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l.a. Introduction

One of the most difficult challenges in designing inertial confinement
fusion (ICF) reactors is to devise a first wall concept capable of
withstanding repeated exposure to pulsed radiation. One proposal for
prolonging the first wall lifetime is to absorb the non-neutronic component of
the pellet energy in a cavity buffer gas,(l) but the efficacy of this
suggestion depends on many reactor constraints. The gas density must allow
the driver beam to be transported to the target, so the degree of X-ray and
pellet debris attenuation will depend on whether a laser, 1ight ion, or heavy
ion beam driver is used. It currently seems that the gas density should be
Tess than 3.5 x 1012 atoms/cm3 (10'4 Torr at 0°C) for targets imploded with
heavy ion beams. Such a low density will allow the pellet X-rays and ionized
debris to reach the first wall virtually unimpeded. Laser beams may be
transmitable through gas densities as high as 3.5 x 1016 atoms/cm3 (1 Torr at
0°C) without significant defocussing. These higher densities are sufficient
to attenuate the pellet debris, but not the pellet X-rays. In contrast, the
gas density in a light ion beam driver reactor might be between 5 to 50 Torr
(0°C), which would absorb virtually all of the non-neutronic energy.

Research by various reactor design groups has covered all three of the
above ICF reactor types,(1’2’3) but the analysis of the pellet, gas, and first
wall have only recently been integrated into a comprehensive package. The
purpose of this report is to describe how the response of the gas to the
pellet X-rays and debris is computed, and to offer the approach as a
consistent reactor analysis. Subsequent documentation will illustrate the use

of our comprehensive approach on specific reactor designs.



I.b. An Overview of the General Approach

A diagram showing the computer codes that have been developed during the
course of ICF reactor design at the University of Wisconsin is shown in
Figure 1. The figure shows thgt the output of the pellet simulation code
consists of an energy spectrum for the neutrons, X-rays, and pellet debris
(the term pellet debris refers to the hot expanding plasma left after the\
burn). The neutrons (= 10 to 14 MeV) traverse the cavity gas without
depositing a significant amount of energy or momentum in the gas, and need not
be considered in the gas response calculation. The X-rays and pellet debris,
however, may interact strongly with the gas. It is found that in a high

018 atoms/cm3), deposition of the X-ray and debris energy can

density gas (> 1
give rise to a blast wave whose characeristics depend only on a comprehensive
parameter involving the total energy deposited and the ambient gas density.

017 atoms/cm3), the gas response is more

However, at Tower gas densities (1
sensitive to the details of the X-ray and pellet debris spectra. This report
describes the modifications recently incorporated into the FIRe (4) code that
provide coupling between the analysis of the gas and the analysis of the
pellet. The modifications extend the utility of the FIRE code to Tower gas
densities.

Figure 1 shows that the first task in analyzing the gas response is to
compute the energy deposition profile of pellet X-rays. It will be shown that
for most pellet X-rays, the secondary radiation (scattered and fluorescent
X-rays) is negligible, implying that the X-rays are exponentially
attenuated. As X-rays are absorbed, the photoelectric attenuation coefficient
will decrease in the highly ionized gas near the pellet, 1imiting the amount

of X-ray energy that can be absorbed in a given volume of gas. The method

proposed here to account for this bleaching effect is to periodically compute
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Fig. 1 A block diagram showing the relationships between computer codes
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the deficiency of bound electrons during the deposition calculation, and
reduce the attenuation coefficient accordingly. FElectron collision cascades
and recombination can be ignored during the time over which X-rays are
deposited (= 1078 s), so the deficiency of bound electrons is computed
directly from the X-rays absorbed per atom.

The temperature profile of the gas can be computed from an equation-of-
state once the deposition profile and gas density are known. Although the
ejected electrons are initially out of equilibrium with the parent ions, it is
assumed that the gas (now a plasma) will reach equilibrium on a microscopic
scale without any macroscopic change in the energy deposition profile.

Unlike the X-rays, which only influence the initial temperature profile
of the gas, the expanding debris must be accounted for by adding driving terms
to the radiation hydrodynamics equations. Elastic nuclear collisions with the
gas atoms complicate matters by giving rise to angular scattering of the
debris, and straggling in projected range and energy. A solution of a time
dependent ion transport equation is needed to rigorously evaluate the rate
that internal energy and momentum are imparted to the gas. Such solutions are
beyond the scale of this effort, so a simpler, approximate approach is
devised.

The debris spectra is first divided into energy groups. Energy
straggling is assumed to be negligible for the ions in each group, and this is
shown to be a reasonable approximation. A projected range-energy relation is
established for each group, and straggling in the projected range is accounted
for in the Gaussian approximation. The projected range-energy relations are
taken from calculations for ions slowing down in an incompressible media, and
are adjusted by the code to a compressible gas by equating the number of

atomic layers traversed. Since energy straggling is ignored, the transfer



rate of internal energy and momentum to the gas can be directly calculated
from the projected range-energy relation. The instantaneous position of the
debris is computed by integrating the radial speed over time.

II. The Deposition of Pellet X-rays

Il.a. Computation of the X-ray Deposition Profile With the Point Source
Model

The fire code uses the point source model to compute the X-ray deposition
profile. This refers to a point source emitting X-rays that are exponentially
attenuated in the surrounding medium. The model is applicable if the
attenuating medium does not act as a volumetric source of secondary
X-rays. If, however, scattering and fluorescence produce a significant amount
of secondary X-rays, then a more sophisticated scheme must be used to compute
the deposition profi]e.(5) The X-ray spectra and gases for which the point
source model is applicable are described below.

A calculation of the time integrated X-ray spectrum emitted by a 0.88
gram pellet with a 100 MJ yield is shown in Figure 2.(6) Of particular
interest is that very little of the energy is associated with the X-rays
greater than 10 keV. Figure 3, which shows the energy dependence of the
attenuation coefficient for three elements, reveals that for noble gases other
than helium, 10 keV is below the energy where scattering becomes the dominant
interaction. Therefore, it appears that scattering can be neglected for the
X-ray spectrum in Figure 2. Since X-ray scattering is always neglected in the
current version of the FIRE code, the user should check the relative magnitude
of the scattering cross section for every new X-ray spectrum and gas of
interest.

The energy in fluorescent radiation emitted from gas atoms that have
undergone photoabsorption must also be small if the point source model is to

be applicable. There are two principal means by which an atom that has
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emitted a photoelectron can relax. The first mechanism occurs when outer
shell electrons undergo transitions to vacant inner levels. The other is by
emission of an Auger electron, which is a comparatively radiationless

process. An Auger transition occurs if the energy that would have appeared as
fluorescent radiation is instead transferred to an outer shell electron, which
is thereby ejected. The probability of undergoing a fluorescent transition
will determine the magnitude of the energy in secondary X-rays, and is best
determined by experimental measurements.

The fluorescent yield is defined as the probability that an atom will de-
exite by radiative transitions as opposed to Auger transitions. The two
variables that determine the magnitude of the fluorescent yield are the energy
of the primary X-rays and the atomic number of the gas. The data compiled by
Burhop(7) and reproduced in Figure 4 shows the magnitude of the K shell
fluorescent yield for a wide range of atomic numbers. From Figure 3, helium,
neon, and argon have K shell electrons with binding energies low enough to
permit photoelectric absorption of X-rays by those shells. So from Figure 4,
the fluorescent yield from transitions to the K shell is less than 10% for
these gases.

The K shell of xenon has a much larger fluorescent yield, but as seen in
Figure 3, X-rays on the order of 30 keV would be needed to interact with the K
shell electrons. So it is reasonable to assume that the X-rays emitted by ICF
pellets can only interact with the L and M shells of the heavier elements. As
shown in Burhop's review, the L series fluorescent yield is somewhat smaller
than the K series yield, varying from 0.05 for krypton and increasing with
atomic number up to 0.40 for uranium. The M series yield has
not yet been measured accurately, but appears to be less than 0.05 for even

the heaviest of elements.
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Fig. 4 Fluorescent yield as a function of atomic number.

—non-relativistic theory;
---relativistic theory (ref. 7).
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In summary, the evidence presented here suggests that for a pellet X-ray
spectrum composed of photons of less than 10 keV, the point source model will
compute the X-ray deposition profile to within about 10%.

IT1.b. The Effect of lonization on the Photoelectric Absorption
Coefficient

After an atom absorbs an X-ray by the photoelectric effect, it will emit
a photoelectron, and as previously indicated, probably one or more Auger
electrons. The X-ray pulse time (= 10'8 s) is much shorter than the time for
an ejected electron to slow down and be recaptured (= 10°% s), so a deficiency
of bound electrons builds up as the X-rays are deposited. The lack of bound
electrons, sometimes referred to as X-ray bleaching, causes a reduction in the
photoelectric attenuation coefficient, which 1imits the amount of X-ray energy
a gas atom can absorb. Near the pellet, where the X-rays far outnumber the
gas atoms, X-ray bleaching has a noticeable influence on the deposition
profile. The model used in the FIRE code to simulate this influence is
described below.

The FIRE code treats the X-ray spectrum as if it were composed of a
number of identical subpulses, each subpulse having a fraction of the total X-
ray yield. After a subpulse passes through a zone of gas and is exponentially
attenuated, the number of electrons ejected per gas atom is computed by
assuming one electron is ejected per X-ray absorbed. This underestimates the
ionization and, therefore, underestimates the effect of X-ray bleaching on the
deposition profile. Before the next subpulse traverses the gas zone, new
attenuation coefficients are computed for each energy group by assuming that
each electron in a given atomic shell contributes equally to the photoelectric
cross section of that shell. For instance, Figure 5 shows the attenuation
coefficient of argon gas with 0, 4, 8, 12, and 16 electrons missing from the L

shell. The corresponding reductions in the attenuation coefficient are 0%,
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25%, 50%, 75%, and 100%, respectively. With this model, computing the
attenuation coefficient of X-rays that interact with the L shell electrons is
simply a matter of keeping track of the number of electrons left in that shell
after every subpulse. The photoelectric cross sections of neutral atoms are
taken from the work of Biggs and Lighthi]l.(8’9’10)

A similar calculation is made for X-rays that interact with the K shell
electrons; however, there is a complication since an X-ray with enough energy
to be absorbed by a K shell electron might be absorbed by an L shell electron
instead. A question arises as to which shell electrons will be ejected.

Since Auger transitions occur on a time scale on the order of 10-1° s, it is
proposed that an atom which has ejected a K shell photoelectron will undergo
an Auger transition before the next pellet X-ray is absorbed. Thus, it is
assumed there are never any vacant inner levels until all of the outer shell
electrons have been removed. After all the outer shell electrons are removed,
further ionization reduces the attenuation coefficient of the K shell in the
manner depicted in Figure 5.

Figure 6 shows the specific energy profile in argon gas after 60 MJ are
emitted from a 0.3 keV blackbody point source of X-rays. The two curves
correspond to the specific energy computed with and without taking into
account the X-ray bleaching effect. When the bleaching effect is ignored, the
computed specific energy decreases rapidly as the distance from the source
increases. But when the reduction in the attenuation coefficient is included
using the model described above, the specific energy has an almost constant
value for the first 50 cm, after which it decreases in a manner similar to the
curve that did not include the bleaching effect.

When the photoelectrons have thermalized with the gas ions, a single

temperature can be associated with the plasma. If the transport of energy on
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Fig. 6 Specific energy profile after x-ray deposition in argon gas, with and
without the bleaching effect included.
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a macroscopic scale is negligible during the equilibration period, then the
X-ray energy deposition profile can be used directly to compute the gas
temperature, charge state, pressure, and radiation mean free paths that are
necessary to begin the radiation hydrodynamic calculation. The FIRE code uses
the specific energy and gas density to interpolate between points stored in
equation-of-state tables generated by MIXER.(II) To illustrate the use of
these tables, Figure 7 shows the temperature profile corresponding to the
energy deposition profiles in Figure 6. Including the X-ray bleaching effect
helps to avoid unrealistically large temperature gradients near the pellet,
and thereby decreases the computer time required to solve the radiation
hydrodynamics equations.

II1. Source Terms for the Radiation Hydrodynamics Equations

The momentum Tost by the expanding pellet debris appears as a source term
in the differential equation describing the gas motion. The one-dimensional,
Lagrangian form of the equation-of-motion that is solved by the FIRE code is

3u
qu _ ) dr
et~ 57 Pp*tPrta) oy — s (1)

where o is the gas density (1/V),
Pq is the debris density (1/V4),
u is the radial speed of the gas,
Ugp is the radial speed of the debris,
Pp is the gas pressure,
Pp is the radiation pressure,
q is the artificial viscosity,(lz)
r is the spatial coordinate,

t is the temporal coordinate.
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As well as imparting momentum, the pellet debris increases the internal

energy of the gas.

The FIRE code computes energy transport within the gas by

solving two coupled partial differential equations that, in Lagrangian form,

appear as
3E 3q. P 5-1
p_. -1 qP p__a(r U)+J -J + 3 (2a)
ot pr6'1 ar pr6'1 or R P o
3 3q, P 5-1
ot prs' or prG' or R p
where Ep is the specific internal energy of the gas,
ER is the specific internal energy of the radiation field,
qp is the thermal flux by conduction,
a4y is the radiation flux,
Jp is the specific radiant energy emission rate for the gas,
Jp is the specific radiant energy absorption rate for the gas,

S is a source of specific energy for the gas.

The constant & has the values 1, 2, or 3 for cartesian, cylindrical, or

spherical coordinates, respectively. The work term that appears in equation

(2a) is rewritten in terms of the gas temperature in the FIRE code for reasons

of computational convenience that are discussed by Kidder and Barnes.(13) The

energy flux and radiative exchange terms are described in other documentation

of the FIRE code,(4) and will not be repeated here.
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With expressions for the energy flux and radiation exchange terms,
equations (1), (2a), and (2b) represent three equations for six unknowns:
Eps Ep, PR Pp, u, and p. Classical gas dynamics provides a relation between
Ep and Pp,(14) and classical electrodynamics provides a relation between
Ep and PR.(IS) The choice of Lagrangian coordinates provides the sixth
relation needed to solve the equations. In a Lagrangian coordinate system
there is no mass flux across the differential volume that the equations
describe, so the density of a gas layer is easily computed from its dimension
change and the known, initial density.

The external source of specific energy to the gas, S, can be derived from
energy conservation. Since the energy lost by the debris must be shared by

kinetic and internal energy increases in the gas, it follows that

au 3u

_ d
S =g Ug5r - oY GGt

) .
p=0

The subscript p=0 implies that the quantity in parenthesis is the acceleration
of a differential gas volume due to the debris alone, excluding the
contribution from any pressure forces. If there are no pressure forces,

equation (1) becomes

It follows that

au au
_ d dr
S=PqUq3E T P4 YT (3)
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Note that in deriving equation (3), it has been assumed that the debris
velocity may differ from the radial debris velocity due to angular
scattering. Models for computing ogs Uge and Uy, are presented in the
following sections.

I11.a. The Path of Debris Ions Slowing Down in an Incompressible Gas

Figure 8 shows two paths that a debris ion might travel after entering an
incompressible gas at point 0. If the ion interacts only with electrons of
the gas atoms, then it will slow down along the path ORp. The mass of an
electron is much smaller than the mass of a debris ion, so deflections of the
ion will be small and the path will be nearly straight. For a straight line
trajectory Uy is equal to Udp and the time derivative of both quantities,
which is required in equations (1) and (3), can be computed directly from well
established slowing down models.

On the other hand, if conditions are such that a debris jon loses most of
its energy in elastic collisions with the gas nuclei, then the trajectory will
follow the path OR. Computing the time derivatives of Uy and Ugp is obviously
more complex if nuclear collisions are influential. The competition between
nuclear and electronic interactions will now be discussed.

Bohr(16) has suggested that nuclear stopping is the dominant slowing down
process when the speed of an jon becomes Tess than about one-tenth the speed
of the electrons orbiting the ions. From the Thomas-Fermi(17) model of the

atom, the speed of an orbiting electron, Ugs 15

2
_ 2/3 2we
Ue =2 > (4)
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where zy is the atomic number of the ion,
e is the electron charge in esu,

h is Planck's constant in cgs units.

Using equation (4), curves corresponding to Ug and 0.1 u, were drawn in

Figure 9 so that the parameters for which electronic or nuclear stopping might
dominate could be identified. It should be realized that although the curves
are suitable for the order of magnitude arguments to be made here, they are
only rough guidelines.

To determine whether nuclear or electronic interactions are the dominant
slowing down mechanism for ICF pellet debris traversing a buffer gas, it will
be assumed that the kinetic energy per atomic mass unit is initially equal for
each debris ion, so all of the jons have the same speed as the pellet
expands. The injtial speed of each jon will then be proportional to the total
energy in debris divided by the pellet mass. Using Figure 9, it is observed
that if a target is constructed of materials with an average atomic number
greater than about ten, then the ratio of debris energy to mass must be
greater than 3000 MJ/gm for electronic interactions to dominate. Since that
would require a very high pellet yield even by current standards, it is
concluded that nuclear collisions are the important slowing down interaction,
and therefore the trajectory of the fons will not be straight.

IIT.b. The Momentum Loss Rate of Debris Ions in an Incompressible Gas

The method of computing Ugs Ugpo and the time derivative of these
quantities must be computationally inexpensive and easily applicable to an
arbitrary debris - cavity gas combination. The gas will be considered
stationary while developing the method, with the effects of compressibility

added in IIl.d. Collisions of debris ions with each other will be neglected.
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Fig. 9 The dominant sTowing down interaction of ions based on the
Thomas-Fermi model.
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Starting with the Boltzmann equation, Wi]]iams(lg) has rigorously
developed a formalism for computing the distribution of an ion pulse as a
function of time, space, and energy. Although a few analytical solutions to
that equation exist for simplified interaction potentia]s,(18’20) generally
even a numerical solution is exceedingly difficult when more realistic
interaction potentials are used. Williams shows how the adjoint of the time
dependent transport equation can be used to derive a more manageable equation
not containing the time. That equation was first developed by Lindhard(lg) to
describe the spatial distribution of an ion pulse as a function of energy.
The approach taken here will be to add the time dependence in an approximate
manner to the range-energy relations found by solving Lindhard's equation.

Lindhard used heuristic statistical arguments to develop an expression
governing the path length probability distribution of an ion pulse as a
function of space and energy. Although the arguments supporting the derived
equations have since been refined,(21) Lindhard's results are still the
cornerstone of jon transport calculations. The first spatial moment of the
integro-differential equation that was derived led to a simpler integral
equation for the average path Tength, R. A second moment led to another
integral equation describing the straggling in R. Similar methods were then
used to derive integral equations for both the average projected range,

Rp, and the straggling in that quantity. Lindhard also illustrated how the

integral equations for R, Rp, and the straggling in these quantities can be

solved by expanding the integrands as a power series, and then retaining the
lTower order terms.

Brice(22) has further developed Lindhard's expansion of the integrands
and has written the RASE4(23) code to solve the resulting equations. It is

important to realize that although the projected range, path length and the
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straggling in these quantities are computed by RASE4 when the ions are all of
the speed uy, nothing is known about the time it takes the ions to reach Ug»
or the standard deviation in that time. The information concerning the time
has been sacrificed by solving Lindhard's equation rather than Williams' more
general equation. An attempt will now be made to reconstruct the time
dependence by post-processing the results of the RASE4 code.

The path length, R, projected range, Rp, and speed, uq, of ions in an
initially monoenergetic pulse are stochastic quantities that have some
straggling associated with them. If one ignores the straggling in
Ugo Rp, and R for the time being, then these variables can be treated as if
they are precisely defined. The time derivative of Uy is then expressible in

terms of other quantities computed by the RASE4 code. For instance,

dud _ dud dr (5)
dt ~ dt &R

dud dR
u P, (6)
d Hﬁ"'aﬁ;

du, dR
x® - (7)

(o8

Ug

A

The motivation for writing the time derivative of Ug in the form of equation
(7) is that the three terms on the right hand side are computed by RASE4 as a
function of Rp. The ion speed, Ugqs Can be computed at any time by integration
of equation (7).

With similar reasoning, if the average radial speed of an ion pulse,

Ugps is a precisely defined quantity, then

Ugr = TE R ° (&)
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dRp
Uy @wo (9)

Like equation (7), equation (9) is exact for a single ion, but due to
straggling in Uys Rp and R will apply only in average sense to an ion pulse.
Differentiating equation (9) with respect to time yields another quantity

required in the driving terms:

T T R e ®D (10)
2
du, dR d"R
-_d_p, 2__0p
"R T (11)

Each term on the right of equation (11) will be evaluated with the RASE4
output.

Equations (7), (9), and (11), when adjusted for the compressibility of
the gas, provide a method of evaluating the driving terms that have been added
to the radiation hydrodynamics equations. To minimize the input requirements,
the RASE4 results have been fit to convenient analytical functions. The

debris speed, ud(R ), was found to behave according to

P

) = U V1 - (=) (12)

where Rp* is the final average projected range of ions that began with an
initial speed U g The constant, c1, is evaluated by substituting in an
intermediate value of Uy and Rp that is given by the RASE4 output, along with
the corresponding value of Uqx and Rp*. Once the value of c¢; is known,
equation (12) can be used for an arbitrary energy spectrum of debris ions that

has been divided into energy groups. Only the initial speed and the final
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range of the ions in each group need be known. Figure 10 shows how equation
(12) fits the RASE4 results for 10, 20, and 30 keV iron ions slowing down in
10-5 atmospheres of argon. The derivative of ud(Rp) is required in equation
(7)s and is readily computed from equation (12).

An analytical expression developed during this research to fit the

relation for Rp(R) given by RASE4 is

2
R = Rp exp (c3Rp ) . (13)
The additional input parameters required to evaluate the constants, co and

C3, are a value of the path length, R, corresponding to the intermediate speed
used in evaluating cq, and a value of the final path length, Rx. Solving for

Cy and c3 yields

R
- 1 TR 14
c, = r—4n [ 1?*] , (14)
an <P n
Rp* Rp*
and
R
Cq = — o o . (15)
3 P R &
R p
p*

Equations (14) and (15) are evaluated by FIRE.
The derivative of Rp(R), which is needed in equations (7) and (11), is

obtained by differentiating equation (13):

dRp 1 (16)
= 1
dr c Ch,
exp (c4Rp 2) (1 + CyC4Rp 2)
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Equation (16) is compared with the RASE4 output in Figure 11. The values of
co and cg are held constant for the energies shown.

Differentiating equation (16) yields another desired quantity

-1 c c
2 €2 2 2
C,C3 1+ CyC3 Rp + c2) exp (c, R_“)

C
2)

[exp (c3 Rp

The slopes of the curves in Figure 11 are not very large, so equation (17)
should not err more than a few percent from the RASE4 results.

Six input variables are required to evaluate the constants c;, cp, and
c3 from equations (12) and (13). In addition, equation (12) requires a value
of the final projected range, Rp*, for each energy group. In the interest of
reducing the number of input parameters for a multigroup debris spectrum, the
value of Rp* will be evaluated from fhe initial speed of a group, ugx. An
expression suggested by Hunter(24) for this purpose and used in the FIRE code
is

s

Rp* = CpUgx o (18)

The constants c4 and cg are evaluated by inputing a value of U g and Rp*

different from those used in computing Cqe

I1l.c. The Energy and Range Straggling of a Monoenergetic Ion Pulse
Slowing Down in an Tncompressible Gas

The energy distribution of an initially monoenergetic ion pulse acquires
a Gaussian shape after many collisions with the gas nuclei. Bohr-(16) has

derived an expression for computing the standard deviation of the energy
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spectrum anywhere along the projected range, but to the author's knowledge,
calculations using that result have not yet been reported in the literature.
Oen and Robinson,(25) however, have computed the standard deviation of the
slowing down time, which should reflect the straggling (or in the jargon of
neutronics, the upscattering and downscattering) in the energy spectra. Using
the nuclear and electronic cross sections developed by Lindhard,(ZG) those
authors found that the standard deviation in the slowing down time is less
than 15% for any ion-target combination. Based on these results, it is
surmised here that the speed of ions in an initially monoenergetic pulse is
fairly sharply defined as the ions slow down. This conclusion helps justify
the approach described in III.b for computing the time dependence, since that
approach assumes energy straggling between groups is negligible.

The Tinear density (gm/cm) of initially monoenergetic ions will also be
Gaussian after the ions have undergone many collisions with the target
nuclei. Multiplying the Tinear density by an appropriate geometric factor

yields the volumetric debris density, P>

pg(rsRys0) = My exp (- 3 (—=2)) [—p] (19)

where G = 1 for 6§ = 1 (cartesian),
= 2n for 6 = 2 (cylindrical),
= 4g for § = 3 (spherical),

o is the standard deviation at the projected range, Rp, and My is the mass of
the debris in the energy group. The geometric factor, which appears in
brackets, is the target distance traversed divided by the volume traversed.
The normalization factor, ¢, is computed so as to conserve the debris mass in

a semi-infinite medium:
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l1=c [ exp (--2 ( = ) ) dr , (20)
0
or
S S =
l+erf(—)
V2o

The simpler form of the normalization constant that is often seen,
(2nc)'1, is avoided because it applies to an infinite target medium.

The average debris density in each Lagrangian zone, °d,3+1/2 is required
to evaluate the driving terms by finite difference methods. Integrating
equation (19) between the zone boundaries, ris and riels and dividing by the

zone volume, VOLj,q/p, results in

r...+-R r.-R
" erf (L By _ epf (1B
pd 1/2 - _gr [ /?6 V20 ] (22)
. J¥ VOL . R *
i/ 1+ erf (&)
V20

The error functions appearing in equation (22) are evaluated within the FIRE
code by rational approximations.(27)

The three independent variables appearing in the equations for py Can be
reduced to two by relating o to R_. To this end a curve fit to the RASE4

p
results was developed during this research, resulting in

Rp exp (cst)
p* exp (C6Rp*y ’

O(Rp) = O(Rp*) R
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Just as using equation (18) to compute the final projected range,
Rp*, of the ions in each group reduces the number of input parameters, so is
it desirable to compute the standard deviation at the end of

range, o(R _,), for each group from its initial speed. A curve fit proposed by

p*
Hunter(24) for this purpose is

o(R ) = ¢, Rp* exp (- Cq ”d*) . (24)

p*
To evaluate the constants ¢y and cg requires only one new input parameter; a
value of o(Rp*) corresponding to the initial speed, ugx.

It is clear that evaluating the constant, Cgs requires yet another input
parameter, a value of the standard deviation at some intermediate position,
o(Rp). Having computed cg, equation (23) is shown in Figure 12 for comparison
with the RASE4 results.

Given the average projected range of the debris pulse at a time th.1s the
FIRE code uses equation (11) to estimate the rate of change of the radial
speed at time t,. A time integration of equation (11) is used to compute the
radial speed, and a second integration provides the new average projected
range, both at time t,. The new average projected range is then available to
estimate the rate of change of the radial speed at t,41, and the procedure
begins anew. As an example of the procedure, Figure 13 shows the distribution
of a pulse of iron jons that have entered a slab of argon gas (the motion of
the gas is neglected) with a density corresponding to 0.028 atmospheres. The
initial energy of the ions is 20 keV, and the distribution given by the RASE4
code and reconstructed by the FIRE code is shown when the ions have slowed to
10, 5, and 10 keV. The time required for the ions to reach these energies are

as computed by the FIRE code. Note the RASE4 code underestimates the area
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under the distribution curve by about 2% since it uses the normalization
factor for a pulse traversing an infinite medium.

IIT.d. The Energy and Momentum Deposition Model Extended to a Deforming
Buffer Gas

The scheme for computing the energy and momentum deposition rate from the
debris will now be modified to account for the compression and expansion of
gas zones. The necessary modifications are easily conceptualized if it is
assumed that the radial speed of a gas zone is always much smaller than that
of the debris passing through, so that the speed of the debris relative to the
gas is not a function of the gas motion. Given this condition, the energy and
momentum deposition rates in a deforming coordinate system are equal to those
in a stationary coordinate system in which the debris has traversed the same
number of gas atom layers. Thus, the developments of III.b and IIlI.c are
readily applicable to problems involving deformation of the slowing down
medium if the atom layers traversed in a deforming gas can be equated to those
traversed in a stationary gas.

Figure 14a shows the average projected range of an ion pulse traversing
gas zones in a stationary coordinate system, and Figure 14b shows the same
picture for a deforming coordinate system. The primed zone boundaries are
computed as the equation of motion is solved, and the stationary zone
boundaries are saved in computer storage. The value of Rp at time t, used in
the analytic fitting functions is computed by equating the gas atom layers
traversed in each coordinate system:

Rp-l"j

=r.+ s,q4 = P . 25

Rp Y‘J (Y‘J+1 Y‘J):r——_?T ( )
17

Of course, it is not always realistic to assume that the radial speed of

the debris is much greater than that of the deforming gas zones. For
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Fig. 14b. The average projected range

of an ion pulse slowing down in a
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1ﬁstance, if the expanding debris pushes the gas out as a spherically
expanding piston rather than streaming through, then the zones of compressed
gas travel at nearly the same radial speed as the debris. When the gas speed
approaches the radial speed of the debris, the rate that internal energy and
momentum is transferred approaches zero. To insure that this occurs in the
FIRE code, the accelerations computed by equations (7) and (11) are multiplied
by (udr'u)/udr’ which approaches one for Ugp >> Us and zero for Ugp = Ue

IV. Concluding Remarks

The primary motivation for implementing the modifications described
herein is to simulate the response of a buffer gas more realistically than has
previously been possible. The improvements that have been described relieve
the user from guessing the condition of the gas after the deposition of X-rays
and debris, and provide a closer coupling between the pellet analysis and the
analysis of the gas. The modifications begin to influence the predicted gas
response when the ambient gas density is below about 1017 atoms/cm3.

It has been shown that the deposition of X-rays from an ICF pellet can be
computed within about 10% accuracy by the point source model as long as the
jonization of the absorbing medium is small. This conclusion was reached
after estimating the magnitude of scattered and fluorescent radiation.

Around the pellet, where a large amount of X-ray energy is deposited in a
short amount of time, ionization of the gas Timits the amount of X-ray energy
that can be photoabsorbed. The specific energy of the gas that is computed
during the X-ray deposition was shown to be reduced by up to an order of
magnitude when the effect of ionization is included. Thus, reducing the
absorption cross section to account for ionization results in a smoother

initial temperature profile in the gas than would otherwise be computed. The
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smoother temperature profile often results in a reduced cost of solving the
radiation hydrodynamics equations.

The equations describing the gas response have been modified to include
the influence of the expanding pellet debris. It was shown that a time
dependent ion transport equation must be solved to rigorously evaluate the new
terms. Arguing that the straggling in energy is small as an initially
monoenergetic ion pulse slows down, the time dependence was inferred from the
solution of a time independent transport equation. After fitting the solution
with analytical functions, only a few input variables are required to
approximate the rate that internal energy and momentum are deposited by ions
with an arbitrary energy spectra.
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