, the spread,
and the total path at the end of a history and calls BXER to re-
cord all the above quantities in their histograms. At the end
of all histories the energy points, RANGEX is called to print
out these histograms, to call MOMENT, and to print the statis-
ticse.

RUTH, XLOW. Calculates the upper and the lower limit of the
scattering function, respectively.

SEARCH2., Searches for the value of tl/z

which satisfies Eq. (5.15).

ZADJUST. Is called by any scoring routine when the score is out of
the limit of the histogram; i1t then doubles the histogram inter—
val and adjusts the scores in the histogram.

ZBXD, Calculates the distribution of the damage energy transported

by the PKAs and the statistics of this distribution.
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ZCASK. This routine is called from ZAPKA if all the displaced atoms
are to be followed. It follows a displaced atom by a PKA.
During the slowing down of this atom, the secondary, ZCASK
stores the coordinates, the direction cosiﬁes, and the energy of
any displaced atom capable of producing more displacements.
After the energy of the moving atom falls below the cutoff
energy, ZCASK retrieves the latest stored coordinates, direc-—
tions, and energy and starts another branch in the cascade. This
is done until all the stored information is processed.

ZDISMDL. This routine is called by ZAPXA and ZCASK. It employs the
displacement model in the collisions and scores the resulting
defects by calling ZDFCTBX.

ZPKADIR. Calculates the direction of a recoil atom in a collision.

OUTNET. This is the main output routine. It calculates and prints
out a complete energy partition, different energy distributioms,
collisions distribution, and defects distributions. If plotting
is requested, OUTNET writes the desired information on an output
file to be processed by the plotting programs.

HERAD can be compiled to include graphic routines which help one
to watch the paths of the moving particles, projected on any plane,
on a display terminal. This was mainly used as a debugging tool in-
stead of having a huge amount of print output describing the trajec-
tories of the particles at each collision. An example of this output

is shown in Fig. 5-6.
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There are other programs which have been developed to work with

HERAD. These are:

POTSET. Which has been mentioned early, computes the CDF of the used

REG.

potential. POTSET uses the cautious adaptive Romberg extrapo-—
lation method to intégrate the differential scattering cross
section. An interval of 0.001 in units of the variable t!/2 is
used to produce total of 10,000 values f?fh of which is corre-
sponding to the value of the integral : f do where tl/z is
taken as a multiple of the interval .Oé?oérom .001 up to 10,

The output of POTSET (the CDF) is a binary file which can
be read by HERAD from the ENTRY point RROPN1O. Alternatively,
POTSET can be used as a subroutine in HERAD where it can be
called from the same ENTRY point.

This program performs a simple linear regression analysis. If
one for example runs HERAD with all the parametérs having their
default values, then for each parameter involved in this ana-
lysis an additional run of HERAD is required with this parameter
increased by an increment. The outputs of HERAD are then fed to
REG togethgr with experimental results, for example, of the pro—
jected range and/or the straggling, etc. From these data REG
constructs the so called information, or the Fisher matrix, and
solves for the new values of the chosen parameters which are

input again to HERAD. For more information see Refs. 20 and 21.

RUNPLT. This is the major plotting routine, it reads the output of

HERAD and other programs (e.g. MARLOWE, TRIM, BRICE, E-DEP-1,
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see next chapter for the discussion and the references of these
codes). If experimental data are readily available RUNPLT reads
them too and makes the required graphs.

DIGITIZE. This program was first written in BASIC computer laﬁguage,
using the HP-9872 plotter with HP-System 45 computer. The
function of this program is to digitize the experimental data
which are available only through graphs. Another version of
DIGITIZE was written in FORTRAN to be used on CRAY-1 computer
with the Tektronix 4662 plotter and the Tektronix 4006-1 graphic
terminal. DIGITIZE produces an output file which is readable by
RUNPLT, Figure 5-7 shows the communication between the above

mentioned codes.
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CHAPTER VI

RESULTS AND DISCUSSION

VI-1, Introduction

The final object of this work is to verify the damage—depth
relation accurately as much as possible, and to study the effect of
inhomogeneities introduced in the material during the course of ir-
radiation. These inhomogeneities could result from the formation of
cavities or ghange in the size distribution precipitates. Differ—
ences between the observed damage distribution (i.e. swelling) versus
the depth and the calculated damage distribution have been observed
for both light ion [1] and heavy ion [2] irradiation.

The work of Whitley [2] shows that the peak of swelling and the
end of the range in nickel targets implanted with different ions (Ni,
Cu, Al, C) at different energles is deeper than that of the calcu-
lated damage distribution by a factor of 15-20%. Fenske et al. [1]
observed, for nickel implanted with 500 keV He ions, that the peak
swelling.occurs at depths ~ 8-15% deeper than the peak in the calcu-
lated projected range profile and 15-25% deeper than the peak in the
calculated damage profile. A larger difference, up to 50-90% has
been also observed by Fenske et al. [3] for nickel implanted with 25
keV He ions.

Differences between the calculated and observed damage profile
have also been observed in void free material [4]. Here the damage
is measured in terms of the loop density, and.it was also found to be

deeper than that calculated by the computer code E-DEP-1 [5] which
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does n&t take into account the effect of recoils in the damage energy
distribution. Different electronic energy loss models were used in
that work to match the calculated damage with observed damage.

As a first step to study the damage depth relation, oﬂe needs to
reconsider the range of ions in the material, which is the prime
factor in any damage calculations, and to test the models against
experimental data that is available. With respect to the experi-
mental data, one finds a wide spread of uncorrelated data especially
for low energy and high energy heavy ions. Helium and hydrogen have
enjoyed much more systematic investigations, especially in the high
energy region.

There is almost no information about the ranges of heavy ions in
Ni, especially in the energy range of interest (10-15 MeV). Further-
more, even for the existing data there 1s no satisfactory agreement
between theoretical ranges and the observed ranges. A brief review
of the situation is given below.

VI-2. Experimental Results

Because of the need for the experimental information on the
range of heavy ions in nickel we have irradiated different, high
purity nickel samples with copper and carbon ions in the U.W. tandem
Van De Graaff accellerator. The Cu ions energies were 15, 13.97,
12,96, and 12.13 MeV. The C ions energies were 16, 12,51, 10, and 5
MeV. These energies were selected to be as close as possible to the
energies used by Whitley in his work. The samples were analyzed by

the Materials Research Laboratory of the University of Illinois. The
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Secondary Ions Mass Spectroscopy (SIMS) method was used to determine
the range of the ions in the nickel targets. The experiment was
repeated again with higher doses on a nickel single crystals. In
either case we were not able to obtain any consistent results. The
problem was mainly the instrument drift over the long period of time
it takes to sputter to the depth of the implanted ions (several
microns), and also the difficulties of measuring and calibrating the
depth of the crater. Becausé of these factors, the depth calibration
with the sputtering time was not possible. Figure 6-1 shows a typi-
cal example of the obtained ion count versus the sputtering time for
the 13.97 Cu Ions in nickel. We had hoped to get accurate results to
compare it with our Monte Carlo results, and with the other computer
codes results, but we were unsuccessful in this regard.

VI-3. Ion Range

In this section we present the results of the ranges of differ—
ent ions in different targets as predicted by the code HERAD, The
cases considered here are Cu-Ni, C-Ni and some cases which have been
studied previously either experimentally or by other computational
methods. With respect to the other computational methods, we have
converted most of the range—damage computer codes to run on three
different computer systems, the UNIVAC 1110, CDC 7600, and CRAY-1
systems. The codes that were considered are E-bEP—l {5], BRICE [6],
TRIM [7], and MARLOWE [8]. This task required some modifications and
additions, in which we tried to unify as much as possible the input

and the output data format so that our comparison would be easier
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and would not involve any effect which may arise because of the
different way each code interprets the input data.*

Figures 6-2, 6~3, 6-4, and Table 6-1 show the results of the
HERAD calculations compared to those from E-DEP-1, BRICE, TRIM and
MARLOWE. The potential used in HERAD and E-DEP~1 as well as BRICE is
the Thomas—~Fermi potential. The Moliere potential is used in MARLOWE
and TRIM and the electronic energy loss used in the first three codes
are the same and is that of LSS. TRIM uses LSS for reduced energies

(e) less than 10. Above € = 10. TRIM uses the formula:

1 1 1
i S *t3
®Lss ®s.B

where SeLss is LSS electronic stopping and seB.B is the Bethe—Bloch
stopping. For MARLOWE the electronic stopping is more complicated
and is divided into two parts; non—local, which is independent of the
. impact parameter and could be taken either that of LSS or of Firsov,
and a local part which depends on the impact parameter in each coili-
sion and which is given by Firsov's formula. The fraction assigned
for each part is optional and, as was recommended by Robinson [9], we
chose the local and the non—-local electronic stoppings with equal

weight, i.e. 50% of the total electronic stopping is calculated as

local and the other 50% as non-local. Figure 6=5 shows the

As an example, each code uses different parameters to calculate the
target density, e.g. BRICE uses the lattice constant, TRIM uses the
gram density, and E-DEP-l uses the atomic density.
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electronic eﬁergy loss as a function of the energy of the copper ion
and as calculated using LSS and Firsov, and the model used in TRIM.
It is seen that in this case Firsov gives the value of Se lower than
that of LSS by a factor of about 10-15%. TRIM values of Se are
slightly less than LSS values. There is a good agreement of the re-
sults of HERAD with other codes. Almost all the codes agree within
3.1% with respect to path length where the highest values are given
by MARLOWE and the lowest are given by BRICE. HERAD gives the
highest value of the straggling in the projected range, while EDEP
gives the lowest value. The shape of the projected range distri-
butions is also in good agreement among the Monte—~Carlo codes. HERAD
agrees very well with MARLOWE in the value of the perpendicular
range. The high value of straggling in this parameter given by the
Brice code is due to the fact that the perpendicular range is con—
sidered, in Brice's theory, as a vector quantity whose mean value is
zero, while in MARLOWE or HERAD the perpendicular range is a scalar
quantity for which an average value exists. However, it can be
proven from the elementary statistical analysis that the variance of
the perpendicular range as a vector , Vy» is related by the variance

of the scalar perpendicular range Vg as

vV =V + R2
v s m

where R is the mean of the scalar perpendicular range. Using this
equation we get a value of 4169 A for MARLOWE and 3910 A for HERAD

which are in a good agreement with Brice (which is 3925 &).
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The slight differences between the codes' results could be
related to the different potential and much more to some intrinsic
features of each code. We used also Moliere potential in this case
but we couldn't get noticable differences from the results obtained
by Thomas-Fermi potential. For high energy there is almost no
difference between the two potentials. Figure 6-6 shows different
potentials, and it is hard to see any difference between Thomas-Fermi
and Moliere potentials up to six units of interatomic separation.

The use of the magic formula of Lindhard in this energy region is
quite satisfactory. Robinson [10] compared this formula with the
exact Thomas—Fermi potential and found an excellent agreement between
them. His results are shown in Fig. 6—7. There exists other differ-
ences among these codes which are related to the choice of the
screening length, and the maximum impact parameter and the minimum
angle of scattering. The effect of these and other parametefs on the
results of HERAD will be discussed later.

The computer time, in minutes on the CRAY-1 computer, for each

code to perform the calculations summarized in Table 6-~1 are as

follows:

a) MARLOWE 82.5 (800 histories)
b) TRIM 2.1 (1000 histories)
c) HERAD .8

d) BRICE oh

e) EDEP .l.

The computer time of HERAD is different from that given in Ref. 11
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for an old version of HERAD, because of the inclusion of many recent
modifications and extensions.

The conclusion of this case is that HERAD is proven to be in
very good agreement with other codes and with a very considerable
reduction in the computation cost with respect to MARLOWE and TRIM.
Also it provides more statistical information thaﬂ the analytical
codes and TRIM, with much more flexibility is the choice of the
potential orvthe electronic energy loss law.

Tables 6-2 - 6-4 show the results obtained for Cu-Ni with
different gnergies, and the conclusions are very much the same as in
the 15 MeV case.

VI-3-2. Carbon in Nickel

Table 6-5 and Figs. 6-8 - 6-10 show the comparison for the ob~
tained results for 5 MeV C ions in nickel. The 5 MeV energy was
chosen because it is the minimum energy one can obtain for carbon in
the U.W. tandem Van De Graaff accellerator, which was used in irradi-
ating one of the nickelvsamples mentioned in the preceding section.
This case is interesting because it shows the effect of the various
electronic energy models on the range of the carbon. Figure 6-11
shows the electronic energy loss for C-Ni as a function of the energy
of the carbon, for different electronic energy loss laws, and Fig.
6-~12 shows them as a function of the square root of the energy of the
carbon ion. The arrows in both figures are pointed to the energy
estimated by Lindhard to be the upper limit for the LSS formula.

Note that in this case, Firsov's formula gives higher stopping rates



144

0001 ‘69 £9°01 16°¢~ *0L12 *96L0¢C "80£0¢ avian

008 ‘69 L0°6 | ANrA ‘¥661 *9980¢ AMOTUVIH 3duey 103009, (v
0001 *%C 11°0 09°0 ETLT °8C0¢ *80¢¢ avadan
008 °G9 FAA) ZL°0 *ZE81 “16€E MO TIVH

*9g/g 40184 | aegnoypudadiog (¢
0001 *q9 ge el 18°¢- €607 *L8GT1¢C A AR KA aviadHl
0001 ‘€S £2°9 06°1- “£991 *0981¢ *96Y%1¢ HWIdL
008 ‘%9 [9°C1 ¢9°C¢— “Q781 °9981¢ HMO'TIVH
‘6861 *0BT1C 1-d3d-3

*€001¢ qJOT1HY yied (g
0001 A Y%°01 YARA *€0€e *L8Y0C 69661 avyian
0001 ‘Y9 0e°s LL°1- *1€0¢ *1€60¢ *9¢10¢ HIdL
008 °Gl o%°6 VAR A *6C1C *06%0¢ IMOTIVH
*GLST ‘9¢861 1-dida-4

*£20¢ *6cL61 A01¥Y yadoq (1

*ISTH Ioaay sTsolany SSaUMIYS *A9Q °*p3asg ueypan ueIK opon sogduuy

(swox3s3uy uy sijup) FN-ND AN 96°¢1 103 sopo) i9indwo) JU3I9JJTQ Wolj uofje ndTe) afuvy jo s nsoy

¢=9 JHVL




145

0001 ‘9¢6 8°9 81— ‘09,1 *EC661 *6%7S61 avyau

008 *69 L0°6 A A "¥G61 ‘99807 | HAMOTYVH a3uey 1031094 (y
0001 s 90 29°0 L1191 *€70¢ *%GI¢E Uvi4H
008 *G9 72°0 L°0 *7€81 *T6€€ AMOTUVH

*0S9¢ 40148 | aeynojpuadaag (¢
0001 A £v°8 10° ¢~ AX N *%0L0C | "1S€0T avydH
0001 A 10°L 16°1- *9%91 *6080¢ *TLY0T WIYL
008 *%9 19°21 79° ¢~ *0¢81 ‘99817 | AMO'LYVH
“v/G1 *96¢0C | 1-ddd-3

*1800¢ 40194 yieq (¢
0001 ‘09 r4 /Al A 6° 1~ *G881 *91961 *80Z61 aAvadaH
0001 ‘€9 6°S 9/°1- *G861 *T8Y%61 ‘0cT161 WIYL
008 *GL 0%°6 VIARAS YA *06%07 | HMOTYVKH
*€SST *62681 1-d3a-3

°6661 *7€881 qAO18d yadoag (7

*ISTH ¢ Joxay sTsojany 8SauMa)g *A9(Q °pP3S UBTpan ueay apo) soduey

(swoiis3uy uy situg) IN-ND AOKH €1°Z1 103 soapo) 191ndwo) JUd19J3JF(Q WOXJ UOTIBTNOTE) 98uey Jo siInsay
£-9 d'14Vl



146

0001 °8¢ LS°L 66°1- *£781 *LS6TT | “¥%SIT avydH

008 ‘69 96° Y V7R RAL! “LL81T AMOTUVH 98uey 10399, (¥
0001 °GS 81°0 09°0 *9¢L1 *0C1¢E ‘GLTE aviagH
008 ‘99 ¢S°0 1.°0 °86¢81 *99%¢ IMOTIVH

*¥€8¢ HOI¥d | aeynofpuadasq (g
0001 °€S 60°01 12°2- ‘%891 *19L7C | °*6L€TT avyaH
0001 ‘€S GL°01 1A A Y91 *TY¥6CT *9€9¢¢ WI4L
008 ‘19 ce°9 16°1- *€8L1 *016¢¢ HMOTIVH
‘9091 °892¢2¢ 1-d3d-3

*8802¢ q01449 yieg (g
0001 *79 06°9 L6°1- *eL61 *£891¢ *01C1C avidd
0001 *c9 GL°8 91°C- *Tv0¢ *6691¢C °C8¢1¢ WIYL
008 6L L9°S £€8°1- *601¢ *G0STZ | HMOTIVH
*66GT *60607C I~-d4d-4

*%60¢ *0180¢ q0144 yadaqg (1

*ISTH # aoxay sTsojany SSaUMING *A9Q °*P3S ueIpaN ueay apoy sa8uey

{

(swoxls8uy uy s3ITup) IN-MD APH /6°€1 10J Sopo) I93Indwo) JuI9jJfQ WOAJ UOFIBR[NO[e) aJuey JO sSITNsay

-9 d{TIVL




147

0001 ‘oY 99y 69°1- 9971 *€ES1¢ "7971¢ AvydH

008 ‘9% 60°9 LLTT- *60€1 *90T%T HMOTUVH 93uey 10309y (4
0001 ‘€9 0L°0 08°0 ‘€661 ‘9v%¢ R AVAY AVYdH
008 0L SE'T $8°0 *GL61 *199¢ JMOTIVH

"LSYE 0144 aernoypuadiag (g
0001 *81 86° %1 LE°C- “8LS WA FAYA *HL1ET avidH
0001 ‘91 88° % 65°1- ‘66Y ‘99%.T "G8ELT HIYL
008 ‘61 6L"Y €S 1- Y °9979¢ | dMOTIVH
‘106 *GG8YT [-ddd-3

"T10¢e A3144 yieq (g
0001 LY 9¢° ¢S 9L 1- *G8Y1 LIT1e *6280¢ avyagt
0001 'Sy 01°9 1871~ YA AN "69¢6T ALY HIYL
008 A" 26°S 18°1- "GEST A% 1 XA AMOTUVH
‘6971 "8€977C [—-ddd-d

"8961 *1LS60¢C J0144 yadaq (1

*ISTH § 10axy sIsojany S$SaUMG *A3Q °PpPas UueIpan uesay a/poYH s98ury

(swoiis3duy uf sifun) IN-D APH ¢ A0J S9po) I93ndwo) JuaIsIITQ WOAJ UOTIB[NOTE)

S-9 UTIHVL

a3uey jo sIINsSIY




148

*IN-D ASW G 103 98uea poiveload pue yi8uay yied ayy

HWIULAdW dVddIran Jagd

aAvadH

WY.L JOTUT HTMOTHVIA

b e e e -

sdury pojasforg
IBUST Yy

- 67

-Te

-£72

¥

-G2

-0'd

-4e

i
&
o2

TLOCT X

"8-9 314

(Swroaissuy) yisus



149

"IN-J APK ¢ 103 ©93uex paldafoad syl uy Juyydl8eils ayl ‘-9 °S14

44304 advydiaH NWIYL d014YH" IMOTHVIA
. 1 1 - 0GYT

- goer

- 0521

- 00CL

- 05EY

- 00¥1

- 0S¥T

- 0091

(SWIOIISFUY) JVIHIS



150

7

198183 TN UO JUSPIOUT SUOT ) AW G 10J UOTINGTIIsTp yadap ayj *01-9 914

SUOJOIW Ul jda(

PR |

o¢ ,v._N g¢ < a.m o7 LA 4} T
) :

=4

ey i o

: AN g

: “/ -2 H

" ﬂ £,

H [] e

H ] Y N

: e ®

! v ol

u...“ _|' m

P\ v 2

HE Tl : [7,]

] ! ct+

T : ! : e

H [

coogy o

b £

P L9 O

N S H
o WINL  ---------

Vo N

bt avudad N

m m P HMOTUVIN  -ooeeeeemeeeeeens m

m m st I-ddd-4 —— — -8 3

o 6] 4! (: [ — .M

SN’




151

moaiie ayg,

*A319U9 wnufxew pieypuy ol sjujod
*A319u2 jo UOTIdUN] B SB TN U SUOT uoqie) 103J ssol A319ua OFUOIIDITD ayyg,

(A®)) ADUANI
ccqu ccqu ccwcq amcm cmcm

cﬂcw

gooz
!

.- WIY4L
I . go1ud
JUR AOSUNA

ST

- 00

-00F

- 009

- 008

- 00Ot

- 00t

*T1-9 "314

UWIOJI}SSUV/AS Xp,/dD



152

‘A313us 3y3 jo 3joox aienbs 9yl jo uofIdUNy B Se [N uf ) Jo SSoT AJious dFuU0aIDAT3 JY] °zT1-9 *BT14
(AN g N
G2y ary oor 0o 0o 04 a9 oo oy oc 02 or )
] ! ] ! ] 1 1 ] I ] ! ] -0
\— .»..w.'\\.r\.\\

- 002
- 00F n.
(&3]
&

- 009
2
™~
2
I
L - 008 A
34
\\\.. N[y, o
L Ao1ud - - ooor H

it AOSUM -
\\\ , 581
- DOZT




153

than LSS. BRICE and HERAD use the Brice three parameter formula and
the other codes use the same electronic loss formulae as described in
the case of Cu-Ni. One would expect from these figures that TRIM
will give»the longest range. The LSS electronic stopping 1s lower
than Brice electronic stopping up to an energy of about 3.5 MeV, and
for the codes which use LSS, the ranges are longer than those éodes
which use Brice electronic stopping. This is clear from the results
in Table 6-5 and Figs. 6-8 - 6-10.

It is erroneous to use the E-DEP-1 code or any code which uses
the LSS for such energy, but this case as well as the following case
‘are presented to 1llustrate the effect of the electronic energy loss
law on the calculated results.

Table 6-6 shows the results obtained from the various codes for
the case of 10 MeV C-Ni. 1In this case it is clear that if the LSS
stopping was used, 1t would give mistaken results for the ranges.
HERAD results show a very good agreement with Brice results when both
use the same electronic energy model, i.e. Brice formula. The
difference between TRIM and the last two codes remains to be tested
experimentally, i.e. which electronic energy loss médel is more
cofrect?

3

VI-3-3. 4 keV He” in Niobium

Helium and hydrogen ions emanated from fusion reaction may cause
serious problems in the first wall. One of these problems is
blistering, i.e. the deformation and partial exfoliation of the sur—

face layers. No rigorous theory has yet been given to explain the
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mechanism by which blistering occurs. However, some of the existing
theories [12,13] relate the depth of the hydrogen or helium to the
thickness of the cover of the blisters. In this regard Behrisch et
al. [l4] measured the deﬁth profile for 4 keV He3 ions in niobium.
Oen and Robinson [15] as well as Biersack [7b] compared the results
of Behrisch with their codes, MARLOWE and TRIM, respectively. We
present here the results of MARLOWE, TRIM, BRICE, and HERAD, with the
experimental results. Table 6-7 together with Fig. 6-13 and Fig.
6-14 show these results. HERAD agrees very well with the other codes
with respect to the statistics. Brice's code has been modified to be
able to accept this low energy, and the high value of the straggling
in the projected range obtained in this case is most likely to be not
reliable. The depth distribution profiles show that the Moate Carlo
codes predict fewer pgrticles stopping near the surface than pre-
dicted by BRICE. HERAD, however, shows some agreement with the
experimental data at the end of the range.

The agreement between HERAD, TRIM, and MARLOWE is very good with
respect to the number of the backscattered He3 ions. Outbof 1000
histories used, in the three programs HERAD predicts that 288 parti-
cles would be reflected, i.e. with the reflection coefficient (number
of reflected particles divided by the number of incident particles)
equals to 0.288. For TRIM and MARLOWE the reflection coefficients
are 0.291 and 0.283, respectively. It should be noticed that the

last column in all the given tables gives the total number of the
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particles who have neither transmitted or backscattered, and the sta-
tistics are made only for these particles.

None of the codes can predict full agreement with the data. One
shéuld realize that the depth measurements for low energy implanted
ions are difficult and highly uncertain. Accurate measurements are
needed in this energy region before more definitive statements can be
made about the various models. |

VI-3-4. Low Energy Heavy Ions in Silicon and Aluminum

There have recently been many experimental studies of the range
of low energy heavy ions in Si and Al because of their importance in
the semi-conductor industry. Unfortunately, it is a very rare event
to find exactly the same ilon with the same energy used in more than
one experiment. Combasson et al. [16] reviewed some of these experi-
mental results and pointed out the uncertainties in the data because
of the known and the unknown conditions in which these experiments
were done. Some of the conditions are the target preparation, energy
calibration, target density topography, oxide layer, crystallinity
and composition.

In most of these experiments the observed ranges are often con—
siderably larger than the calculated ranges. In the following we
present our results compared to the experimental results of Oetzmann
et al. [17], Combasson et al. [16], and Grant et al. [18].

Figure 6-15 shows predictions from the HERAD code for 5, 10, 15,
30, and 60 keV antimony ions incident on silicon. The results are

compared to BRICE, TRIM, and the experimental results of Oetzmann et
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al. [17]. There is an excellent agreement Setween our results and
the experimental data. The use of the Born-Mayer potential for
energies less than the limit energy given by Eq. (5.11) is the main
reason for this good agreement. Moliere or Thomas-Fermi potential
used by TRIM and BRICE, respectively, for such very low energy would
increase the nuclear stopping and consequently would underestimate
the ranges.

Table 6-8 shows the projected ranges and the straggling in the
projected ranges obtained by Combasson et al. [16] for different ions
with different energies incident on Si together with HERAD results.
fable 6.9 shows the comparison in the case of the aluminum target.
The agreement is excellent in case of Si and with respect to the
projected range in Al. With respect to the straggling in the pro-
Jected range the agreement of our result with the experimental result
is reasonable and is within the experimental errors which were the
case of Si 7% in Rp and £10% in ARp.

Although the predicted projected ranges in Al by HERAD agree
well with the experimental data there are substantial disagreements
with respect to the straggling in the projected range.. Combasson et
al. [16] discussed the experimental difficulties in reproducing the
range data in Al and questioned the measured straggling because of
these difficulties. Bister et al. [19] who used the Dirac-Fock
potential in their Monte Carlo calculation, found larger disagreement
in the straggling between their results and Combasson et al. results

than we have.
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TABLE 6-9
Experimental and Calculated Ranges for Different Implants on Al
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Ion Energy ARP

Obs. Calc. Obs. Calc.
HERAD HERAD

35¢0g133 80 413+35 429 206£50 115
100 47020 487 209 133

150 665+35 651 232 170

200 827435 800 285 207

3714139 80 41835 431 237 112
100 47535 489 247 130

150 677435 648 267 170

200 824135 795 290 200

39p 141 100 38535 482 285 120
63,153 100 445435 473 277 120
651159 100 457450 480 216 118
66p,164 100 46350 492 195 117
674,165 80 44535 434 167 100
100 485235 489 170 113

150 598435 631 184 152

200 700435 760 242 187

685,166 100 41035 482 221 116
71,175 100 466 486 203 110
724180 100 474250 489 259 112
78p,195 100 467450 484 222 107
79,4197 80 47750 431 262 100
100 551435 495 275 106

150 673£35 637 284 133

200 781435 756 313 170
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Finally, in Table 6~10 summarizes the prediction of HERAD com—
pared to the experimental results of Grant et al. [18]. There is a
very good agreement between the two, except for the straggling ARp
and ARy, in the case of Bi (200 keV), Bi (400 keV), Cu (40 keV) and Kr
(40 keV) where there is more than a 25% difference. However, the
agreement of HERAD is much better than the analytical results which
were taken from Furukawa et al. [20] and Schoitt [21].

The disagreements mentioned above led us to study the sensi-
tivity of HERAD results to some physical and artificial parameters
used in the program. As sugéested by Maynard [22] and outlined in
Ref. 23, a simple regression analysis was made. The parameters used
were the screeniné length, the cutoff energy, the minimum angle of
scattering, the minimum step length between two successive colli-
sions, the energy limit for switching to Born—Mayer or the hard
sphere potential, and the use of other potentials. Our results show
that in the low energy region, the use of the following potentials
will give decreasing ranges according to the following order, Bohr,
Lenz—Jensen, Moliere, Thomas-Fermi, and Thomas—-Fermi-Sommerfeld.
However, the ratio of ARp/Rp is not so sensitive to the choice of the
potential. Decreasing the energy limit for switching to the B-M po-
tential will deérease the ranges but again no noticeable effect on

AR Using Firsov's screening length will give always longer ranges

-

p.
and slightly larger values of ARP, and this may explain the high

values of the projected range obtained from TRIM. Unfortunately even

when the resulting parameters from the regression analysis work well
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for some cases they are not so good at other energies and different
ion—~target combinations.

One may conclude that there is an oscillating dependence on the
charge of the ion as well as the target which is not included in both
the electronic and the nuclear stopping formulae.

VI-4. Damage Calculations

The comparison that was just made with different codes and
different experimental results for various ion—target—energy combi-
nations shows that HERAD gives very good agreement with respect to
range and ion_distribution. In fact, in some cases HERAD gives
better agreement than the previous codes, especially at low energies
with the exception of a few disagreements mentioned in the previous
section. The importance of this low energy region, where most of the
primary knock atoms have their energies, cannot be overemphasized.

The damage calculations are straightforward and can be expressed
in anyone of the following:

1) First, the damage éould be expressed as the amount of energy
that is calculated using Linhdard~ Robinson partition formula
given by Eq. (5.43). If the incident ion loses in a colli-
sion with a target atom energy T, then using Eq. (5.43) one
obtains the amount of energy T4 which is available for damage
(1.e. displacement). Only values of T which are greater than
the displacment energy E; are considered. If T is less than

Ego T is assumed to be spent in lattice vibrations (phonons).
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2) Second, it could be the damage energy transported by the
PKAs. In this caée, a PKA created with energy T in a colli-
sion of the incident ion with a target atom is followed until
its energy falls below a cutoff energy E., which has a de-
fault value of 2Ed. The electronic energy loss along the
PKA's trajectory is calculated and is subtacted from the ini-
tial energy T, and the remainder, is deposited at the end
point, of the PKA trajectory as the damage energy.

3) Third, it could be full defect configuration, i.e. the final
spatial distribution of vacancies and interstitials generated
during the slowing down of every moving particle in the
entire cascades. The information available in (2) is calcu-
lated too in this case. This 1s the most expensive choice,
but we believe it is the most accurate one.

It should be mentioned that choice number 1 is the default choice in
the program and is always calculated.

In the following we shall present four cases of the damage cal-
culations. The first one serves as an illustration of the main
features of the calculations, and was chosen to be 901.3 keV Be on U
(this energy corresponds to 100 keV per atomic mass units for Be).
The next two cases we will consider are 14 MeV Cu on nickel with and
without the voids included. The last case is for 20 keV He on

nickel.
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VI-4-1. Be Ions on U

Complete damage calculations have been made for this case.
Figure 6-16 shows the depth distribution of the incident Be ions as
obtained from the HERAD and BRICE codes. HERAD distribution shows a
peak of the ion concentration farther from the front surface than
BRICE. Table 6-11 gives the calculated statistics of the ranges from
the two codes. One thousand histories have been used in this run,
and as shown in Table 6-11, 992 particles pentrated the target. The
other 8 particles were reflected, thus the reflection coefficient of
Be ions is .008.

Figure 6-17 shows the damage energy distributions of BRICE and
that obtained from HERAD with and without recoil transport. The
transported damage energy as calculated by BRICE (using Lindhard-
Robinson partition formula and deposited at the average depth of the
recoils from collision point of the ion) was 29.56 keV. The corre-
sponding value given by HERAD and using Lindhard-Robinson formula is
29.622 keV. Allowing for the recoil transport, the transported
damage energy is 30.323 keV, which shows that the LSS—Robinson parti-
tion equation (Eq. 5.43), slightly understimates the damage energy
and overestimates the electronic energy loss of the PKAs. Because of
the heavy mass of the recoils one cannot see a noticeable difference
betwéen the transported damage by the recoils and that deposited in
the ions' collision points. The BRICE first and second moment of the
damage distribution are 7123 A and 928 x 104 Az, respectively. The

corresponding values of HERAD are 7512 A and 963 x 104 AZ. HERAD
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damage distribution is more skewed to the front surface and more
deeper into the solid than that calculated from the BRICE code.

Figure 6-18 shows the distributions of -different defects,i.e.
vacancies, interstitials, and those vacancies and inferstitials that'
are generated near each other. The latter quantity is régistered
when an atom is displaced but does not have energy much greater than
the cutoff energy (2E;) to produce more displacements. The program
records this event as a NEAR V-I PAIR on the figure. Also shown on
the same figure is the spatial distribution of the replacement
events. Because of the heavy mass of the target and the relatively
large width of the histogram interval (200 A), one cannot see the
difference between the vacancies and the interstitials distribution.
The peak of the interstitial distribution is supposed to be deeper
than for the vacancies. Also, one should remember that this is a one
dimensional figure and cannot reflect the 3-D spatial distribution of
both vacancies and interstitials.

Finally, Fig. 6-19 shows a comparison between the HERAD defect
distribution and BRICE defect distribution, which was calculated
using the Kinchen and Peace displacement model (damage efficiency =
0.8 and displacement energy = 25 eV). The total number of defects
produced according to this model from BRICE is 473 defects, from
HERAD without recoil transport is 474, and from HERAD with the recoil
transport is 485 defects. The number of defects directly calculated
from HERAD is 422, Thus K-P model with damage efficiency of 0.8

overestimates the number of defects by a factor of 15%. If the
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damage efficiency is reduced to 0.7, then using it with the K~P model
gives the right number of defects.

In the following three pages we present only a portion of HERAD
output which includes the statistics, the distributions and a com
plete energy-particle balance. The computer output on the first page
shows the statistics of the projected range (penetration), the total
path, the pe;pendicular range (spread) which is a scalar quantity,
the vector range,‘and the perpendicular range (R-perp) which is a
vector quantity whose mean equals zero. Next on the same page, the
distributions of the first four ranges mentioned above are listed.
Each histogram runs from left to the far right of the page. The
second page shows the complete energy—particle balance. The third
page shows a list of the normalized distributions of the following
quantities along the depth: the collisions of the incident ion
(coll.), electronic and the nuclear energy lost by the incident ion
(ioniz., nuclear), the damage energy (displac.) and electronic energy
loss (rec~ionz) as calculated using Lindhard-Robinson partition
formula, the subthreshold energy lost (phonon) by the ions, the
transported damage energy (dmg/pka), the electronic energy loss of
the PKAs (se/pka), and the last four columns gives the distributions
of the vacancies, intefstitials, near V-I pair, and the replacement
events. The last two histograms gives the energy distribution of the

backscattered ions and the sputtered atoms, respectively.
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VI-5. Effect of Voids on the Damage Distribution

VI-5-1. 14 MeV Cu Ions on Ni

This section includes the results of the damage calculation for
14 MeV Cu ions on Ni without and with voids; The experimentally
measured void distribution is that of Whitley [2].

First we consider the damage without the inclusion of the voids.
Table 6-12 shows the results of the obtained ranges from the BRICE
and HERAD codes. The difference between BRICE and HERAD is only 80 &
in the prdjected range, and 26 A in the straggling of the projected
range. However, the distribution of the projected range is skewed
toward the front surface. Figure 6-20 shows the depth distribution
as obtained from the two codes.

Figure 6-21 shows the damage distributions of HERAD with and
without the transport of the recoils, and the damage distribution of
BRICE. It is quite clear in this case (as in the case of Be on U)
the recoils shift the distribution deeper into the material. The
total damage energy deposited in the nickel target as given by the
BRICE code is 1010 keV. The use of the LSS-Robinson formula (Eq.
5.43) in HERAD, for the energy partition predicts the damage energy
is equal to 1070 keV. The damage energy as calculated by following
the PKAs is 1323 keV which again shows that the LSS-Robinson formula
underestimates the damage energy, in this high energy case, with a
larger error than in the low energy case of Be on U.

Using a displacement energy of 30 eV, we obtained a total of

13255 defects, with 0.16 Ni atom sputtered per incident ion. Using
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the K-P displacement model with a damage efficiency of 0.8, the total
number of defects is 13466, 14267, and 17640, as obtained from BRICE,
HERAD with no recoil-transport, and HERAD with recoil transport,
respectively. These values again show that the normally used value
of the damage efficiency, i.e. 0.8, is too high, and a value of 0.6,
according to our calculafion, would more accurately predict the total
number of defects. Figure 6-22 shows the different defect distri-
butions as well as the depth distribution of the replacement events.
Notice that the so called near V-I pairs, which are very likely to
annihilate each other, are about the same number density as the
vacancies and interstitials. That means about half of the above
mentioned number of defects would be available for any damage effect,
i.e. loop or voids, formation. Figure 6-23 shows BRICE and HERAD
defect distributions.

Next we consider the same case with the voids included in the
nickel. Table 6~13a gives the measured swelling [2] in the different
sections of the nickel target and Table 6-13b gives the calculated
ranges. The maximum value of the swelling 2.4%. The average
swelling is 1.6%.

The average depth (the projected range) as well as the average
path length increased by 1.9%. The straggling in the projected range
increased by 2.2%. The inclusion of the voids causes the peak of the
projected range distribution to shift slightly away from the front

surface. Figure 6-24 shows the projected range distribution.
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TABLE 6-13a

Measured Swelling for 14 MeV Cu-Ni(z)

Section Depth (u) AV/VZ
1 0.0 - 0.25 1.0
2 0.25 - 0.5 1.61
3 0.5 = 0.75 1.58
4 0.75 - 1.0 1.81
5 1.0 -1.25 1.91
6 1.25 - 1.50 1.86
7 1.50 - 1.75 2.0
8 1.75 = 2.0 2.4
9 2,0 - 2,25 2.4

10 2,25 - 2.50 1.5
11 2.50 - 2,75 0.97
12 2.75 - 3.0 0.28
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Because of the low value of swelling in this case one cannot see
large effects of the cavities on the ranges; however, the direct cal-
culations with the swelling included gives more effect than if a
global density correctiﬁn was made. It‘should be pointed out that
the inclusion of the voids in our calculations would allow for more
accurate estimation of the effect of the voids on the range, since it
considers this effect during the slowing down and in the 3-D space.

With respect to the damage, Fig. 6-25 shows the swelling profile
together with the calculated damage from BRICE and from HERAD with
the voids included in the calculations. The first moment of the
damage increased by l.7%Z. The sﬁuare root of the second moment (the
standard deviation) increased by a factor of 1.9%. The skewness
increased slightly (less negative) but was still negative, i.e. the
distribution is skewed toward the front surface. The kurtosis
becomes more negative, i.e. the distribution becomes flatter at the
tope The first moment of the démage around the penetration axis
increased by 1l.7%.

Again because of the low swelling values in this case, the
effect is not large enough to illustrate the effect of the swelling
on the calculated damage. This is in contrast to the work of Odette
et al. [24] who assumed 50% peak swelling in their work. Although
there are many reported large values of swelling, to the best of our
knowledge there is no available data for swelling—depth measurement

which has such high values of swelling. Finally, in this case, Figs.
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6~26 and 6-27 show the defect distributions from the HERAD and BRICE
codes.

VI-5-2, 20 keV He Ions on Ni

Fenske et al. [25] have recently measured the swelling profile
as a function of the implant depth for 20 keV He in nickel. The
difference between the theoretical prediction (using BRICE and TRIM)
of the damage profile and the measured swelling profile was reported
to be as much as 50%. In their conclusion, they suggested that the
LSS electronic stopping should be reduced by a factor 20% to achieve
better agreement between the theory and the experiment. The HERAD
code was used to test the validity of this suggestion with respect to
the damage distribution.

The HERAD calculations included 10,000 histories, with cavities
included in the calculations, and with different electronic stopping
powers. The following ratios of the LSS electronic stopping were
used; 1., 0.8, 0.6, 0.4, 0.2, and 0, i.e. with électronic stopping
completely neglected. Figure 6.28 shows the results of these calcu-
lations. The reduction of LSS electronic stopping being a factor of
only 0.2 appears to have no effect on bringing the calculated damage
profile closer to the swelling profile. Reducing the electronic
stopping by a factor of 0.6 and 0.8 shows a much closer agreement
between the calculated damage and the measured swelling and perhaps
the best value would be 0.7. Complete neglect of LSS stopping woulq

cause the helium to be injected much too far into the nickel.
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Unfortunately there are no experimental measurements for the
electronic stopping of He in Ni for energies below 30 keV [26] which
would guide us in choosing a proper value for the electronic
stopping.

VI-6., Concluding Remarks

The peak of the calculated damage profile of the HERAD code with
or without the voids included is closer to the observed swelling peak
than that of the BRICE code. With the voids included the peak is
closer to that observed experimentally. In any case, we were still
not able to match the calculated damage to the swelling profile at
the far end of the profile.

Because of the low values of the swelling we have not been able
to notice the anticipated crucial effect of the pressure of cavities
on the damage calculations.

The typical value of 0.8 for the damage efficiency is, as we
noticed, high; a value of 0.6-0.7 is more realistic in predicting the
number of defects with the Kinchen and Peace model. About half of
the born defects are near enough to be annihilated. We noticed that
the partition formula of Lindhard underestimates the damage energy
and overestimates the electronic energy loss of the PKAs.

More systematic and precise experimental work is needed in the
area of electronic stopping and the dete;mination of the ranges of

ions in material.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The 3-D Monte Carlo code, HERAD, has been developed in this work
to study the ranges of ions, and the damage produced by those ions in
material. The model used in HERAD incorporates different electronic
and nuclear stopping models, and takes into account the effect of
cavities on the ion distribution and the damage distribution.

With respect to the ion range, comparisons have been made be-
tween the results of HERAD and those predicted by most all of the
available codes in the literature. In some cases it was possible to
compare recent expe:imental measurements of the ion range in material
to the predictions of HERAD. |

These comparisons show:

a) The choice of the electronic energy loss law 1is very important in
the high energy region (e > 10). A noticeable difference was
found between the existing theoretical models and the reasons for
that difference have been documented.

b) In the high energy region (e > 10) our results show that there is
no appreciable difference in the range of the ions when either
the Thomas-Fermi or Molidre potentials were used.

¢) There is an urgent need for precise experimental measurements of
the electronic stopping and ion range in this high énergy region.
Unfortunately, no experimental data is presently available to
check the validity of the different theoretical models over a

wide range of ion-target-energy combinations.



d)

e)

£)
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In the low energy region (¢ < 0.1), the choice of the interatomic
potential is critical. The HERAD code has used the Born-Mayer
potential in this region which yields a very good agreement with

most experimental data. However, there is a noticeable disagree-

- ment between the theory and some of these experimental results of

ion straggling.

A simple linear regression analysis was performed to find the
suitable values of the physical parameters which would give
better agreement with the experimental results. This analysis
suggests that there may be an oscillatory electronic and nuclear
stopping dependence on 2Z; and Z9 which have not been taken into
account in the existing models.

The HERAD code has been shown to be much less expensive than
other Monte Carlo codes and provides more statistical information

than the analytical codes.

With respect to the damage distribution calculations it was found

that:

g)

h)

i)

The partition formula of Lindhard underestimates the damage
energy and overestimates the electronic energy loss.

A damage efficiency of 0.6-0.7 is more realistic than the value
of 0.8 which is usually used in predicting the number of defects.
About half of the total number of defects born during the ion
slowing down have small distances of separation and most probably
will be annihilated, leaving only half of the defects aﬁailable

for any damage effect, i.e. loops or void formation.
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With respect to the effect of voids on the damage distribution it was

found that:

kD

k)

1)

m)

The peak of the calculated damage profile using HERAD is closer
to the observed swelling peak than that predicted by the BRICE
code regardless of whether voids were or were not included in the
calculation.

When the voids are included in the HERAD calculation the damagé
peak moves closer to that of the measured swelling profile.

It was not possible to match the swelling profile at the end of
the range of 14 MeV Cu ion on Ni with HERAD or‘any other code
presently in use.

The LSS electronic stopping seems to highly overestimate the
electronic loss for low z ions at low energy. Having the
electronic stopping power reduced to 80% of the LSS electronic
stopping power, as has been recommended in past studies, will
have relatively little effect on the agreement between the theory
and experiment in the case of 20 keV He on Ni. It was found that
electronic stopping power with values of 40-80% of the LSS

stopping power is needed to achieve reasonable agreement.





