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Introduction

The temperature response of a material exposed to thermonuclear radiation
may be determined when the time and space dependent energy deposition func-
tions are known. Typically, the Green's function is used to determine the
thermal response of the first wall materia].(l) The object of this paper is
to discuss a new method of using the Green's function to solve the heat con-
duction equation which avoids the singularities unique to this problem. A
comparison is made between this calculation and a previous one(z), which did
not treat the singularities, and corrections to the previous ca1cu1ation(2)
will be presented.

Finally, an approximate analytical solution for the non-linear heat-
conduction equation, in which thermal properties vary with temperature, will
be discussed.

Direct Deposition Model

The general heat-transfer equation is given by(3)

pc-%% - VokVT = g(x,t) (1)
where: p is the density of the material
c is the specific heat
k is the thermal conductivity
and these properties vary with temperature. For the case of constant thermal
properties, this equation reduces to:
2

T _ .
000 5t = Ko ¥ T = a(x,t) (2)



where p., g, kg are independent of temperature.

The general solution for the temperature rise due to any deposition
function can be obtained from the theory of Green's functions providing that
the thermal properties do not vary with temperature and assuming that the

Green's function is known:

T(x,t) = [ [ L q(x',t") G(x,t,x',t"') dx'dt’ (3)
) 1 PC
t' x
where: q(x,t) is the volumetric energy deposition rate

G(x,t,x',t"') is the Green's function.
For a semi-infinite medium, with insulated boundary, the Green's function

is given by(3)

(x=x
G(x,t,x"',t') = 1 {e do(t-

2/ma(t - t")

“where a is the thermal diffusivity.
Unfortunately, problems arise when we try to perform the last integral in
Eq. (3) either analytically or numerically. The Green's function possesses a
singularity at t' » t and x' + x. A method will be discussed to avoid these
singularities when the integration is done analytically or numerically.
First, if we want to integrate analytically, then
t 0

T(x,t) = [ 1—C G(x',t') G(x,t,x',t') dx'dt' .
t'=0 x'=0 P

At t' » t the Green's function has a singularity. To avoid that we integrate

t-¢ t
fron [+ [ and take the 1imit when ¢ » 0, i.e.
t'=0 t-e



t-¢
T(x,t) = [ J %E G(x',t') G(x,t,x',t') dx'dt’
0 x'

t
+ Lim [ %E q(x',t') G(x,t,x',t"') dx'dt' .
e+0 t-e x'

It can be shown that

x-x')2

S 8(x - x' (see Appendix A)

Lim

e 2vVmae

since

t-¢
T(xt) = [ [ 1C d(x',t") G(x,t,x',t') dx'dt’
0 x'

(6)
t
+ [ [ = q(x ,t') Lim G(x,t,x"',t') dx'dt' .
t-e x' e>0
Then the second part of the last integral can be written as:
t ® _
= [ dt' | =< 9 (x',t') [8(x - x') + &(x + x')] dx' (7)
t-¢ 0°
t L] L]
= tf dt' Lq(x,t') + q(-x,t")] (8)
-€

where: q(-x,t') = 0.

Equation (8) then becomes

t €
= [ dt' q(x,t') = q(x,t) [ dt = ej(x,t) =0
t-¢ t-¢

as € + 0. Substituting this result into Eq. (6) we find



t
T(x,t) =

€

atr [ L

e g(x',t') G(x,x',t,t') dx' . (9)

O, 1
O— 8

The last integral can be performed analytically for reasonable deposition
functions q(x,t), and we can then take the 1imit when ¢ » 0.

In most practical cases, it is difficult to find an easy analytic depo-
sition function so that performing this integration analytically becomes very
complicated. This usually means that in order to accommodate different
spectra, it is necessary to do the integration numerically. Assuming that we
divide space and time into many divisions, the solution for the temperature

increase is given by:

t
n [+
—~ 1 - 1 1 ' ' 1
T(xn,tn) = t§=0 Wy At 5'53 q(x ’ti) G(xn,tn,x ’ti) dx (10)
.i

where: T(xn,tn) is the temperature at any point X, and time t,
w; 1s a weighting factor depending on the method of integration
At; incremental time.
In this last integral the Green's function possesses a singularity at
t% > tn. To avoid this singularity, first we integrate from t; =0 up to

ti = t,.1 and the Tast term in this integration will be treated separately,

i.e.,



n-1 o0
T(xn,tn) = t§-0 Wi At g dx"EE q(x',t!) G(xn,tn,x',t%)
i=
+ W At Lim / == é(x',t;) 1 (11)
t.ot 0 ° 2Vna(t - t.)
n n i
(xn-X')2 (xn+X')2
1altn-tii - 4altn-ti§
x {e + e }odx'
As before,
tn-1 o 1 .
T(xn,tn) = t!fo W; At g dx BE'q(X ’ti) G(xn,tn,x ’ti)
! (12)
7 v 1 b '
t oW, At é dx 3 q(x ,tn) {a(xn - x') + 6(xn + x')
tn-1 ©®q .
T(xn,tn) = -E Wi At / P q(x ’ti) G(xn,tn,x ’ti) dx
ti—O 0
(13)

+ oW, At q(xn,tn) .

Care should be taken in choosing the time increments. For more accurate
results the last time increment should be very small, i.e.

Atn <K Ati s i#n
and

t t - At

n-1" "n n
so that the approximation of the Green's function by a §-function is

reasonable.



Thus, by this method we avoided the Green's function singularities and
for any given deposition function we can calculate the temperature increase at
any point and at any time.

The solution of the last equation (13) is contained in the computer code
A*THERMAL (4) When the deposition function, q(x,t), is directly used in the
solution it is called the direct deposition method. Since the solutions for
different models of the energy deposition discussed by Hunter(5) in the
computer code T*DAMEN(6) did not contain corrections for these singularities,
we have included the complete and correct solution for any deposition function
in the code, A*THERMAL. (4)  The modified methods will be discussed here and
the difference in the results obtained directly from the deposition function
will be illustrated.

Simple Deposition Model

For Tow energy ions, where the energy loss can be expressed with a

modified Lindhard model, the volumetric energy deposition rate can be written
as, (2)

a(x,t) = f(t) g(x) (14)

A
g(x) = QE— - A2x) x < X nax
and } (15)

=0 X > xmax

where f(t) is the incident particle flux

X is the maximum range of the jons

max

A1, A2 are constants.



The temperature rise due to this deposition function can be obtained by
performing the integral,
A
T(x,t) = [ f(t') [ (Er - A2x') G(x,t,x"',t') dx'dt' . (16)
t' x'
To solve this integral by methods developed in this paper, the temperature at

any point x, and time t, 1s given by

tn-1 Xmax 1 A1
T(xn,tn) = .f W f(t1) At, -I BE'(ET" AyX ) G(xn,tnx ,t') dx
t _ti x'=0
(17)
*max A1
t oW, At f(tn) %1m / (ET'_ A2x') G(xn,tn,x',t') dx' .
t +tn 0
The second integral can be reduced to
Xmax A1 . .
=W, At f(tn) é (ET - Ayx ) {6(xn - x') + 8(x_ + x')} dx
where §(x + x') = 0 since x' > 0
A
= W, At f(tn)(E;" Azxn) Xy < Xooo
} (18)
=0 X > X nax

Then the complete solution is given by



t X
n-1 max 1 A1
T(xn,tn) = t?= | W, f(ti) At x'£0 BE'(ET" A, x ) G(xn,tn,x ,t') dx
i
(19)
A

Wy Atn f(tn)(f;'- Azxn) Xn < X ax

+ {
0 xn > xmax

Uniform Deposition Model

The work of Frank et al. (6) considered the response of an infinite half
space subject to a uniform spatial and temporal energy deposition as shown in
Fig. 1. The solution was only given for the resulting surface temperature as
a function of time. Hovingh(7’8) used the same deposition assumption, but
evaluated the temperature numerically with the Chart-D Code. The response at
any time and position was derived by Hunter,(l) but the numerical solution for
the time integral used in the T*DAMEN code did not treat the singularities
correctly. In this study, the complete solution using numerical integration
for the time integral to allow different spectra is derived below. The

deposition function is given by

. F
q(X,t) = -5—2%%

where: F(t) = incident energy/unit area
8(t) = deposition region
K = deposition duration.

The temperature rise is then give by
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)
1 f t' H ] [ ] ]
T(x,t) =E{. E(S—(_')T dt éG(x,t,x ) dx' . (20)
The spatial integral can be reduced to(3)
8 1 § - X s +
[ G(x,t,x',t") dx' =5 ferf (——2—) + erf (—>2X )] (21)
0 2/a(t - t7) 2/t - t")
where: erf = error function.
Then,
11 f(t') § - X § + X '
T(x,t) =5 == [ Lerf (—————————) + erf (————>2—)] dt
2 oC 31 KS(ET) 2/ =T 2/a(t = )
(22)
k = t' t<K .
Now to integrate numerically with respect to time
t
(x_,t ) 1 n;l 1 W, At f(ti) [erf % + erf ° X
T(x , =5 =
Tz e TR 8t 2/a(t - t;) 2/alt - T,
(23)
f(t,) § - X § + X
11 n . n n
+ 5= w oAt Lim  {erf ( ) + erf (
2 pc tp8(t,) "n T tot 2/alE = t;) 2/alt -

since

10




erf(=) =1 if X, <8

§ - X
Lim erf ( ) =
Lty 20l =) (o) = <1 if X, > 8
S + Xn
and Lim erf ( ) = erf(e) =1
t1.+tn Zv’a?tn - ti;
and the last term reduces to
1 f(tn)
= EE WnAtn _—(_)_K(S tn Xn <8
=0 X >6 .
n

This result could also be obtained directly from the Green's function since

§ §
Lim [ G(xn,tn,x',t%) dx' = | {6(xn - x') + 6(xn +x')} dx' =1
t1.+tn 0 0

Then, the temperature rise is given by

L1 el £(t,) ort | 5= x ) : 5+ x
T(x ,t ) =5=— L w, At erf + erf
TN Zec g 1 Ks(t ) 2/alE - T;) 2/alt, = t;)
1 f(tn) (24)
p—C Wn Atn K3 tn Xn < 8
+
0 Xn >8§ .

11



General Deposition Model

In this model, first developed by Hunter,(z) the deposition function is
transformed into the general form of a polynomial with coefficients determined

by the energy of the ion, i.e.,

a(x,t) = f(t) g(x) (25)
where
G (26)

and C; are in general functions of time. The solution for the temperature

will be given by

C, x' 1) G(x,t,x',t') dx' dt' . (27)

n ™
(]

1
T(x,t) = [ f(t') [ =
CORFINE 1)

The spatial integral becomes the evaluation of the following sequence

C. i i 2
5, = 7} [ e N w2 e Ay ax (28)
™
where
A= Zv'a‘t-tli .

The solutions for these S; integrals are given in reference (9). The

complete solution for the temperature rise is then

T(x,t) = [ dt! f%%—l ;%7 b Ci Si evaluated at limits of x' . (29)
T

12



The spatial contribution is contained in the evaluation of the function
pX CN SN at the limits of the deposition region while the temporal contribution
can be done numerically to allow for arbitrary spectra.

In the general deposition profile, the deposition function is divided
into three regions as shown in Fig. 2. Each region has different coefficients

Ci's. The temperature rise can be written as

' 4 4
T(x,t)=fdt'ﬂ1—)—1——{z C,. S. + I C,. S.
oC m qeg TN j=g 21 711 II
: } (30)
+ I C,: S
i=0 3i 79 I
where: C17 = the coefficient of the deposition function in region I

31'1 = the value of the function S; at the limits of region I.
It is now possible to integrate numerically over time by the methods

developed in this paper. The temperature rise at any point Xp and time t, is

given by
t-1 4
T(psty) =4 T woatg f(t) [T Cy S, { e
TP t=0 i=0 M
4 4 |
+ £ C,. S. \_ . + I C,. S. ‘ .
j=0 21 71 x =Xy j=0 11 71 1 x =X

1 > ) ] 1 ]
t oS v At f(tn) t1Tt [ g(x*") G(xn,tn,x ,t') dx' . (31)
i n

The second integral can be written as:

13
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M T i
o "o A%y ft,) {( g LGy x4 [ 1 Coi X
i Xy 1
M
X 1
+ [ C11 x'") 6(x'—xn) dx’
X, i
H
4 i
150 C31 xn 0 < xn < xM
21
=<5 W Aty () [ }
0 otherwise
i
? C21 xn xM < xn < xH
+ { }
0 otherwise
.i
? Cli xn xH < xn < xL
+ 1. (32)
0 otherwise

Results and Conclusions

In this section, we compare the differences between the methods developed
in this paper with previous calculations.(152) Two examples are considered in
this study. In these examples we calculate the thermal response of a materi-
al, for example a first wall in an inertial confinement fusion reactor, due to
a given spectrum of incident ions.

In the first example we considered hydrogen ions with a 5 keV Maxwellian
spectrun incident on an aluminum wall. Figure 3 shows the energy deposition
rate of hydrogen ions into aluminum. It can be seen that the range of hydro-

gen is about 0.3 micron. Figure 4 shows a comparison of the time dependent

15
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temperature response of the Al surface as predicted by the A*THERMAL and
T*DAMEN codes. The same deposition function given in Fig. 1 was used by the
two codes. The difference between the two codes with respect to the peak
temperature rise at the surface is about 30%, being lower for the T*DAMEN
code. The direct deposition model, developed earlier in this paper, was used
to compare with the general deposition model of T*DAMEN.

Figure 5 shows a comparison between the codes A*THERMAL and T*DAMEN both
using the simple deposition model discussed before. A*THERMAL, using the
correct solution of the simple deposition model, yields almost the same result
as the direct deposition model shown in Fig. 4. Again the T*DAMEN estimation
is about 30% lower than that predicted by the A*THERMAL code. As mentioned
before, these differences arise from the improper treatment of the Green's
function singularities when integrating numerically over time.

Figure 6 shows a comparison between the direct deposition model and the
correct solution of the simple and the general deposition models, developed in
this paper. The agreement among these different models is fairly good except
that the simple deposition model underestimates the temperature rise at later
times because of the simplicity of the model.

A comparison between the codes A*THERMAL and T*DAMEN in calculating the
temperature rise at 0.5 micron (beyond the end of range of the hydrogen) from
the Al surface is shown in Fig. 7. The comparison is made using the same
model, i.e., the simple deposition model. It is noted that at x = 0.5 micron,
both codes agree fairly well. This can be explained by noting from Fig. 3
that there is no deposition at x = 0.5 micron and all hydrogen ions are

stopped within a distance of 0.3 micron. This means that

18
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q (x = 0.5 micron, t)

i
o

and the correction due to the Green's function singularity goes to zero.

Another example to illustrate these differences uses Ta ions incident on
an Al wall. The tantalum spectrum is assumed to be 905 keV Maxwellian.
Figure 8 shows the energy deposition rate as a function of distance into Al
wall and Fig. 9 shows the deposition rate as a function of time. In this
calculation of the temperature rise of Al, it is assumed that no phase change
takes place, i.e., as if Al were to stay as a solid; phase change and vapori-
zation are currently under consideration. Figure 10 represents the tempera-
ture rise of an Al first wall surface as calculated from the codes A*THERMAL
and T*DAMEN. In these cases T*DAMEN overestimates the temperature rise by
about 20%, compared to an underestimation of about 30% due to incident hydro-
gen ions. This is again because of the improper treatment of the Green's
function singularities. Figure 11 shows a comparison between the direct
deposition model and the modified general deposition model in the A*THERMAL
code. The agreement is very good.

Approximate Solution for the Nonlinear Heat Conduction Equation Using the

Methods of Green's Function

In this section, we consider the case where the thermal properties vary
with temperature. In most cases, it is a good approximation to assume that
the thermal properties, i.e. thermal conductivity and specific heat vary

linearly with temperature,

k = ko(l + bT) (33)

22
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C = Co(l + aT) (34)

where a, b are constants. If the density p varies too with temperature, we

can use
pC = poCO(l + alT)
Substituting Eqs. (33) and (34) into Eq. (1) yields

aT .
pCO(l + aT) 5 - kov-(l + bT)VT = g(x,t)

3T 2. . . T
pCo - kov T = q(x,t) + [bkov (TvT) - apCOT =T
or  oC. 21 k v2T = §(x,t) + bf, (x,t) - af,(x,t) (35)
03t ~ %o X, 1\%s 2\%s
where
£,(x,t) = kv+(TVT) = ko[TVZT + (V)27 (36)
_ oT _
fo(x,t) = oC T = = oC.T T . (37)

Using first order perturbation methods(10511) the solution of Eq. (35)

can be obtained by analogy to the solution of Eq. (2). That is

T1(x,t) = T(x,t) + bF,(x,t) - aF2(x,t) (38)

1{

27



where T(x,t) is the solutijon for the heat conduction equation with constant

thermal properties, i.e.

TOt) = [ f G Gre gty axdt (39)
t' x' o
Fr{x,t) = a {. i' Ve(T VT;) G(x,t,x',t') dx'dt’ (40)
Folxst) = [ Tp(x',tt) T (x' ') Glx,t,x',t") dx'dt’ (41)
t' x'
k
where a) = B%g

Since Fy(x,t) and Fp(x,t) are functions of T1(x,t) which is not known,
these integrals cannot be performed. However, it is a good approximation to
set Ty(x,t) = T(x,t) in these integrals, i.e. the solution for the same
equation but for constant properties. This solution T(x,t) is usually known
exactly for many cases in heat conduction.

So, substituting Ty(x,t) = T(x,t) in Egs. (40), (41) yields

F

R

¢

(x,t)

1 [ ve(TVT) G(x,t,x',t') dx'dt' (42)
Xl

o,

R

Folx,t) = [ [ T(x',t') T(x',t') G(x,t,x',t') dx'dt' . (43)
t' x

To simplify the term ve(TVT) in Eq. (42), we make use of the vector

relations(13)

Vepa = avy + PVea

28



GVe(TVT) = Ve(GTVT) - TVIVG

also
J GVe(TVT) dx' = [ ve(GTVT) dx' - [ TvIvG dx' .
vol. vol. vol.
But
[ V(GTVT) dv = ¢ GTVT ds
vol. surface

assuming that we have an insulated face, i.e. VI(0,t) = 0. Then,

J V(GTVT) dv = ¢ GTvT ds = 0 .
vol.

So, the function Fy(x,t) reduces to

JOT(x',t') VT(x',t') Ve(x,t,x't') dx'dt’ (44)
X

which is now easier to calculate. Substituting in Eq. (38), the first order
solution to account for variation of thermal properties with temperature is

given by
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Tl(x,t) = T(x,t) - bo [ ] T(x',t') vT(x',t') vG(x,t,x',t') dx'dt’
.tl i
' (45)
[ T(x',t') T(x',t') G(x,t,x',t') dx'dt' .
Xl

Now to solve the last equation numerically using the techniques discussed

earlier, we will integrate both integrals numerically over time from t; = 0 to

ti = th_1, and the last term will be treated separately, i.e.
tn-l
Fl(x st )= zow, At [ T(x',t') vI(x',t') VG(x,t,x',t') dx'
n n t ___0 1 1 ]
i X
+ Lim w_at [ T(x',t') vIvG dx' (46)
n-m?d,
t_i ->tn X

= eeee + W oAt [ T(x',t') VT Lim VG dx'
n“n’,
X t1.+tn

from the theory of &-functions:
Lim VG » Vé(xn - x")
ti+tn
Fl(xn,tn) = eeee t WAL [ T(x',t") vT(x',t") VG(xn - x') dx'
J f(x') v§(x - x') dx' = vf(x)
Fl(x t) = ceee + W, vt V(T(xn,tn) VT(xn,tn)) (47)

n"-n

from vector re]ationships(lz)
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v(asb) = (a<v)b + (bev)a + ax(vxb) + bx(vxa)
last two terms equal O for one dimensional geometry, i.e.

V(TeVT) = TeVVT + VTVl

= VT + ()2

and VT = %T-T(x,t) - d(x,t)/ko

Substituting in Fy(x,t), yields

tn-l

Fl(x £ ) = L ow, at, [ T(x',t') VT(x',t') VG(x,t,x',t') dx'
n’'n toog 1T
i

owo At {[%; T(x ot ) Hx st,) - -

And for the second integral, i.e.

[ T(x',t') T(x',t') G(x,t,x',t') dx'dt’
X

Wi Aty [ oT(x',t") T(x',t") G(x,t,x',t') dx'
’ (49)

+ Lim owo oAt [ T(x',t') T(x,t) G(x,t,x',t') dx'
n?,
t].+tn X
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F2(xn,tn) = _E W. At. i T(Xi’ti) f(xi’ti) G(Xn’tn’xi’ti) AX;
i i

+ Lim w At f. T(x',t') T(x',t") G(x st %' t") dx!
t1. ->tn X

eee t WAL i. T(x',t') T(x',t") 5(xn - x') dx'

Folxpatp) = eeee +wp ot T(xoot) Tx ot ) . (50)
And finally the temperature at any point Xps and time t, for linear variations

of thermal properties can be given by
Tl(xn,tn) = T(Xn’tn) - bFl(xn,tn) - aFZ(Xn’tn) . (51)

However, in the solution for T{(x,t) we do not have to evaluate both
functions Fy(x,t) and Fp(x,t). It can be shown that the sum of these two
functions, i.e. Fi(x,t) + Fp(x,t) is a solution for a medium in which the
thermal properties, specific heat and thermal conductivity, vary in the same
way. That is, this is the solution for constant thermal diffusivity a.

The solution for constant thermal diffusivity, but with C and k varying
with temperature in the same way, can be shown(3) to be of the same form as
that for constant thermal diffusivity where both C and k are constants. The
initial and boundary conditions will be changed.

Suppose

aT K 2

Cyzp - kg VT = q(x,t) (2)
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has the solution T(x,t) with the boundary conditions,

T(L,t) = H
T(x,0), h .

To get the solution for the equation

oC 3L - vekvT = §(x,t) (1)
where
C/C0 = k/ko =1+ T (where u is either a or b)

Co and k, are calculated at any arbitrary temperature Toe If we write

.
T' =] (1 +uqT)dT (52)

TO

where T, is any arbitrary temperature, one can easily show that the equation
satisfied by T' is obtained from (2) on replacing T by T', providing that the
initial and boundary values of T', say h' and H', are obtained by setting h
and H as the upper limits of the integral.

So, the solution T'(x,t) also is equal to:

T'(x,t) = F

x,t) + F_(x,t) . (53)

1 2

Since the values of T'(x,t) are easily obtained, it is only necessary to per-

form one integral Fq(x,t) or Fp(x,t) to get the solution T1(x,t) that we are
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looking for, i.e.

T, (x,t) = T(x,t) - bFl(x,t) - aF2(x,t)

1
= T(x,t) - b[T'(x,t) - F2(x,t)] - aF2(x,t)
Tl(x,t) = T(x,t) - bT'(x,t) - (a - b) F2(x,t) (54)
or Tl(x,t) = T(x,t) - aT'(x,t) + (a-b) Fl(x,t) . (55)

Now, only Fi(x,t) or Fo(x,t) need to be evaluated. This is useful
especially when one of these functions gets complicated as in the case of a
non-insulating face of the first wall.

In some cases, the variations of thermal properties with temperature may
be very Targe over the range from room temperature up to the melting point and
these variations must be taken into account. Problems involving phase trans-
formations might account for large variations since, most of the time, the
thermal properties undergo a wide variation at the transformation temperature.

As an example to jllustrate the methods discussed in this paper, consider
the case of hydrogen ions incident on Al as a first wall. The thermal proper-
ties of Al, i.e. specific heat and thermal conductivity, are fitted Tinearly
with temperature. Figure 12 shows the temperature rise in the Al surface with
and without the variation of thermal properties with temperature; there is
about a 10% decrease in the maximum temperature when considering the variation
of thermal properties with temperature. At lower temperatures, the differ-

ences are very small, and the variations of thermal properties with
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temperature can be neglected (Fig. 13). At higher temperatures the differ-
ences become larger and the variations of thermal properties musf be included.
Conclusion

The temperature rise due to ion energy deposition into a first wall
material has been calculated using the methods of Green's function. A new
method has been developed to avoid the singularities associated with the
Green's function. Several models for calculating the temperature increase are
discussed using this new method. A Tlarge difference in the temperature rise
in the regions where there is an energy deposition is noticed between the
model calculation and a previous similar calculation where the singularities
of the Green's function have not been treated properly. An approximate solu-
tion for the non-linear heat-conduction equation in which the specific heat
and the thermal conductivity vary linearly with temperature is discussed. The
effect of the variation of the thermal properties over wide temperature

fluctuations could be substantial and should be included.
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Appendix A

To show that the Green's function for the thermal response of a semi-

infinite medium behaves 1ike a &-function, consider the function

2
1 %

™

A(x) = s b =4a(t - t') .

We want to show that

Lim A(x) = &(x)

b0
i.e.
2
L1m-f%: e* /P §(x) .
b+0 vmb

To evaluate the total area under the curve of this function, i.e.

[ ] © 2
[ A(x) dx = [ Lo x/b gy

-0 - 00 }/;T—B-

L

substitute y = x2/b dy = 2x/b dx, i.e.

Substitute
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? A(x) dx

/b

1 1
-1}
Jr 2

where I' = gamma function(13)

Q) = /v

i.e.
?m A(x) dx =1

or ? -f%: e-x2/b dx =1
R AL

which is equivalent to [ &(x) dx = 1.
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