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ABSTRACT

Higher order sensitivity terms can be derived by the
utilization of functional analysis and the Green's function
and are explicitly expressed as a combination of the flux,
adjoint flux, and the Green's function, all from the unperturbed
system, along with the perturbation in the transport operator.
A simple neutron attenuation problem is examined to check the
applicability of the first order sensitivity approximation for
different magnitudesof variations. The quadratic approach in a
nonlinear optimization problem is formulated using the results
of the second order sensitivity approximation. It yields satis-
factory results when applied to the NUWMAK inner shield design
for the purpose of minimizing atomic displacements.



A. Higher Order Sensitivity Theory

The method of first-order perturbation theory or variational
principles has been utilized historically in obtaining the sensi-
tivity function for a response R with respect to the data field

{Z}.1'3 The variation in the response, SR, can be expressed as
SR = (82 ,4) - (¢*,6L¢), (1)

where, ¢ and ¢* are forward and adjoint fluxes, respectively, sbL

is the variation in transport operator L, ( , ) denotes integrétion
over the phase space, and Zr is the response function such that

R = (Zr’¢)' Eq. (1) is said to have an error of order 2.

Usually Eq. (1) would be adequate for estimating the variation in
the response provided the perturbation in the data field is small.
However, in neutronics design we often encounter problems that are
not Timited to a small variation in the data field and/or problems
in which the response cannot be linearized with respect to the

data field, where the first order approximation would provide a
poor estimate of sR. In that case, a higher-order approach would
be needed. Unfortunately, the simple perturbation theory and
variational approach fail to give analytic and systematic

solutions for the higher order sensitivity terms.



In another approach 0b1ow4 suggested a differential method

which features the implementation of a direct derivative and
Taylor series expansion of the response. The response R is

expressed as an integral functional of the form

R=f FIz(x), ¢(X)1 dx> (2)

where F is an explicit function of £ and ¢, and x is a point
in phase space. A small perturbation §z(x) is applied to the

system and the variation in response will be

SR

RIz(x) + 6z(x)] - RIZ(x)]

fngx 62()( dx + ?lfﬁ[sz(x)]zdﬂ'... . (3)

Then the rest of the procedure will be the calculation of
derivatives dR/dz(x), dZR/dz(x)z, ..., etc. Thus, this approach
enables us to derive an expression for the variation in response

as a sum of a Taylor expansion. However, there are three questions
concerning the validity of this approach which need to be examined:
(1) The dimensions are not consistent in Eq. (2). (2) The
definition of the derivative is not clear since R is a functional
of £, not a function. (3) It is not proved that the Taylor
expansion of a functional will have the form of Eq. (3) . Without

answering these three questions, one cannot take for granted that

this approach is valid.



In this section we will discuss a more rigorous approach for
obtaining the higher order sensitivity terms. This approach
features the employment of functional derivatives as well as the
functional Taylor expansions. The Green's function plays a
significant role here, Some mathematical background for the
functional analysis will be briefly discussed. The derivation of
the higher order sensitivity terms will be presented in a consistent
manner. Also included is an illustrative example of calculating
the higher order terms for a simple neutron attenuation problem in

pure absorbers, with comparison to the theoretical predictions.

a. General Discussions of Functional Analysis

The definition of a linear vector space, or simply, a vector

space, is an extension of the familiar concept of vectors. Here we

will simply say that a vector space X over a field F is a set of

5,6

vectors, without citing its formal mathematical definition. X

is a real vector space if the field is the familiar real number

field R. A real vector space will usually be denoted by X or Y.
However, Euclidean n-space is denoted by R" and the real line by R.
When X is an inner product space we will denote the inner product
by <,>. A norm on X is defined as a mapping N: X - R, mapping
vectors in X, a vector space over a field F, into real numbers if

and only if

(1) N(x)20 for every xeX, and N(x) = 0 if and only if X = 0



(ii) N(ax) = ]a] N(x) for every xeX and for every acF
(ii1) N(x+y) < N(x) + N(y) for every x, yeX.

N(x) is also called the norm of X and the standard notation
N(x) = [[ x ]|

is used. A vector space X is called a normed space or a normed linear

space if X is normable, i.e., some norm can be defined on the vectors
xeX. A mapping J defined from a subset D of a vector space X into

a vector space Y is called an operator (or a transformation)and is
denoted by J : X»Y or J : D»Y. The set D is calied the domain of J.
The vector space of all operators from X into Y is denoted by

[X,Y]. A real-valued operator, i.e., a member of [X,R] where R

is the real number field, is called a functional. The operator

J : X+Y is said to be
(1) homogeneous if J(ax) = ad(x) and
(i1) additive if J(x+y) = J(x) + JI(y)

for all aeR and all x and y in the domain of J. An additive and
homogeneous operator is said to be linear. By a nonlinear operator
we mean any operator which is not necessarily linear. If X and Y
are topological vector spaces, - where some form of topology can

be defined on the vector space, e.g., measure, norm -, then the

vector space of all continuous 1inear operators from X into Y is



denoted by Ll[X,Y 1. Sometimes Ll[X,Y] is denoted by X* and called
the dual space of X. If X and Y are normed linear spaces and J is
a linear operator from X into Y, then J said to be bounded if there
exists M>0 such that || J(x)||<M||x|| for all xeX. It is well

known that J is continuous if and only if it is bounded. If we

tet ||Jd]] = inf{M :|] 3(x)||<M||x]| ,xeX}, the Ll[X,Y] becomes

a normed linear space. In particular X* is a normed Tinear space
whenever X is a normed linear space. Consequently, Ln[X’Y] is a
normed Tinear space whenever X is a normed linear space, where

Lo [X,Y] denotes the space Ly[X,L  [X,Y]]. This property will

play an important role in generating higher order sensitivity

terms.

In general the concept of the derivative of an operator in
a vector space can be viewed as an extension of the definition of
the gradient for a real-valued function in R" space. There are
two kinds of.derivatives commonly used by mathematicians, namely,
the Gateaux derivative and the Fréchet derivative7. The fundamen-
tal idea of the differential calculus is considered to be the
Tocal approximation of operators by linear operators. Recall that

for a function J : R+R, the derivative of J at f for f in R is

defined as

3(f) = 1im ["(f“tg - J(f)] (4)
£-0



and the Tine
J(F) = 3(F) + 3 (F) (£-F) (5)

is a good approximation to J(f) for f near f. Let h denote a
small increment in f at f. Then the second term on the right

hand side in Eq. (5) is J'(?)-h, which can be interpreted as

an operator J'(?) mapping h to J'(%) (h). If instead we consider
J R2+R, then Eq. (4) no longer makes sense since we cannot add
scalars and vectors. However, Eq. (4) can be generalized for

an operator J : XY where X need only be a vector space and Y a

topological vector space such that

308 (h) = Tim [J(f+th) - J(f) ] Ch

£+0 th

o s J(f+th) - J(f) :

= 1 (6)
£0 [ t ]

for f and h in X and t in R. Eq. (6) 1leads to the formal
definition of the'Géteaux derivatives:

Consider an operator J:X+Y where X is a vector space and Y

is a topological vector space. Given f and h in X suppose

= 13 |J(f + th) - J(f) ‘
DJ(f) (h) llg[ ¥ J (7)

exists. Then DJ(f) (h)eY is called the Gateaux derivative (some



mathematicians prefer the terminology of Gateaux variation or
differential) of J at f in the direction of h and we say J is
Gateaux differentiable at f in the direction h. Also, J is
Gateaux differentiable at f when J is Gateaux differentiable at

f in every direction. In this case the operator
DI(F) : XY

which assigns to each heX the vector DJ(f)(h)eY is called the

Gateaux derivative of J at f. And the operator
DJ: X~[X,Y]

which assigns to feX the operator DJ(f)e[X,Y] is called the

Géteaux derivative of J.

The usefulness of the Gateaux derivative is limited by the
fact that the vector space [X,Y] is not a topological space since
there is no way to define a topology on it. Consequently, we
cannot consider the Gateaux derivative of the Gateaux derivative,
which is an essential necessity in higher order variations. This
deficiency is caused by the weak condition that X need only be a
vector space. For a normed linear space which we are really
interested in, another form of derivatives can be defined:

Consider J :X+Y where both X and Y are normed linear spaces.

Given feX, if a linear operator J'(f)e Ll[X,Y] exists such that



im LLI(F¥h) - J?lf%l-l I MUy (8)
[| h{] -0

then J'(f) is called the Fréchet derivative of J at f.

The operator

J X+L1[X,Y]

which assigns J'(f) to f is called the Fréchet derivative of J.
As we mentioned before, Ll[X,Y] is a normed linear space when X
and Y are both normed linear spaces. Therefore, we are able to
define 4", the Frechet derivative of the Frechet derivative of J.

Clearly
J" XLy [X,Y]
where LZ[X,Yj denotes LI[X,LI[X,Y]] . Consequently, the n-th

Frechet derivative of J is by definition the Frechet derivative

of J(n'l) , the (n-1)-th Frechet derivative of J, and
an) -, XL [X,Y].

The Frechet derivatives have some familiar names in R" space.
Consider a functiona1‘J:Rn+R, the following expression holds:

J (f) (h) = <v(f), h> ,f,heR", (9)

where the vector vJ(f) is the gradient of J at f.



The Fréchet derivative of the gradient of J, for historical

reasons, is called the Hessian of J and denoted by H. If

. pn =9 3J y . phupn.
J : R™R, then WJ (3?; s e s S?h) : R™R"; hence,
223 32 A
aflafl afla?n 1
H (f) (h) = . (10)
32J 32J
Bfnail ainain hn

Also, for f,h,keR", we have

3°(F) (hyk) =<H(F) (h), k >>.

The Taylor's series expansion for an operator in a complete
normed linear space can have several forms. The following
expression, Young's form of Taylor's theorem, will be used in
connection with the Fréchet derivatives. Let an operator J : X-Y

be n times FréEhet differentiable at a point feX. Then
J(F+h) = 3(F) + 3'(F) (h) + 20 (F) (h,h) + ...

+ﬁ¢“%ﬂ(m””m+rwmh (11)

where

1im (el

h+0 | hl] "



10

The materials discussed in this section will be utilized in the
next section for deriving higher order sensitivity terms. The
vector space will be a set of cross sections as a function of
phase space variables, reaction types and nuclides. The main
functional is the response R. Frechet differentiability is assumed

without proof. The following notations are used throughout the

next section:

J'(f) (h)
3"(f) (h,h)
2 "

sd(f3h)
s23(f;h?)

Gnd(f;hn) = J(n)('F) (h,..c,h)s

where J is an operator or functional, f is a vector, h is an
increment in f, and J(”)(f) is the n-th Frechet derivative of J

at f.

b. Derivation of Higher Order Sensitivity Terms via Green's
Function

Let R be the response of interest and R can be expressed as

a functional of the form

R =[ F[Z,cb]dXO, (12)
X

0
where I is the data field and a point in vector space, Xo is a
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point in phase space, and ¢ is the flux which is the solution of

the transport equation:

L(X) ¢ (X) = S(x). (13)

By assuming that R is n-th Fréchet differentiable at r with
variation h inz (i.e., h = s3), the Taylor series expansion of

R in h can be expressed as

§R = R(z+h) - R(z)
= >0 LR, (14)
n=1

where G"R(z;h") is the n-th Fréchet derivative of R at & in the

direction of h.

In fusion reactor neutronics we are usually interested in a
linear functional response of the flux, which has the form
F = Zr¢ with Zn being the response function defined in a detector

domain D. That is,

R =j; Zr(XO)(p(XO) dXo. (15)

The Frechet derivative of R, sR(z;h), can therefore be derived

by differentiating Eq. (15):

sR(z;h) =_/; [o(Xy) sz,.(Xgsh) + z.(X)) se(X sh)1dX,, (16)
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where 5¢(Xo;h) and Gzr(XO;h) are the Frechet derivatives of ¢(XO)
and Zr(xo)’ respectively, at © with the increment h. Here we
have used the important fact that ¢(Xo) is also a functional of &

via the transport eaquation.

Since L. is usually linear to I, i.e., anr(xoghn) = 0 for
n > 2, the n-th Fréchet derivative of R can be easily obtained by

differentiating Eq. (16) n-1 times:

Noro.wly = . n-1 .n-1
§ R(z3h™) “/; n szr(xo,h) s ¢(xo,h ) dxo
n n |
+fo Z, (xo) 8 ¢(Xo;h ) dX, (17)

Hence, the remaining job is to find an expression for the n-th

Frechet derivative of ¢(Xo).

Here we will calculate s" (Xo;hn) by following a procedure
suggested by Dubi and Dudziak8 which utilizes the Green's function
and the adjoint Green's function. The role of the
Green's functions in calculating higher-order sensitivity terms

9

was first pointed out by Albert.” Let us define the Green's

function G(X,Xl) as a solution of the equation

L(X) G (X’Xl) = S(X-Xl), (18)

where X, X1 are points in phase space and 6(X—X1) is the phase
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space delta function. Clearly G(X,Xl) gives the flux at X due
to a unit point source at Xl. Since the transport operator is
Tinear, the flux at Xo due to an external source distribution S(X)

can be presented as

¢(xo) =ﬁ G(XO,X) S(X) dx . (19)

Similarly the adjoint Green's function G*(X,Xz) is defined

as the solution of the adjoint transport equation
" (X) 67 (X,X,) = s(X=X,) . (20)

Therefore, G*(X,Xz) has the meaning of the adjoint flux at X

due to a unit source at X2. The adjoint flux at X  due to an

adjoint source distribution S*(X) is then
* - * * :
$*(x,) L 65 (xS (X) dx . (21)

The relation between the Green's function and the adjoint Green's
function could easily be obtained from the well-known inner-

product relationship:

/);G*(X,XZ)L(X)G(X,XI)dX=ﬁ( G(X,Xl)L+(X)G*(X,X2)dX,

or fx G*(X,Xz) 6(X-X1)dX = j;( G(X,Xl) §(X-X5) dX . (22)

That is,

87 (X)) = 6(X, %) (23)
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Substituting 6" for G in Eq. (19), we get

¢(X°)f[x 67(X,%,) S(X) dX .

The n-th Freéhet derivative of ¢(Xo) is therefore

a”¢(x°:h“) = ﬁ( 5"6*(X,Xo;h") S(X) dX .

From Eq. (25) it is obvious that our problem now is to find

an expression for GnG*(X,XO;hn) .

The definition of the adjoint Green's function,

+ *

L (X)G (X,Xo) = §(X - Xo)’
yields the following expression by differentiating Eq. (26):
*(

LY () ae*(x,xo;h) = - sL¥(xsh) G*(x,xo) .

Now using the fact that Lt s linear in I, we get
6"L+(X;hn) =0 for n22.

Differentiating Eq. (27) once more and using Eq. (28),

we have

L

X) 626*(X,X0;h2) = -2 LY (X:h) GG*(X,XO;h) .

Therefore, a recursion relation can be found in the following

(26)
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form:
Lt (x) a”e*(x,xo;h") = -n sLT(xh) s L G*(x,xo;h"'l) . (30)

Bearing Eq. (30) in mind, we now proceed to evaluate the
first-order Frechet derivative of G* by employing the following

expression:
* - *
G (XZ’Xo) = X1 G (Xlsxo)d(xl - X2) dX1 .

* *
G (X2,X0;h) =.,;1 8G (Xl,Xo;h) L(Xl) G(XI’XZ) Xm

+ * .
'/;1 B(X 4Xp) L7(X)) 86 (X;,X 3h) dX,

+
-j;(l §(X) X,) oL” (X 3h)8 (xl,x )dX,

*
-j;I G (X;,X,) oL (X3h) G(X{.X,) dXq

-ﬁ(l B(XyoXq) oL (Xy3h) 6(XpHX,) dX; . (31)

[}

Similarly for the second-order derivative,

2
526+ (X3X3h%)

nl
,Xo,h )s (X2 - X3) dX2

x\'x\o

2
X2, sh )L(XZ)G(XZ’X3) dX2
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+ 2 * 2
ﬂ (X kg L" (1) 6767 (X, % 302) X,
2

+ *
-%/;2 G(X2,X3) sL (Xz,h)GG (X2,Xo,h) dXz

*
—./;2 G (Xz,Xo;h) 6L(X2;h) G(X2,X3) dX,

dX,dX

19X, . (32)

By looking at the similarity between Eq. (31) and Eq. (32),
our intuition suggests that a general form for the n-th Fréchet

derivative of G* would be
n Ny n '
s G*(Xn+1’xo’h ) = (-1) n:j; ..:1; Pn(xo,...,xn)G(Xn,Xn+1)
1 n

dx dX (33)

1---9X,

where Pn(Xo,...,Xn) is the flux perturbation operator and

is defined as

n
P (XgaeosX )= l ! G(X;_12X;) sL{Xys3h) . (34)
i=1

To prove the validity of Eq. (33), we follow the procedure
of mathematical induction. We already know that Eq. (33) holds
for n=1(Eq. (31) ). Suppose that Eq. (33) is true for n=k, then
for n=k+1,

6k+lG*(X k+1)

k+23Xo;h
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k+1 k+1
~/; G (Xk+19x h ) 5(Xk+1 - Xk+2) ka+1

¢ "
><
>~
+
—

—

k+1

s k¥lo* k1
6 (XpgqsXgsh o) L(X
k+1

X k+1) G(Xk+lsxk+2)dxk+1

+ k#lg* k1
B0y Xpap) U (pg) 657767 (1, % 5hE L)

ka+1

+ K.*
-(k+1{[;k+l G(Xk+1)xk+2) GL (xk+1;h) 6 G

(X Ky ax

kt1°%g3h k+1

kg* .hK : |
-(k+1)‘£k+l 86 (X Xgsh ) 6L(X,4p5h) G

(Xea1 Xir2) Xpqq

DML (k1) ﬁ fk-t-l P(Xg e e X JBX, Xy 4q )l

(Kier 3By Kiyp) Ky X

k+1
(k+1) ﬁ 4Lk+1 Prsr (Koo - - X )6 Xy
k+2

.dX

k+1

k+1’

i.e., Eq. (33) holds for n=k+1. Thus, we have proved that,

by induction, Eq. (33) is true for all positive integer n.
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The rest of the derivation is straightforward. Substituting

Eq. (33) into Eq. (25) and using the characteristic of the

Green's function,

~/;n+1 (X Xnap) SXpg) dX Ly = (X ),

yields:

o1 3" = fxl f e X ) 6 ()

dX;...dx (35)

The n-th Frechet derivative of the response is then represented by

SR(Zh)=(1n- 'f f l(xs-'sx )
n- 1
(X _ (-1)" n Jf J(. Z.(X,)

(Xo,...,Xn)¢(Xn) dXo...dXn . (36)

The first term is called the direct effect which is non-zero only
if the response function in the detector domain is perturbed. The
second term is called the indirect effect or the flux perturbation
term which arises from the perturbation of the flux in the detector

region through the particle transport when the system is perturbed.

Looking at Eq. (36) in the case of n=1, i.e., the first-

order term, we get
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§R(z3h) =ﬁ sz, (X 3h)¢(X ) dX

0

0
- ‘ ./; zr(Xo)G(XO,X)GL(X;h)¢(X) dX, dX

= fxo dzr(xo;h) ) (Xo) dx .
'f s (X) sL(X3h) o (X) dX , (37)
X

which is identical with the result of first-order perturbation

theory or variational principles. Again the physical meaning of
Eq. (37) s clear. The integration over X in the indirect
effect term yields the perturbation of the flux in the detector
region due to a change in the transport operator over all the
phase space, while the integration over Xo in the direct effect
term merely accounts for contributions from any specific variation

of the response function itself in the detector domain.

There are some intriguing aspects associated with the higher-
order sensitivity analysis. First, the n-th order term is
explicitly expressed as a combination of the flux, adjoint flux,
and a detailed Green's function, all from the unperturbed system,
along with the perturbation in the transport operator. Once the
Green's function G(Xl’XZ) is defined for every pair (Xl,Xz) within

the perturbed region, the perturbation can be calculated to any
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degree of accuracy in principle. Also, the additional information
required to calculate the second-order term, i.e., the Green's
function, will suffice to calculate any higher-order terms. However,
the applicability of this approach may be severely restricted by

the fact that the calculation of the Green's function might require
a@ tremendous amount of effort, unless we can obtain an analytic
solution or approximation for the Green's function. One important
observation is that we are not limited to small perturbations

since the Taylor's series expansion is infinite, provided the

expansion converges.

In cross section sensitivity analysis, the first-order term
is Tinear in sL. Therefore, the total cross section sensitivity
s naturally the sum of the partial sensitivities in first-order
analysis. This property often serves as an indication of whether
the sensitivity calculation is self-consistent. However, the
second and higher order terms are no longer linear in sL which

can be seen from Eq. (37) and the definition of Pn' The total
cross section sensitivity of higher-order terms will involve

cross terms from the partial sensitivities and is not merely the

sum of the partial sensitivities.

c. An Illustrative Example

Consider a monoenergetic, monodirectional neutron beam of

intensity S n/(cmz-sec), incident normally on the surface of an
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ifinite planar slab of thickness a. The slab consists of a pure
absorber with the macroscopic absorption cross section =

(Fig. 1.a). The response of interest is taken as the neutron
flux emerging from the slab. Hence, the response function is a
delta function s(X-a) and the response R is ¢(a). The flux distri-

bution across the slab can be obtained analytically as
s(X) =5 e | ogxca . (38)

For any two points X1 and X2 inside the slab, the Green's

function is

B0y - X)) gor x

G(XI’XZ) e

1 %o

0 otherwise. (39)

Now consider a perturbation applied to the system with a

uniform increment of I such that £ -+ $+h. Thus, we have
sL (X) = h for OsXsa. (40)

From the previous section, the change in the response,sR, can

be expressed as

&R = Z ?1]-.- s"R(z;h"M)

n
Xn: (-1)"fx /;( Z(Xo )P (Xgseen X )6(X ) dX L.odX
n 0

(41)
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where Pn is the flux perturbation operator given by

PalXgree-X) = | T 6txgquxpetiny) (42)

i=]
Let (6R)n be the n-th order contribution to SR such that

R =D (sR)
n

Upon utilizing Equations (38) to (42) and the following

expression
/x zr(xo) e(xo,xl) dx, = G(a,Xl) = e'z(a'xl) , (43)
0
we get
afa a .
- Ne.=Za . N {X = (Xq=X,)-
(sR) = Se h/;ﬁn...fxze 1~ (X=X,

°(Xn-1 - Xn) - Xp

dxl"‘dxn
Tlra./ra v/’a
R{-h ce dX,...dX_.dx_ . 44
(-h) 0 Xn X2 1 n-1""n (44)

The integration can be carried out by using the following identity

a a
n-1
f f Xm ...an_l ‘Gl—-l—)-r (a - X ) , (45)
Xn XZ

which can be proved by mathematical induction. Thus, we have

A

a-X)nldX
[
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3 1 n-1
.l: i Y dY

= an
[ (46)
That is,
(sR), = R(-ha)"/n! , (47)
and
R =R) _ (-ha)'/n:. (48)

n=1
Let 5RN denote the prediction by N-th order sensitivity
theory with the definition

SRy = i (8R), = R zh: (-ha)"/n! . (49)
n=

n=1

Theoretically the perturbed response can be found as

RI -z a
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which is identical to Eq. (48). It is obvious that the change
in response with system perturbation can be accurately predicted
by the sensitivity theory via Green's function approach for this
simple system. The relative difference between the perturbed
response predicted by the N-th order sensitivity approximation,

RN, and the true perturbed response, R;rue’ is therefore a
function of N and ah:

d=(R -R" /R
N true true
(-ah)"/n!
%———1 . - (52)
(-ah)"/n!
n=0

Table 1 tabulates the values of d in units of percentage as a
function of N and ah with the blanks representing those d less
than 1%. A graphical presentation is shown in Fig. 1.b where

a range between 1% and 100% for d is used.

From Table 1 one can observe the range of applicability
of the N-th order sensitivity approximation for a simple particle
attenuation problem as a function of ah. For instance, the
first-order sensitivity theory would be accurate enough to predict
the perturbed response if the perturbation ah is 0.2 and the

error tolerance in predicting the response is 2%. On the other
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hand, one would have to use the fourth-order approximation to
satisfy the same error tolerance if ah were 1.0 since the first-
order approximation will yield an error of 100%. Recall that

ah = (za) (az/z), where za is the thickness in mean free path
(mfp) and az/z is the relative change in the cross section. In
the cross section sensitivity analysis for this simple system,
the applicable range of the fractional cross section change can
therefore be expressed as a function of thickness, in units of

mfp, and the order of sensitivity approximation.

Discussion of the simple flux attenuation problem in a
system of pure absorbers can be easily extendgd to shielding
analysis in fusion reactor designs. As reported by Abdoulo, it
is found that the total energy leakage to the superconducting
toroidal field coils (TFC) is exponentially attenuated as a
function of the thickness of the bulk shield in a tokamak fusion
device. Also, Wu and Maynard11 find that both the neutron energy
leakage to the magnet and the atomic displacement in the aluminum
stabilizer of the magnet, in the NUWMAK design, are most
sensitive to the tungsten 14 MeV (n,2n) cross section which is the
most significant neutron removal cross section at that energy.
Let % 3 represent the transfer cross section from energy group i
to j and let group 1 be the 14 Mev group. Then the removal cross

. r
section for group 1, ¢ , can be expressed as
1
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or=ot-_cr =ca+Zo
1 1 11 1 13’
3>1

t and ca represent total and absorption cross sections,

where g
respectively. For a shielding problem where the 14 MeV group has
the dominant effect, as in the case of radiation damage to a TFC
in tokamak fusion reactors, the sensitivity analysis would have

similar characteristics as the pure absorber if g is replaced by

r
o1 » provided the in-group scattering (cll) is negligible. Thus,

the result from the simple flux attenuation problem, Table 1 and
Fig. 1.b  could provide a basis of checking the range of appli-
cability for the N-th order sensitivity approximation when the

system is perturbed in fusion reactor shielding design.

B. Second Order Approximation in Nonlinear Optimization

The theory of higher order sensitivity approximation
discussed in the previous section can be applied to an interesting
problem of finding an optimal set of variables that will maximize
or minimize a given detector response in fusion neutronics design.
An optimization procedure is reported by Greenspan et a1.,]2 through
the use of the second order sensitivity approximation, where the
sensitivity terms are derived from a differential approach

4

suggested by Oblow.  In this section we will utilize the results

formulated in the previous section for the optimization problem in
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source-driven systems.

Consider a nonlinear real-valued function y = f(x). To find
a point x = x* extremizing y the necessary condition is that
y'(x*) = 0 for a constraint-free problem. For the case that an
analytic expression of y'(x) for all x is available, the problem
reduces to zero-finding for y'(x), which is considered to be an
easier task. Unfortunately, that is not the usual case. An
alternative way is to use Taylor's expansion and retain the first

two terms:
- _ e 1 .» 2
8y =y -y, = fxex +5f(x) (6x)° , (53)

i.e., a quadratic approximation of y around Xg The condition

of optimum is then
%*

asy)/a(sx) =0 atx =x , (54)

which enables us to find the optimal step size
* 1 n

(x) = -f /f . (55)
and the change in y is

sy = -(f )2/2F . (56)

*
The iteration procedure continues for a new point X =%y ¥ (sx)
until a pre-determined stopping rule is satisfied and the optimal

is found. Thus, the quadratic approximation has the capability of



28

optimally determining the step size for the next point in the
iteration process while the first-order approximationfails to do
so. Consequently, one has to take some educated guess regarding
the step size in the linear approximation. A small step length
obviously would require more iterations to reach the optimal point
and a large step length may overshoot the solution. Thus, the

main impact of the quadratic approximation on optimization problems
is its ability to reduce the number of iterations although some
additional effort for calculating the second-order derivative is

essential.

There is a very interesting result regarding the difference
in the change of y. Let the optimal step 1ength in Eq. (55)

be applied to the linear approximation:

Y=Y, ® f'(xo) (x = x;) . (57)

By Eq. (55),

(6Y)lst order '(fl)z/f“ ' (58)

Therefore, for the same optimal step length, the prediction of
sy in the Tinear approximation is exactly twice that of the

quadratic approximation, i.e.,

(8¥)1st order = 2(8¥)2nd order - - (59)
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This identity could serve as a basis for checking the consistency
in our calculations of f, f', and f as well as the question of

whether the quadratic approximation is appropriate.

For a function of many variables, the above iteration
procedure of one variable should still be adequate by replacing
f| and f" by the gradient vector and the Hessian matrix, respec-
tively. As stated before, the formulation of functional analysis
could be viewed as a natural extension of analysis for functions
of many variables. It is therefore to be expected that, for the
optimization problem of a functional, some forms of gradient-Tike
and Hessian-1ike operators would exist in the mathematical
formulations. The next section presents a rigorous derivation

of the second order optimization procedure.

a. Mathematical Formulation of Quadratic Approximation

In the previous section, we derived the formulation of the
n-th Frechet derivative for a response R as a functional of the
data field I in the direction h. The mathematical expression is

given in Eq. (36). Consider the cases n=1 and n=2:

sR(z3h) f 8T, (Xg3h)e(X,) dX

ff Zn(X)6(Xg,X)8L(X5h)8(X) dX, dX, ( 60)

and
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2 . S . .
§“R(z;h,h) 2./;rA: GZr(Xo,h)G(Xo,X1)6L(X1,h)¢(X1) dXodX1
0

X
271 (61)

Suppose that we are interested in the second-order derivative in
the directions of h1 and hz, where h1 and h2 are not necessarily
the same, then the simple expression of Eq. (61) will not be
suitable for 62R(E;h1,h2). However, 62R(Z;h1,h2) is still attain-

able upon following the same steps taken in deriving Eq. (36).

Here we will only present the final result without showing the

detailed steps:

2n(-.
§ R(z,hl,hz)

- 1}5; ./;1 (62, (X3 hy G (XX, LUX;3h,)

* O (Xoshp)G(XaXy) L(X shy ) be(Xy)dX X,

# 6Ly 3h5)G Xy X)) 8L (Xy 3hy ) 3o (X, ) dXpdx,
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FISLT (K 3 )o ™ (X;) = 62,08, 3hy)1SL(Ky5h, ) 36(X,)

dXodX; . (52)

Let S(y) be the sensitivity vector and le(yl,yz) be the
Hessian of R at I in the directions of hl(yl) and hz(yz) with the

following definitions:

SR(z3h) =.[; S(y) h(y) dy (63)

and

200 . _ ’

3 R(E’hl’hz) '[ f le (yl9y2)h1(.yl)h2(.y2)dyldst (64)

vy
v1 72

where y, Y1» and yo are points in the phase space.

Clearly S and H are the analogy of the gradient vector and Hessian

matrix, respectively, of the Euclidean space.

Comparing Eq. (60) and Eq. (63), we get

9z (X) * L(X)
S(y) '-'_/;( [—8%7)—- ¢ (x) —gm] qs(X) dx . (65)

Similarly, from Eq. (62) and Eq. (64), we have

= * L(X) * L(X)
le(yl’.Yz) "L [‘I’l (Xsyl) %—-Y—ZT. +\P2(X"y2) %{E"ﬂy‘]

o(X)dx, (66)
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*
where wi(x,yi) s the solution of the following adjoint transport

equation:
+,. az_(X)
vyt ol (X) . * r
L (X)‘Pi (X,.Y.i) =33 Y. ¢ (X) - 'BE'CYT)— . (67)

b. Methodology of Nonlinear Optimization

Let us concentrate on the practical problem of finding the
optimal distribution of nuclide densities that will maximize or
minimize the response of a given detector. The system variables

are the nuclide density distributions, N = (Nl(r), Nz(r), cees
Ni(r) ) and the response is denoted by R. The problem is then

Minimize R(N) ,
or Maximize R(N) . (68)

Let h denote the variation of N. In general, R is a nonlinear
functional of N. The quadratic approximation of R yields, by

utilizing Eqs. (63) to Eq. (67):

SR(N)

R (N+h) - R(N)

I
f Si(rih;(r) dr
7 Jr

1

I
2 D B K PR PRI
S qEaJr Jr 1 J
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where

0%

= r * oL .
S.i(Y‘) = < ¢, m?)> -, W¢>, i=1,2,...,1

Hij(r,r') =< Wi*(X,r), gﬁ?%;ry s (X) =

! sk : sl
+<\gj*(x,r ) N m ¢ (X)>, 1,,]-'1,...,1 (71)

< » > denotes integration over the velocity space (E,g) and

wi*(X,r) is the solution of the equation

* + * 3z,.(X)
LX), (X,r) = g'ﬂ-ﬁ% ¢ "0 - (72)

If the condition is constraint-free, Eq. (69) is the basic

equation for determining the optimal density variations
hi(r), i=1,...,I. The condition for the optimal density variations

can be obtained by requiring

a(aR)/ahi =0,

Then
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The solution of this set of equations gives the optimal density
variations which eventually, by iterating the procedure, would

bring the optimal density distribution that extremizes the response.

Let us pause for a moment and count the number of transport
calculations required for each iteration step. From Eq. (73),
we know that the availability of Si(r) and Hij(r,r') is a
necessity for each iteration step. Si(r) is attainable from
Eq. (70) which implies that two transport calculations for
the forward and adjoint flux are inevitable in the linear approxi-
mation. It is a common practice to divide the spatial dependence
into a certain number of spatial zones, say M, in the transport
calculation. It is also clear that Eq. (71) and Eq. (72)
account for the additional number of transport calculations which
is IM. Hence, the advantage of the quadratic approach - being
able to converge to the optimal solution more rapidly - could be
Jeopardized by the tremendous amount of additional effort required
for obtaining the Hessian which, for most practical problems, is
prohibitively expensive. Fortunately, some remedies are available
to reduce the number of additional transport calculations and will

definitely make the quadratic approach reasonably practical.

There is an inherent constraint on the variations of the
nuclide densities, namely, the total volume occupied by all the

nuclides of interest at any given location is kept constant despite
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Using Eq. (75), the first-order term in Eq. (69) can be

rearranged:

I
> ﬁsi(r)hi(r) dr

i=1

-1

=§1j; Si(r)hi(r)dr +j; S;(r)h (r)dr
I-1

=Zfr[si(r) - bi(r)SI(r)] h; (r)dr
i=1 |

-1 -
=Z f Si(r)hi(r)dr,' _ (77)
r
i=1

~

where, Si(r) is called the substitution sensitivity vector and is

defined as

S4(r) = S:(r) - by(r)S(r)

~ A

e . L
<t 3‘N7‘)‘1.rr > -< ,—(—”N:’ 5> (78)

where

~

BZr BZ.Y‘ Bzr
IR RO = o (79)
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the density variations. Let N? (r) denote the maximum possible
density for nuclide i at r, i.e., Ni(r)=N?(r) when Nj(r)=0 for all

j¥i. Also let bi(r) represent Nf(r)/N?(r). Then the constraint

can be expressed as

=1
or
I-
Np(r) + b (PIN;(r) = N3(r), (74)
1=
which Teads to
I-1 '
hi(r) == 3~ bilring(r) . (75)
i=1

Then our original unconstrained problem will have a new form:

Min(Max) R(N)

I
o]
subject to :E: Ni(r)/Ni(r) =1, (76)
i=1
It is a common practice in mathematical programming to reduce
the number of independent variablesin a problem with equality
constraints by either direct substitution if possible or by the

Lagrange multipliers technique13. Here we will use a direct

substitution to eliminate the dependence on NI(r).
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A

sl _ L aL
aNi(r) - aN. (] - bi(r) aNIlri (80)
i=1, ...,I-1

Rearranging the second-order term is more difficult and

tedious. The final result is shown as follows:

I
A ijZ=1 ﬁj;-”ij(r,r )hi(r)h.j(r')dr dr'

I-1
=Z j;,j;‘ F*ij(r‘,\r")h1.(1r~)hJ-(r")dw dr' , (81)

i,j=1
where ':'ij is ¢alled the substitution Hessian and is defined as:
3L

Ak .
P>y, W >, (82)

Hij(r,r) <y, aNJ.

~%

* Yo
where Yo=Y - bi\yI and is the solution of the equation

+r ok oL (x) 32, (X)

L7y L (X,r) = m‘b (Xx) - W i=1,...,I-1.  (83)

The quadratic approximation of R(N) with I-1 independent variables

Nys.w.sNy_; is then expressed as

6R(N) = R(R + h) - R(N)
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I
%.2 f’[H (r, r .r)hj(rl)dr dr . (84)
i

,J=1

Then a similar optimum condition can be obtained in Eq. (73)
with the replacement of S{ and Hij by §1 and Qij’ respectively.
Notice that we have reduced the number of additional transport
calculations from IM to (I-1) M in Eq. (83). For a system of
many spatial zones, this is still not considered a practical

approach.

A further improvement in reducing the number of transport
calculations can be obtained by employing the concept of the
optimal-gradient method in mathematical programmingl3' The gradient
algorithm is by far the most widely applied method of solving
optimization problems. The basic idea comes from a result of
variational calculus which shows that the smallest distance
between two points on a multidimensional surface results from
following the gradient path. Consider a simple mathematical

programming problem: Min f(X) where f is a real-valued function

X
and X is a n-dimensional vector. Let vf denote the gradient of f.

The gradient algorithm suggests that, for p-th iteration step at

P+1

xP, the next point X can be chosen as
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P+1

xPHl < P

+kve(xPy . (85)
where k >0 for maximization,

< 0 for minimization.

If k is small, the discrete algorithm will closely approximate
the gradient path, but convergence will be slow since the gradient

must be calculated many times. On the other hand, if k is large,

convergence will initially be very fast, but the algorithm will

oscillate about the optimum.

The dilemma in selecting an adequate k for each iteration

Teads to the development of the so-called optimal-gradient method.

P

For the p-th iteration step at X', the step size k is chosen by

solving a one-dimensional minimization problem:

win £(x° + k v £(xP) ),
k

that is, to find an optimal k* that will minimize f along the

P, If f(XP+1) can be known analytically

P+1)

gradient direction at X
as a function of k, then k* is the solution of af(X /3k = 0.
Otherwise, the one-dimensional search techniques, e.g.,
dichotomous search, equal-interval search, Fibonacci search,
golden-section search, and random search, can be applied to search

for the optimal step size k*. Unfortunately, every one-dimensional
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search method needs to know the exact value of f(X) for all X

and is simply not applicable to reactor systems since each f(X)
evaluated at X requires exactly one transport calculation. However,
the quadratic approximation for the response R(N) does provide a
basis for analytically selecting an optimal step size along the

gradient direction.

Let us turn our attention back to the original problem of
extremizing R(N). Upon adopting the concept of the optimal-
gradient method, we are able to define a step size ay along the
gradient direction s ;(r), i=1,...,I-1, such that for each step

the variation in nuclide densities hi(r) is solely determined by

hi(r) = a;S5(r), 1= 1,...,I-1 . (:86)

The quadratic approximation in Eq. (84) therefore has the

following expression

I-1
sR(a) =Z aif §?(r) dr
r

i
i=1
J./:/.H -(r, r S )Sj(r ) drdr
,Jl

The second order term in Eq. (87) can be further simplified by

(87)

defining
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¥3(X) f #3(%r) §;(r) dr, (88)
r

and therefore l}:(x) is the solution of the equation

~d : (X) X
L' () =ﬁ [gk ’Yf)d, (X) %] S;(r)dr (89)

Combining Eqs. (82) , (88), and (89) , we get

ff (rr S(r)S()drdr'

= 1 " 3': 2 2 1 1
-7 E :a.a. fffwi r), TR CHA >S1-(Yj)Sj(r )drdr
1] . J
1] rJr
+ A A 1 ]
ff<“’3 xor aN3 L,. 6> S;(r)S;(r )drdr

o1 ~ 5L 2
T 7 Za.a. ‘/‘,<‘*’1’ ’aN.lﬂ5¢>sj(r Jdr
i 14 r i

Noj—

E f<w N r >SA1.(r) dr
i%5 Jp

1J
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f< ' ¢>s (r)dr
With the following definition of Fii.

~
~

_ oL

Eq. (87) can be formulated as

I-1-
§R(a) =Z f §§(r)dr
j=1

i,j=1
The condition for the optimal step size can be obtained by applying

the equation 3 (6R)/8a1=0 to Eq. (91), then
f ; (r) dr + ajj; Hw(r)SJ(r)dr-On 1,...,I-1
j=1

(92)

The solution of this system of I-1 equations gives a set of

optimal step sizes (a;,...,a;_l) along the gradient direction
(§

120 e ’§I-1) for the optimization process which would most

efficiently arrive at the optimal solution that extremizes the
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detector response of interest. This approach has the most

significant advantage in both efficient convergence to optimum

and requiring a minimum number of transport calculations.

latter point can be verified by looking at Eq. (89) which

The

shows that only I-1 additional transport calculations are needed

instead of (I-1)M.

To illustrate the optimization procedure discussed above, we

consider a two component problem, i.e., I=2. Thus, there is

only one independent variable. From Eq. (92) we get

x f§12 (r)dr

al = ~

§1(r) f §12 (r)dr

Hence hl(r) = alsl(r) = -

and the variation of R in the quadratic approximation is

U§12 (r)dr] 2
(3R) = :

quadratic =~ ¥ 2 >
Zlel(r)Sl(r)dr

while the linear approximation yields

[/ szar]?
S1 (r)dr
(sR) = - = ’

Tinear f Rll(r)él(r)dr

/’ ﬁn(r)§1(r)dr

(93)

?

(94)

(-95)

(96)
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i.e., (GR)linear = 2(6R)quadratic’ which is merely a characteristic

of the quadratic approximation as mentioned in the previous

section.

The problem associated with the existence of inequality
constraints in a nonlinear optimization is more difficult to
handle and will not be addressed here. However, in the optimiza-
tion problem we discussed, there are some inevitable inequality
constraints. In particular the nuclide density distribution is
expected to have some definite upper and lower limits such that
Npin(r) < N(r) ¢ No_ (r). Theoretically, the inequality con-
straints can be converted into a set of necessary conditions by
the Kuhn-Tucker theorem in an inequality-constrained problem.
There are many gradient-related techniques which have been
proposed to solve constrained optimization problems. In general
they can be divided into two categories: (1) boundary-following
methods, e.g., feasible-directions method and gradient-projection
method, (2) penalty-function methods. A general discussion of

these methods can be found in Reference 13.

C. Application of Optimization Method to NUWMAK Shield Design

In the previous section we outlined the procedure and
mathematical formulation for a nonlinear optimization problem
through the use of second-order sensitivity theory, i.e., the

quadratic approximation. Historically, there is only one
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attempt, made by Greenspan et a].lz, to determine the optimal
density distribution for a mixture of iron and water as shielding
materials in a typical radiation shielding problem. The shield
is 100 cm thick and is optimized to provide minimum displacements
per atom (dpa) at the back of the shield when a source of 14-MeV
neutrons impinges on the front side. In this section, the
optimization method associated with the quadratic approximation
is applied to the inner shield of a conceptual tokamak fusion

reactor design-NUWMAK.

The description of the overall system design, as well as
the neutronics analysis of NUWMAK can be found elsewhere14.
One peculiar characteristic of the NUWMAK design which directly
influences the inner blanket and shield design is its compactness.
The space from the plasma chamber first wall to the dewar of the
superconducting magnet at the midplane is only 105 cm thick. In
addition, there is 20 cm near the first wall to be reserved for
the Li-Pb blanket so as to maintain minimum thermal cycling of
the structure. Thus, a space of only 85 cm is actually available
to provide adequate shielding for the protection of the super-
conducting magnet from the environment of intense radiation
(~5 MW/m2 neutron wall loading). In this regard, the use of
metallic tungsten is essential to attenuate sufficiently the

neutron and gamma radiations emerging from the blanket since
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tungsten has a relatively high atomic density, 0.0629 x 1024 atoms/
cm3, considerably higher than most of the high Z shielding
materials, (e.g., 0.0335 x 1024 atoms/cm3 for lead). The
schematic of a one-dimensional cylindrical model based on the
plasma minor radius is shown in Fig. 2.a for the inner blanket/
shield of NUWMAK. A lead zone of 5 cm near the magnet is
retained for the purposes of reducing the gamma heating and dose
rate in the magnet. In the actual NUWMAK design, a 40 cm-thick
tungsten zone followed by a 40 cm-thick boron carbide zone is
used in the w+B4C zone. The radiation damage results for this
configuration are (1) the maximum atomic displacement rate in

the aluminum stabilizer is 2x10'6 dpa/yr which necessitates
periodic annealing for the resistivity change approximately

évery two years, and (2) the dose rate in the epoxy-based super-

insulators is 3x107 rad/yr. These should Tlast the plant 1ife.

The primary motive for an optimization study in the design
of the NUWMAK inner shield is to find an optimal combination of
W and B4C throughout the 80 cm-thick w+B4C zone that will either
minimize the dose rate or the dpa rate. The shield zone is
divided into 8 intervals of 10 cm each which are numbered as
intervals 1 to 8 with interval 8 being the one nearest to the
Pb zone. Transport calculations, both forward and adjoint, are

performed with a P3S4 approximation using the ANISN15 code. A data
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Tibrary with 25 neutron and 21 gamma groups is produced by group-
collapsing of the DLC-41/VITAMIN-C libraryl®. A second-order
optimization computer code, OPTIMAL, is employed in the optimi-
zation process. The optimization code consists of three major
parts: (1) A revised ANISN that will solve the usual forward

and adjoint transport equations as well as the generalized
adjoint transport equation (Eq. 89 ) where the adjoint distri-
buted source is angularly dependent and may be negative, the
latter could Tead to negative fluxes and necessitates some

modifications in flux convergency testing. (2) A sensitivity
module which executes Equations (78) and (90). (3) A

management module which handles the input and output and performs

the actual iteration process.

From Eq. (89), it is realized that only one additional
transport calculation is required for each iteration since there
is only one independent variable, i.e., the spatial distribution
nuclide density for either W or B4C. The variable can also be
converted into the volume percent occupied by either material at
a particular interval. The starting point for the optimization
process is the final design of the NUWMAK inner shield, i.e.,
40 cm-thick tungsten followed by 40 cm-thick boron carbide.
Table 2 presents the summary result of the detailed step-by-step
process that will minimize either the dpa rate in the Al stabilizer

or the dose rate in the epoxy-based superinsulator. A set of
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inequality constraints is applied so that osvisloo, where Vi is
the volume percent occupied by W in interval i(i=1,...,8). The
R values in Table 2 are un-normalized. The conversion factors
can be easily obtained by realizing that Step 1 represents the
initial condition and therefore has the responses equivalent to
a dpa rate of 2x10"6 dpa/yr and a dose rate of 3x107 rad/yr.
de and dR2 represent the results calculated by Egs. (96) and
Eq. (95), respectively. thrue is the difference in the
response between two successive steps. Fig. 2.b shows how
the response decreases as a function of iteration steps where
dpam_in is the dpa rate for the last iteration step which

gives the optimal combination of W and B4C that minimizes the

dpa rate. The case for dose rate is given in Fig. '2.¢c7 The

optimal distributions of the B4C volume percentages for the

conditions of minimum dpa and minimum dose are given in Fig.2.d,

with the initial distribution shown for comparison.

Some observations can be made from the results of the opti-
mization processes shown in Table 2 and Fia. 2. For the
dpa as the response of interest, the dpa rate reduces to almost
half of its original value after just one iteration step. It
eventually shrinks to about one-fourth of the original dpa after

completion of the optimization process. For the dose rate, the

first iteration step also gives a reduction of one-half, although

the subsequent iteration steps show little improvement on
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minimizing the dose rate. The distribution of the W and

B4C combination that gives the smallest dpa rate clearly
demonstrates the dominance of tungsten due to its

effective shielding ability for high energy neutrons through the
(n,2n) and inelastic scattering reactions. Nonetheless, the
presence of B4C near the magnet is essential for

absorbing Tow energy neutrons which also have significant impact
on the total dpa. As a matter of fact, the dpa rate, in
relative units, for a shield consisting entirely of tungsten

is 4.8 which is larger than that of the original design where
the relative dpa is 3.7. As far as the dose rate is concerned,
tungsten has Tess effect than in the case of the dpa rate and
the importance of B4C increases accordingly. ‘Recall that the
total dose rate is the combined effects of neutron and gamma
radiation.  For the initial material composition the total

dose of 1.443 is the sum of 1.137 and 0.306 coming from neutrons
and photons, respectively. After one iteration step, which
raises the tungsten volume percentages from 0 to 30-40% for
intervals 5 to 8, the gamma dose reduces to an almost negligible
value of 0.05 while the neutron dose is 0.68. Thus, it is reason-
able to suspect that the original shield combination, 40.cm

W followed by 40 cm B4C, does not have enough high Z materials
in the back of the shield to absorb the gamma radiation, even

though the 5 cm-thick Pb zone near the magnet has been retained.
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An important conclusion can be drawn from Fig. 2.d. For
a8 combination of W and B4C as a shielding material, the optimal
combination that will minimize the radiation damage parameters
in the superconducting magnet may vary from one response to the
other. In the practical design of reactor shielding, the
optimization process should apply to the most crucial response
which is the Timiting factor for the reactor performance. In
addition, the resources problem and economic considerations, such
as the high cost of tungsten, should also be taken into account

as one of the constraints in the shielding design process.

There is one significant and intriguing value of the quadratic
optimiiation method that is worth mentioning. The optimal-
gradient method enables us to find the optimal spatial distri-
bution of the material densities (or, equivalently, the volume
fractions) with only one additional transport calculation per
iteration step for a 2-materials problem. On the other hand, most
of the perturbation-related and variational methods can only
deal with a certain number of variables (for instance, the zone
thickness of W in the W+B4C system) and obtaining a detailed

spatial distribution is by no means an easy task.

There are some restrictions imposed on the application of the
optimization procedure discussed above. First, the choice of

the starting point is of prime importance in solving the nonlinear
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optimization problem. An ill-chosen initial guess may lead to a
Tocal maxima or minima instead of the global one. Thus, a good
understanding of the problem fs essential so that the best
educated guess can be taken before proceeding to the actual
optimization process. Secondly, the response must be a slowly-
varying functional of the variables and saddle points should not
exist, in order to converge to the optimal solution efficiently.

In principle a truly quadratic function only needs one step to
arrive at the optimal point. Thus, for a functional that is
approximately quadratic the convergency rate is expected to be
very fast. As for a saddle point where the second-order derivative
vanishes, the step size is infinite and some precautionary steps
must be taken to avoid any confusion in computer programming.
Finally, the constraints, equality or inequality, cannot be

too complicated, otherwise the simple formulation discussed in
Section B would not be applicable and the nonlinear optimization

problem may become too difficult to deal with.

The optimization process for the W and B4C shielding system

presented in this section can be generalized to a system com-
prising other candidate shielding materials, for instance, a

stainless steel and B4C system, an iron and water system, a
tungsten, B4C, and lead system, etc. One potential application

of the quadratic optimization methodology is in the design of the
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fusion-fission hybrid systems where the spatial distributions of
structural materials, fertile materials, fissile materials,
reflectors, and neutron multipliers can be optimized to achieve

the design goal for a specific hybrid system.
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Table 1

Percent Difference in Predicted Response between N'th-order

Sensitivity Result

-2
-10
-27
-56

-100
-166
-262
-397
-584
-839
-1180
-1640
-2250
-3060
-4120

[N

16
36
73
135
237
396
639
1000
1530
2300
3390
4920

jw

-3

-23
~50
-101
-192
-346
=601
~1010
-1650
~2630
-4120

T_R! T
and True Result, (RN true)/RtruexlOO%

Ordexr of Approximation

4 5 & 1 8 2 1L
2
6 -1
15 -4
34 -9 2
73 -23 6 -1
146 =51 15 -4
280 -107 35 -10 3
5le =216 77 -24 7 -2
916 -~-417 161 -54 16 -4 1
1580 =777 323 =117 39 -11 3
2660 =1410 628 -243 83 -26 7
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(a) A System of Simple Neutron Attenuation
in a Slab of Pure Absorber.
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(b) Graphical Display of d, (RN R true)/R true’ 25 @
Function of N (Order of Sensitivity) and ah (Cross

Section Perturbation) for a Simple Neutron

Attenuation System.

Fig. 1
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plasma| vacuum | Li~Pb| W + B4C Pb | magnet

thickness (cm) | 113 15 20 80 5

radius (cm)

0 113 128 148 228 233

(a) Schematic of a one-~dimensional cylindrical

model for NUWMAK inner blanket/shield.
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(d) spatial distribution of volume percent occupied by B4C

for initial, minimum dpa, and minimum dose conditions.

Fig., 2





