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Abstract

The discrete nature of the toroidal magnetic field coils spoils the
symmetry of the tokamak and creates small modulations of the toroidal field
called ripples. Particles trapped in the ripple well drift off the flux
surface and enhance both particle and heat fluxes. In the usual ripple trans-
port calculations, the derivative of the perturbed particle distribution
function in velocity space is discontinuous at the boundary between ripple
trapped and untrapped regions. To smooth out the particle distribution across
the boundary, the particle distribution in the boundary layer is calculated by
using the Wiener-Hopf technique. The correction to the ripple-trapped parti-
cle distribution function away from the boundary layer and the ripple trans-
port associated with it are obtained. It is found that the particle diffusion
and heat conduction coefficients are increased by about a factor of 2 and

1/2

scale like v~ as (“eff/wba)l/z + 1. Even for very collisionless plasmas,

Veff/wps = 10'2, the corrections are still non-negligible and are about 15%.



I. Introduction

The discrete nature of toroidal magnetic field coils spoils the symmetry
of a tokamak and produces small modulations of the toriodal field called
ripples. Particles trapped in the magnetic mirror of a ripple well drift off
the magnetic flux surface and enhance both the particle and heat flux. This
type of transport has been studied by several authors.l-3 However, they did
not treat the particle distribution in detail in the boundary layer between
ripple trapped and untrapped particles. In the boundary layer collisional
effects are no longer negligible due to the large gradient of the particle
distribution function in phase space. Collisional effects smooth the transi-
tion between the trapped and untrapped particle distribution functions. The
net result is to increase the particle and heat transport, since this smooth-
ing process tends to increase the magnitude of the particle distribution
function that contributes to the transport processes.

In Sec. II, we discuss the drift velocity of ripple trapped particles
from two different approaches. The magnetic field model used in the boundary
layer analysis is also presented. The relation between banana drift transport
and ripple transport is discussed in Sec. III. The boundary Tayer equations
for transport due to ripple and banana drift effects are derived. In Sec. IV,
we solve the ripple boundary layer equation using the Wiener-Hopf technique,
and calculate the corrected particle and heat fluxes. Concluding remarks are
given in Sec. V.

II. Ripple-Trapped Particle Drifts

To simplify the boundary layer analysis, we use a sinusoidal model for
the ripple well. The magnetic field for a tokamak with N toroidal field coils

can be written approximately as



B = Bo(l - € C0S 8 - § cos Ng) , (1)

where B, is the magnetic field on the axis, r, 6, ¢ are the usual toroidal
coordinates, € = r/R, R is the major radius, and & is the ripple depth. The
minimum (maximum) magnetic field along the field line can be found from the

equation 3B/3s = 0, which Teads to
e sin 8 + Ng§ sin (N¢0 + Nge) =0 , (2)

where q is the safety factor, and 9 = ¢ - g6 is the angular variable label
for a particular field line. Equation (2) can be satisfied only if

o = e|sin 8|/Ngs < 1, which is the criterion for the existence of a local
magnetic well due to the ripple. One set of consecutive maxima and minima

obtained from Eq. (2) is
No, + Nao = - sinl &, (3)
and

tr + s1'n'1 a* s (4)

Ny + qui

where 6, are two consecutive maxima and 6, is the minimum in-between. To
obtain Eqs. (3) and (4), we have assumed o does not vary to Towest order in
1/Ng across one ripple well and is evaluated at 6 = 8,. The effective ripple

well depth 6.¢¢ = [B(6.) - B(ey,)]1/B, is thus

= &/1 - a* - Ga*(%- S'il’1-1 a*) (5)

Seff

and the corresponding sinusoidal ripple well with well depth Saff and length

2(6p, - 6_) 1is



. -1 *
N¢0 + Ngo + sin ~ a

* s 6
N-ZS'in-TG. )] (©)

B =B,[1 - 8. cOS (m

where Bb = Bo [1 - ¢ cos O - Ga*(n/Z - s1'n'1 a*)], is shown in Fig. 1.
With the sinusoidal ripple well approximation given by Eq. (6), we can
calculate the bounce averaged drift velocity for the ripple trapped particles.

The magnetic field in flux coordinates can be expressed as
B = Vo, x ¥y , (7)

where y is the poloidal flux function. The bounce averaged drift velocity in

the ¥y direction is

3d/a¢
5 ¢ 0
g o W = - SmE (®)

where Vd is the particle drift velocity across the magnetic field, ¢ is the
speed of light, e is the electric charge, E = mv2/2 is the energy of a parti-
cle with mass m and speed v, and J is the second adiabatic invariant defined

as

Bd
Al

Using Eq. (6), <V, « Vy> is found to be
d

> . c By .
Vg * V> = - g °© sine_ (9)

where u = mvi/ZB, and v, is the particle's perpendicular (to the magnetic

field 1ine) speed. For a tokamak with poloidal magnetic field Bp, Vy = RBpF,

3
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r = */r, and we have

> A lvi
Yy = <vd e r> = -5 ﬁﬁ-sin O, (10)

which is just the usual VB drift, with @ = eB/mc.
Though the result of Eq. (10) is not surprising, it is still worthwhile

to explore it from another approach. The drift velocity can be written as

7= el B) (1)
d B Q >
and
» o Beve s (Vi B (Fyx Vo)
Vd.w)_vll B 'a'é'[ﬁ" B . o ]
(12)
R R AT S
I B 3¢0 2 . 3% ’
where v is the particle speed along the magnetic field line. Using Eq. (1),

I
and neglecting the curvature drift, we obtain

Vd . Wy = --g uB, [% sin 6 + N& sin (Ng, + Nqe)]
(13)

+-§ uB_N& sin (N¢_ + Nqo) .

The first term on the right side of Eq. (13) is the "usual" axisymmetric VB

drift, which comes from the 3/56 term in Eq. (12), and has an extra term due

to the ripple field. The bounce average of this axisymmetric VB drift is zero



as can be seen from Eq. (12), which means this drift does not contribute to

the ripple transport and can be written as

Bde c £ s .
————— = uB_ (= sin 8 + N§ sin (N¢_ + Ng8)| =0 . 14
§V§.$eeuo[q (Ng, + Nqo)] (14)
[
The second term on the right side of Eq. (13) comes from the 3/3¢, term in Eq.
(12), and represents the new non-axisymmetric VB drift. The bounce average of
this term is not zero which means this term causes a net drift away from the

original flux surface and thus a contribution to ripple transport. However,

from Eq. (14), we have

Bdo c . Bde -1
[$ TR . 5o © MBoNe sin (Ng g + qu)](i————v . %)
] ]
(15)
Bde c € s Bds -1
= [-§ ———5 ¢ w8, < sine](§ ——)
vt ©0 VB
Since the 6 variation is small across the ripple well
(a0 = |0 - eml < m/Ng << 1), we obtain
Bde c . Bdg -1
[ ;fﬁrt—%g-g uB_Ns sin (N¢o + Nqo ) ]($ ;—E—:—%g)
I I (16)
uB
c o .
N - ET € S1In em .

Thus, we can see that although <Vd . ¥y> has the same form as usual VB drift,

its origin is different.



I1I. Non-Axisymmetric Transport Analysis

Ripple transport can be studied by separating the linear drift kinetic
equation into axisymmetric and non-axisymmetric parts.* This technique was
first pointed out by Boozer? and was used in his banana drift transport

calculations. The separated drift kinetic equations can be written as

v"‘gé%g_gwnc. %o%wnc- w-a_;LC(F) : (17)

v"iﬁﬂg}zr-wog{_J Vr_-szfM=C(f) , (18)
and

T e -y, ééﬁe_gg %B . Se ;:%)) | 19)

oo - v BBt B .g(?wsz i -

-ty = v, SR -g-%) , (21)

s ek N e @2

where F (f) is the perturbed particle distribution function due to the axi-

symmetric (F) and non-axisymmetric (f) particle drifts, and fy is the local

*An alternative and perhaps more rigorous procedure is to separate the drift
kinetic equation into fluctuating and bounce-averaged parts. The results of
such a procedure are equivalent to Eqs. (17) and (18) for applications con-
sidered in this paper.



Maxwellian distribution. The bounce-averaged drift velocites in Eq. (7)
vanish. This means there is no net drift off the flux surface for the axi-
symmetric case and gives rise to the usual neoclassical transport.5 However,
the bounce-averaged drift velocities in Eq. (18) are not zero; thus, particles
drift away from the original flux surface and give rise to ripple and banana
drift transport in a non-axisymmetric system.

Neglecting Vr . V¢o and assuming vf v2, we can write Eq. (18) explicit-

R

ly as

v af
taf, me 2 . M _
Rg 3o * 26 VMO sin No o= c(f) . (23)

In the case where pitch angle scattering is dominant, the Coulomb collision

operator can be written as

C(f) = "%!':'ﬁ (mv if—) , (24)

RaEYY
where v is the collision frequency. Ripple transport will appear if
Vaff = v/é < Ohs = vN/§/R. In this collision frequency regime the ripple

trapped particle orbit is well defined. Since <Vd « W> # 0, we have to use

the Ansatzl’3

w
bs f-l + 9 4

Vaff ®hs

f= f + e .

To the lowest order, Eq. (23) can be written as

-1

v
-%E’ST”) . (26)



To the next order, we have

' 0 of
I af mc 2 . M -1
-ﬁase—-"‘-zgv N6 sin N¢W— C(f ) . (27)

Applying the bounce-averaging operator § Rqde/v, to Eq. (27) and using Eq.

(16) we obtain

2

- 3 Sin o (2 i
ZaR m’ v

_V of
B X (mu%vnde ——) . (28)
In Eq. (28), we have rewritten 3fy/dy in terms of afy/3r. Notice that Eq.
(28) is the same as that obtained by Connor and Hast1e3, and can be solved for
af'l/au subject to the boundary condition that af‘l/au should be well behaved

at the bottom of the ripple well where ﬁv"de = 0. Using the relation that3

P V2
55 (uv,de) = - N de + 0(s) (29)

we have

1 of
af - _ M1 . 1
sn ar eR° "y o (30)
and hence
af sin 8
-1 _ “Mc m E
e (W) > (31)

max

where B... = B(6_). The usual ripple transport coefficientsls3 can be calcu-

lated from Eq. (31).



Although the next order solution of f, namely f°, is not important for
the ripple transport calculations, it is worthwhile to calculate it for
reasons which will be shown later. To solve for fO, we formally integrate Egq.

(27) and obtain

of, ) 8
£ = o[2 v2Ns M Rq [T 90 sin (No_ + Ngo) - JT RA9® (1)) 4 ,
o 0['25 39 Q£W (¢0 qe) é-'—v—ﬂ-( )] g
(32)
with 3g/38 = 0, o = sgn(v,) and 6, is the turning point with ey > 6y. To
determine g, we have to go to the next higher order equation:
\ 1
noof _ 0
Rq36 - c(f)y . (33)
After some algebra, we obtain
v,
o9 1 1, _
wq 39 (F+ - ) = 20(9) . (34)

Applying the bounce-averaging operator ﬁque/IVHI to this equation, we have
3g/3u = 0 since §dev" = 0 at the bottom of the ripple well. Thus, g must be
independent of @ (or s) and u and it will not contribute to transport; hence
we may take g = 0.

When vogg < wpgs the distortion of the distribution function due to the
ripple trapped particles is shown in Egs. (31) and (32). However, when
veff < wpgs the banana trapped particles are in the collisionless ripple
plateau regime. The particles are in this regime since for o < 1, the pitch
angle variation due to motion along the magnetic field line is on the order

of V8, and the transition between the collisional and collisionless plateau

10



regimes occurs at the critical pitch ang]e4 where Ac = (\;R/vN)l/3 is equal
to /s, which gives veff = wpge The perturbed distribution function over the

last ripple phase in the collisionless ripple plateau regime can be written as

.f.‘

RS vas M Rq ft T@T sin (No, + Nge)
(35)
2 2. % de
-2-— \' N6 R f -I——[- sin (N¢O + qu) ’
I

and diminishes away from the ripple well. Notice that there is no 1/v type
solution in the collisionless ripple plateau regime because particles make
only a finite radial excursion from a flux surface in going over the last
ripple well.

From Egs. (31), (32), and (35), we see that 3f/au is discontinuous across
the boundary between ripple trapped and banana trapped particles. Thus, the
collisional effect which is proportional to azf/au2 is no longer negligible
around this boundary and should be taken into account. As we approach the

boundary, Eqs. (26) and (27) are no longer valid and should be replaced by

v 1
af T -1
Rg ae - C(F7) (36)
v of
..%—ef_ ¢ vANs sin No oo Moo . (37)

Equation (36) is used to join the 0(1/v) solution which is given by Eq. (31)
inside the ripple well and zero outside the well. Equation (37) is used to
join the 0(v®) solutions which are given in Egs. (32) and (35). Equation (37)

can be simplified by defining

11



af, 0
0 _ mc 2 M t do _.
fo—hc+cvz—e-vN6-a—w—RQ{a 1V—"Ts1n(N¢o+qu) , (38)
so that hy satisfies
lv, | ah
g_
R 35 - chg) - (39)

To obtain Eq. (39), we have neglected O(v) corrections in Eq. (38). The
function hy is now used to connect the noncommon parts of the solutions Egs.
(32) and (35) on each side of the boundary. Notice that Eqs. (36) and (39)
have the same form, but their boundary conditions are different. In this
paper, we will concentrate on the boundary layer effect on ripple transport.
The boundary layer correction to banana drift transport will be discussed in a
subsequent paper.

IV. Boundary Layer Analysis

The boundary layer equation for the ripple trapped particles is given in

Eq. (36) and can be written explicitly as

Vibaf Yy of

d
-R'a's-e——\)—B--é-HmV"u—a—u . (40)

The superscript -1 in f will be dropped from now on. Defining
A = uB/E ,

vyl = //%E (1 - ami - '%E.Vn ’

12



. -1 *
N¢0 + Ngo6 + sin = «a

)
T -2 S1'n_I a*

o
1}

1 + 8 ¢ cOS (m

and y N¢0 + Ngo ,

we can simplify Eq. (40) to

af of

toyvi vt (41)

y ax i oA *
where v = 2v/wy  With w = VN/R. Particles with 1 - 8pp < A <1 + Sopf Will
be trapped in the ripple well and particles with 0 < A < 1 - Saff Will not be
trapped in the ripple well. Since we are only interested in the region where

A 21 - 8a¢5, we can define the boundary layer parameter x as

-1/2 . =1 %y, 24172

A= 1= b e - 5P (/T (v - 2 sinh MMM (42)

Thus, ripple trapped (untrapped) particles are categorized by x < 0 (x > 0).

Notice that the parameter in front of x is of the order of Vv _../w.. 6 and is
eff’ "bs

the thickness of the boundary layer in phase space. Assuming /v/dg;i K1, we

obtain

. -1
V, = /28 . cos (RLESIN e (43)
! eff S

in the boundary layer. Defining

. -1 *
¢ =7 sin (% y * sin -]-OLT) ) (44)
T -25sin" q

13



and assuming /%/seff <<'1 and v/aeff << 1, we reduce the boundary layer

equation to

af,  a°f
'_'i_ = i- _‘—22 . (45)
¢ 3X

To obtain Eq. (45), we have neglected the boundary layer due to the smallness
of v, near the turning points, since the thickness of this boundary layer is
0(v) and is smaller than that due to the large gradient of 3f/du, which is
0(/v). At the maxima of the ripple well o = 6,, we have ¢ = #m, and this
defines the boundary in real space. Also, we have'V" =0 at ¢ = tn. The
analysis to obtain Eq. (45) is similar to that in axisymmetric neoclassical
transport.6
The boundary conditions for ripple trapped particles (x < 0) which arise
from mirroring on the sides of the ripple well are f, = f_ at ¢ = tv. For
ripple untrapped particles (x > 0) reflection off the mostly toroidal magnetic
well yields a boundary condition f, = f_ at ¢ = n. As a final boundary condi-
tion we use f, = 0 at ¢ = -n, which we justify by requiring that particles
with v, ? 0 coming from the ripple boundary layer at 6 = -6, cannot reach the
ripple boundary layer at 6 = +0, without scattering in pitch-angle by more

than the boundary layer width. The criterion for this to occur is

v ve

- > e “Rq
eff _\2
(/L s
bs
or
Vs76
1> S (46)

14



This condition is almost always valid for a tokamak. The boundary layer solu-
tion of Eq. (45) should match asymptotically to Eq. (31) as x » -= and zero as
X + +eo,

The boundary layer equations will now be solved by a Wiener-Hopf pro-
cedure similar to that used by Hinton and Rosenbluth® for axisymmetric

neoclassical transport. The Fourier transform of fi is defined as

Fi(¢’k) = ? dx exp(ikx) fi(¢,x) . (47)

The integral of Eq. (47) is carried out for Imk = -y (y > 0) to make Fy

converge as x » -», The transformed Eq. (45) is

aF
% = -T-kzFi_ ’ (48)

with solutions
F,(6:k) = F,(m,k) expl-kZ(6 - m] (49)

F (-m,k) exp[k®(¢ + 1)1 . (50)

F_(¢,k)

The one-sided Fourier transforms are defined as

S, (¢:k) = ? dx exp(ikx) f_(¢,x) (51)

-00

Rt(¢’k) 7 dx exp(ikx) fi(¢,x) . (52)
0

15



and S, is analytic for Imk < -y (lower half plane) and Ry is analytic for

Imk > -y (upper half plane). Along Imk = -y, we have

Fo(e:k) = S, (0,k) + R (4,k) . (53)

The transformed boundary conditions are

S,(mk) = S_(mk) ., S (-m,k) = S_(-m,k) (54)
for x < 0, and

Ry(mk) = R_(m,k) . R (-m,k) = 0 (55)
for x > 0. From Eqs. (49) and (50), we have

Ry (-mk) + S, (-m,k) = [R,(n,k) + S, (n,k)] exp(2nk?) , (56)

R_(w,k) +S_(m,k) = [R_(-m,k) + S_(-m,k)] exp(2nk®) . (57)

Using the boundary conditions Eqs. (54) and (55), we obtain

S_= (R, +S,) exp(2nk?) , (58)

R, + S, = (R_+S_) exp(2nk?) , (59)
where S, = S,(tw,k) and R, = R (¢n,k). Substituting Eq. (59) into Eq. (58),
we have

S [1 - exp(-4nk®)] = R_ . (60)

We factorize

1 - exp(-4nk?) = : k) | (61)

16



where L(k) (U(k)) is analytic and has no zeros in the lower (upper) half

plane. Following the analysis by Baldwin et a1.7, we define
_ -1 2
g{k) = k™ In [1 - exp (-4vk)] , (62)

which is analytic in the region -1/2 < Imk < 0, and can be separated into the

form
™2 angtn) _ 1 10 dng(n)
A 2 B TR TR a0 - a k) . (63)
-~ ~+10
where 1/2* = 1/2 - A, and 0" = -A with 4 a positive infinitesimal. The

function q, (q_) is analytic in the upper (lower) half plane. However, the
definition of gq(k) in Eq. (61) is by no means unique. In Appendix A, we give
another definition of q(k), and we show that it gives the same results.

Comparing Eq. (62) with (61) we have

L(k)

exp(-kq_) (64)

U(k) = exp(-kq,) (65)
and we can write Eq. (61) as

S L(k) = RU(K) . (66)

The left side of Eq. (66) is analytic in the Tower half plane and the right
side is analytic in the lower half plane, and they are analytic continuations

of each other across -1/2 < Imk = -y < 0. Thus, the function y(k) defined by

17



1]

w(k) = =S_L(K) (Imk < -y)

(67)

R U(k) (Imk > -y) ,

must be an entire function. As [k| » =, S_ ~ 0(1/k) and L(k) ~ k and so y ~

constant as |k| » ». We thus have

S_=-AL (68)

R_= A, (69)
and

R, + S, = - Fexp (-2nkf) . (70)

The constant A is to be determined by matching the solution to the slope of
Eq. (31) as x » -», The particle distribution fi can be obtained by inverse

transforming Eqs. (49) and (50)

Folonx) = o= dk (= 2 expl-tkx - 2nk? - k2 - m)] (71)
1% 1 1 . 2
f (4,x) = > [ dk ('A)(I" UJ exp[-ikx + k“(¢ + 7)] . (72)

For x < 0, the contour of the integrals Eq. (71) and (72) is from (-« + iImk)
to (+~ + iImk) along -1/2 < Imk = -y < 0 and goes around the upper half plane.
The analytic configuration of g_ to the upper half plane can be obtained from

Egs. (62) and (63)
q (k) = - 3 In [1 - exp(-4nk%)] + q (k) , (73)

18



As x » -=, only the pole at k = 0 contributes to the integrals. We thus

obtain
£, (6,x>-2) = -.%; (X = 2.92) = C(X - 2.92) = f(¢,x>mw0) . (74)
The constant C (or A) can be determined from
-1
of " au ax _ of
I AA IX axX
and hence
i f
I Y J— . -1 %, 2:1/2 E ¢ 51N O 3Ty
C=-v [2/26eff (m - 2 sin a )/n°] %'é' Rv  or  ° (75)

The distorted ripple trapped particle distribution with the boundary layer

correction is thus finally

V2 Erarms 2 (r - 2 sin’t QM) nP1M2

of sin 9
-1 _ "'Mc m E
(76)
=fent oy o

where f., = f 1 §s the first term in the braces of Eq. (76) and fyy is the

second term.
The corrected particle flux is the flux surface average of the velocity

space integral of this distribution function times the radial drift velocity:

19



2r , 21 . E/B V, e ¥y
_ " do " de T 4ndE Bdy d
Pyy =/ / [— [ ~v1°f ()
b1 Py 2 0 2%. o m E/Bmax VII b1 I%J)l
2n do_ 2m ;. E/B <V, » V>
do 7 4ndE Bdy d
=/ ;rlﬂ / = | v, T o1 5
o " o ?ﬁ.o m® E/B .. o1 |y |

After carrying out the u integration, we have

® af 5/2
M /mE E 1/2 ( c )2

I‘b] = -2.92 A f dE ‘EB'R' .
where
2w de 2w 2
Ay = 2/2 f f d¢ sin” o /1 - 7 [2/78 ¢ S pp (m

max

If we use the field model given by Eq. (6), we obtain

8 3/4
A, =— (28)
bl /&

in the 1imit of o« = 0, and in general,

-8 26 T(a)
vn

where

20

- 2 sin

-1

*
o )/

(77)

(78)

2
2]1/

(79)

(80)



C , 2
B 1 f dX cos X sin X [cos X -

Tooa 0 f L sint X

(82)

- Y(X)
X lf dY [cos X - cos Y + (X - Y) sin X]l/2 s
X

where Y = Y{(X) is the zero of the inner integrand and ¢ = #/2 for a« > 1 and

¢ = sin"! o for o < 1. The numerical calculation of G(a) is shown in Fig. 2.

After doing the energy integral with v = v(T)(E/T)'3/2, we obtain

1.3/2 3/2G 3
=-(7;)/ 5/—-%9-)-X2.92x2/4x48/%( v6 Jl/z(_ggﬁ)z
[V

T
ldn, 6 edo [  51dT
Gttt ITa (83)
where v = v(T) is vj; for fons and is vge + vgi for electrons, in which
v.. =12 rne* Tn A
N /m T3/2
The boundary layer corrected ion and electron particle fluxes are
3/2 CT. dn,
_ 64 iv2 24 3 -1 1 i, e do
'y = -9 (201372 (ar) o (7 /m)"" ny6(a) [(ﬁi—ar*T;HF
dT,

casl )1 S e L, e e, 0] )
T dr 7 & "eff/¥bs ‘ndr ‘T]—T T, dr /4 2

21

sin X ( _ 2X)]1/4 (n - 2X)1/2
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Fig. 2. G(a) versus o.
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R RN ic SN
(2w) Vei Ne @r e 97
(85)
.35l dTe)+180'G/-—7———(1dn e do, , .1 dTe)]
Srar ) 0 Merrlons G oWt 2wl

where Wy = wbulg and

x 4 /275t n A
I TR
LN
Note that

(Vaff/wps)e = (Vagglupg)s 1f Ty = Tge Since the fon flux is much

Targer than that of electrons, an ambipolar potential & should be developed to
reduce the ion flux to maintain quasi-neutrality.

To Towest order in
/"b7mi’ we thus have

S|
o.lo.
SIS

3.5 G(a) + 2.5 x 1.7 v _cJop: Gla) | dT. (6)
6(a) + 1.27 V5 _fu ¢ Gla) T dr

SE

e -
T, B
5 dr

Substituting Eq. (86) into Eq. (85), we obtain the ambipolar particle flux

cT

T
a

2 T 1d .
=8 v—f- (6(a)(1 + 1.80 § Forr7ar ) E 90 (1 +T3e_)
ei
e, T 7! :
+ 3.5 (Te-+ Te-)] - 1.27 /Veffhba _G(a)(T_;+ 1.42 T;)} .

To obtain Eq. (87), we have neglected terms of order “eff/“ba’ but kept the
order J“eff7wb6 boundary layer correction terms.

Similarly, for the ion heat
flux, we obtain
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0; = -41 S— (gp)? Gla) n = (1 + 1.27 g PoefflOps) (88)

For comparison purposes, we show the numerical calculation of the G(a)
function in Fig. 3. We see that G is about a factor of 2 larger than G for «
> 1 and comparable to G(a) for a < 1. The total ion heat conductivity yx;
versus collisional frequency v with and without boundary layer correction is
shown in Fig. 4.

V. Concluding Remarks

Boundary layer equations have been derived by a systematic expansion of
the drift kinetic equation in the small parameter v/wp for both ripple and
banana drift transport. The corrected particle distribution for ripple
trapped particles has been obtained by solving the boundary layer equation
with Wiener-Hopf techniques. It is found that the boundary layer effect will
increase both the particle and heat fluxes. The effect is important even at
Tow collisionalities (vaff/wps ~ 10'2). The corrections to both the heat
conductivity and diffusion coefficient are about a factor of 2 as

vaff/wpg > 1, and gradually decrease to about 15% for veeg/wpg ~ 1072,
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Appendix A

Using the general separation method in Wiener-Hopf prob]emss, we can

define
(k2 + 1) 5
q=1n {———;g——— [1 - exp(-47k“)1} = a, - q_ (A1)
where
»-i/2" (n? + %J )
q+(k) = _oo_{:/2+ n :]? 1n { n2‘ [1 = EXP(-4Trn )]} s (AZ)
wti 2 (n? + 4
k)= [ A T exp(-aed)]) (A3)
—wotif2” " n

and 172" (1/27) = 1/2 + (-) A with A a positive infinitesimal. The functions
g, and q_ are analytic in the upper (Imk > -1/2) and lower (Imk < 1/2) half
planes respectively, and bounded as k + ». The function [1 - exp(-4nk2)] can

thus be factorized as

2
1 - exp(-4nk2) = exp(q, - q_) =v_v, > (A4)
k o
where
v.= KBk - /27 exp (-q) (A5)
v, = (k+ i/2)7! exp (a,) - (A6)
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The functions y, and y_ are again analytic in the upper and Tower half planes,
respectively, and y_ ~ k, and q_ ~ 1/k as k + e,

From Eq. (60), we have
-Sy_=R_/y, - (A7)
We can define an entire function y(k) such that

p = =Sy s (A8)

for Imk < -y, and

<
1}

R_/Y+ s (Ag)

for Imk > -y. Since y(k) ~ 1/k « k = constant as k » =, p(k) is thus a con-
stant on the entire complex plane. We then have S_ = -A/y_ and R_ = Ay,
where A = y(k) is a constant. The functions fi(¢,x) can be obtained by
inverting the Fourier transform from Eqs. (71) and (72).

To obtain the asymptotic limit of f_(¢,x) as x + -», we have to know y_

as k » 0 since S_ = -A/y_. As k » 0, we have
2 - iq!(0)
. A 1 -
S =i—(>- ] (A10)
} 207 K ik

where q' (0) = [dq_(k)/dk]kzo. To obtain Eq. (Al0), we have used the fact that
q_(k=0) = - Tn V7, and neglected 0(k®) terms. To eliminate the singularity at

n = 0, we write q'(k=0) as

AL (n° +3) 2
q’(k=0) = »— _miie-;% Tn {——;;g——— [1 - exp(-4m“)1} , (A11)
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with a positive infinitesimal . After integrating by parts, we obtain

o 2
PO | 8n exp(-4wk-) 1
q' (k=0) = = [ dn -
g [1 - eXp(-41rk2) 2n2(n2 + 21[)]

. (A12)
The integral in Eq. (A12) can be carried out numerically, and the result
is q'(k=0) = 0.92i. After inverting the Fourier transform, we obtain

f_($5X) —— C(x - 2.92) , (A13)

X+moo

which is the same as Eq. (74).

30



