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Abstract

A model for the ion distribution function in the central cell and barrier
of a tandem mirror with an inboard thermal barrier is presented. The model is
based on collisional distribution functions obtained from the Fokker-Planck
equation with a pitch angle scattering operator. The rate of ion trapping in
the barrier and the trapped ion density can be estimated; numerical results

are given for a particular example.



I. Introduction

The thermal barrier(l) is a region of reduced magnetic field strength and
density between the end-plug and central cell of a tandem mirror. The thermal
barrier allows the electrons in the plug to be heated to a higher temperature
than those in the central cell and consequently permits one to obtain an
electrostatic potential peak in the plugs even when the plug density is less
than the central cell density. This greatly improves the Q (ratio of fusion
power to total injected power) and reduces the need for high magnetic fields
in the end-plugs. These improvements are a significant advance in the tandem
mirror confinement scheme.

Successful operation of the thermal barrier requires that the density of
trapped ions in the barrier be kept small by some pumping mechanism which
either removes them from the plasma, as in drift-orbit pumping,(z) or converts
them back to passing ions, as in neutral beam(3) or RF pumping.(4) Questions
of interest include the resulting trapped jon density and the rate of ion
trapping in the barrier, which affects the required pumping power and the
barrier potential.

In this paper we consider a simple (and somewhat phenomenological) model
of barrier pumping and calculate the ion distribution function in the barrier
and central cell using the square well approximation and a pitch angle scat-
tering collision operator in the Fokker-Planck equation. The results of the
calculation are in reasonable agreement with Monte-Carlo calculations of
Rogn]ien(s) for charge exchange pumped barriers.

II. The Model

The magnetic field strength and electrostatic potential profile along a
field line from the central cell through the barrier and into the plug are

shown schematically in Fig. 1. The potential and magnetic field determine a
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Fig. 1. The electrostatic potential and magnetic field strength
in an inboard thermal barrier.
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pitch angle egb in the barrier such that ions with pitch angle 6 > egb are
trapped and 8 < egb are passing. Using conservation of total energy, e, and
adiabatic invariance of the magnetic moment, yu, ezb maps into a pitch angle
e;b in the central cell, where ions with pitch angle & > e;b reflect off the
barrier peak field and with 8 < e;b penetrate into the barrier as passing
ions.

The ion distribution function, F, is determined by the solution to the

Fokker-Planck equation, which may be approximately written as(6).
V2

— (sin 8 -%) = —-%—— sin e , (2.1)
1

where v is the speed, Dl is the transverse diffusion coefficient in velocity
space, and q is the source function in velocity space. The source is intro-
duced in order to make F stationary in the presence of losses, and is taken to
be isotropic in the central cell and zero in the barrier. We assume that the
bounce frequency for trapped (or passing) particles in the thermal barrier is
much greater than the collision frequency. Consequently, the particle motion
is assumed collisionless. The parallel motion is described using guiding
center theory with the magnetic moment, u, treated as a constant of the motion
(i.e. an adiabatic invariant) along with the total particle energy, E. The
ion distribution function is assumed to have relaxed to a collisional distri-
bution since the equilibrium Tasts for times long compared with the mean col-
lison time. The distribution function F is therefore taken to be constant
along a particle orbit, which is determined by E and u. Hence for passing

ions:

Fo(e%) = F (eP) (2.2)
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where 6¢ is the pitch angle in the central cell of an ion which has pitch
angle oD in the barrier; Feo and Fy, are the jon distribution functions in the
central cell and barrier, respectively.
Equation (2.1) in conjunction with boundary conditions determines the
pitch angle dependence of F; the energy dependence in the central cell is

taken to be Maxwellian:
F (6%E) =F (%) e € (2.3)

for all 0 < eclg n/2. The assumption that FC(eC,E) can be separated as shown
in Eq. (2.3) is made for convenience and has not been Jjustified; it seems
reasonable, however, since one expects the ions to be roughly Maxwellian
except in the tail near the loss-boundary for ions escaping through the end-
plug.

We consider first the central cell and let:

Fc(ec) = . (2.4)

c c _
Fl(emb) Fz(emb) =0 , (2.5)
_C = 0 N (2.6)
39



s =0 . (2.7)
6¢=0

The solution to Eq. (2.1) in terms of Fy and Fp is then

F1(8€) = ¢; In ci?ﬂ—gé—) (2.8)
sSin emb
Fo(6%) = ¢, In cos (0°/2) .7 (2.9)

cos (e;b/Z)

In the barrier region, we take the ion source, q, to be zero for eb > egb.

The solution to Eq. (2.1) is then:

b
tg (6,/2)
c, In —————il——i , eb < eb < eb
t b mb 0
b tg (67/2) (2.10)
Fo(e7) =
b 0 . og <P <2
where the boundary condition
by _
Fb(eo) =0

has been imposed. This represents a crude modeling of the effect of barrier
pumping. The velocity space diffusion in the central cell is towards e;b;
ion motion parallel to B carries this into the barrier where it appears as a
“§-function source" at ezb (see Fig. 2). The subsequent velocity space

diffusion from ezb to eg causes ions to be lost at 68.
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Fig. 2. Schematic representation of the ion pitch angle distribution function
in the central cell and thermal barrier.



ITI, Particle Current Balance

In the previous section, three coefficients (cl,cz,ct) are used to ex-
press the ion distribution functions in different regions. These coefficients
are related through the requirement of a balance between the input and pumpout
particle currents. The particle diffusion current from trapped in the central

cell to trapped in the barrier can be written as:
Jl =n;n H3 (3.1)

and the diffusion current from passing in the central cell to trapped in the

barrier can be written as:
J, = n, n H4 . (3.2)

Here n. is the central cell ion density, ni is the density of the anisotropic
part of the trapped ions in the central cell, and n; is the density of the
anisotropic part of the central cell passing ions (see Fig. 3). The coeffi-

cients H3 and H4 are:

c c
7 VC cos 6, w Dl (uc) -E/Tc
H, = , = [ ] [ ——— e du
37V W 372 o 5 . c (3.3)
c m c c
In (ctn —5—) - Cos 6,
c c “E/T.
W1 z Ve c 1 - cos 6 ] T Dy (uc) e i
4 "2V 7 372 c c n c
e In cos? EEE + sin? EEE ’ :
2 2 (3.4)

using the distribution functions in section II. Here Vo is the volume of the
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Fig. 3. TIon distribution function in the thermal barrier and central cell.
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central cell, Di (uc) is the transverse diffusion coefficient in velocity
space, which is proportional to the density n., and T. is the central cell ion
temperature.
Next we define a current Ji which is the end loss current that would re-
sult if there is no end-plug. In this case the end loss rate is determined by

scattering from trapped in the central cell to passing, at which point the

ions are immediately Tost. Thus:
(3.5)

We use JL as a normalization current and write the barrier pumpout current,

Jt, as:
J, = JL/I . (3.6)

Equation (3.6) defines I., which is a figure of merit for the barrier.

Clearly, we want I. large. Since

Jt = Jl + J2 (3.7)

o

cos 9
_ mb
then J]. ————I';——-JL
c (3.8)
). 1 - cos emb 5
2 Ir L -

Equation (3.8) assumes that the central cell ion source is isotropic in ve-

lTocity space. Combining Eqs. (3.8), (3.5), (3.1), and (3.2), we can express

1 1. .
n1 and n, in terms of Ne:
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c
1 cos 6 b
ny ='———_TE— n. (3.9)
1 - cos 6° H
1 _ mb 3

1 1 1 1

ne =Ny +n,+n3+n, (3.11)
where n% and ni are isotropic parts of the ion density in the central cell.
The density ng + ni can be written as:

b
1 1 ®° tg (60/2) _E/TC
Ny +n, = 4r [ V2E ¢ In E————T;——JJ e dE (3.12)
0 tg (emb/2)

and the barrier pumpout current can be written as:

" -E/T
¢ v

du
b b (3.13)

where ¢, is the barrier potential relative to the central cell, Vp is the
volume of the barrier, and e/m is the ratio of charge to mass of ion. Using

Egs. (3.13), (3.5), and (3.6), we can write Eq. (3.12) as:

° _ tgep/2  -E/T,
J dE V2E 1In [ B ] e
0 tg e ,/2
1 1 _ mb
Ny +n, = ~ - 'E/Tc n. Hsy . (3.14)
rv, | (Dl (ub))/n e du
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An expression for the figure of merit, I., can now be obtained. We sub-

1 1
3 2

into Eq. (3.11), and solve for I.:

stitute Eq. (3.14) for ng + nj, Eq. (3.9) for n1, and Eq. (3.10) for n

= c c 1
I, =cos g + (1 - cos emb)'ﬁ_ + H (3.15)

© __ tg(ep/2) | -E/T_
¢ J[dEVEIn[—F—Te

V. cos 8 0 tg (e, /2)

where H™ = y mb mb

[Tn (ctn (e;b/Z) - cos e;b]

(3.16)

]
/- (2e/m) ¢

Now we make some approximations in order to simplify Eq. (3.16). The
collisional scattering from passing to trapped orbits in the barrier comes
primarily from the region near the magnetic field peak Bnp where ¢, is near
zero. This is because the density and therefore the collision rate is larger

there than near the barrier minimum. Thus in Eq. (3.13) and in Eq. (3.16) we

b
1

A result of this approximation is that I. is relatively independent of YR

approximate DY by Di and replace the lower 1imit on the integration by zero.

which is in reasonable agreement with the Fokker-Planck ca1cu1ations(7) of the
barrier. The only ¢, dependence left in I is contained in the
b b
In [tg (60/2)/tg (emb/Z)] term.
The barrier potential ¢, is an input to the above analysis. We calculate
¢p in the usual manner(l) by assuming quasi-neutrality and a Maxwell-Boltzmann

relation for the electrons. In our analysis, the ion distribution function in
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the thermal barrier is modified; this has some effect on ¢pe Thus we have

3
/ Fb d Vi,

My

ee¢b/TC

and n, = n.

where we have taken Tic = Tac = Tes for simplicity. The result is

v 5 cos 6°
- (o 2 1 mb
¢p = Tc In { TV, /7 7372 e
c mb c.
[1In (ctn-—g— ) - cos emb]
(3.17)
b
(e .)
oo cos2 -J%E —E/TC Vb
x [ [ dE v2(E - e¢b5 n E__—f—_TT_J e v K1}
0 cos (eo) c
Va
where
o -E/Tc
K=/ dE e fﬁg {(-2) /b =X 1In (Y€ + ¥C = X) (3.18)
0

+2 {/b-x-/cIn[2 (b -x +/C - x)]

- /b 1n {2 /b Ib - 2/c (Ve +ve -x) + (Ve + T x4
YC +Yc - x

X=Hmb
f—LP T} + BT X In (/T + /T b) | .
/¢ + V¢ - x "

]
o

X
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In these expressions,

- E - edy,
= —5 ,
b
E - ed.
ol =—B——— . (3.19)
o
Lo E - edny
mb me

where ¢. and B. are the electrostatic potential and magnetic field in the
central cell.

The barrier parameter 9y is often defined as the ratio of the total
density in the barrier to the passing ion density.(l) With our model this can

be calculated. The result is:

o b tg (98/2) sin eg —E/TC
| V2(E - e, ) dE [cos 6, In (——————) - In (———)] e

b mb b . b

0 tg (e b/2) sin 6.,

=1+ m m
% “ b b b BT Yy

é (1 - cos emb) v2(E - e¢b5 dE 1n [tg (60/2)/tg (emb/2)] e +'V: K

(3.20)

IV. Numerical Results

Numerical evaluation of the integrals in Egs. (3.16), (3.17), (3.18), and
(3.20) allows us to calculate values for the figure of merit I., barrier po-
tential ¢4, and barrier parameter g,. Table 1 shows some results for a
barrier mirror ratio of 10 for various assumptions about the magnetic field By
and potential ¢g at which the trapped particles are pumped. Of course, one

cannot choose By and ¢ separately; they are related through the electrostatic
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Table 1

various values of $g and By

Parameters I., gy, and ¢p for Bpy/By = 10, Vo/Vp = 5 and

%0 ¢
By/By (units of T.) I 9h (units of T.)
- .1 1.52 1.21 -7.35
9.9 op/2 5.0 2.20 -3.70
op + .1 6.68 2.79 -3.00
- .1 3.87 1.48 -4.5
5.5 ob/2 6.90 2.60 -3.0
op + .1 8.60 3.50 -2.5
-0.1 11.4 4.36 -1.55
1.1 op/2 13.4 6.32 -0.9
op + .1 14.6 7.33 -0.6
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potential profile in the barrier. This, however, is outside the scope of this
paper, but is treated in a separate paper.(8) In this work, we merely make
some choices for ¢ to determine the sensitivity of the results to o0

Inspection of Table 1 shows some interesting results. As one changes the
"pumpout point" (By,¢g) from near the barrier peak (bmbs¢mp) to the barrier
minimum (Bb,¢b), the factor I. increases, which implies a decreasing pumping
current in the barrier, and the pumpout parameter gy also increases. This
suggests the gradient of the trapped ion distribution function in the barrier
is becoming smaller, thereby reducing the diffusion in velocity space. A
smaller gradient implies that the distribution function extends over a broader
range in pitch angle for the barrier trapped ions. This effect increases the
trapped ion density, which is indicated by the increasing Ih.

The barrier pumping current obtained here is greater than that obtained
by Rogn]ien(5) from a numerical solution of the Fokker-Planck equation. The
difference can be ascribed to differences in how the source was treated. In
Rognlien's work the ion source was in the middle of the passing particle part

of phase space in the barrier (v, = 0). In our work, the source is isotropic

1b
in the central cell. The diffusion is towards the pitch angle boundary e;b as
shown in Fig. 2. The central cell trapped ions have to diffuse all the way
to e;b before they can enter the barrier; at this point they appear in the
barrier at the boundary between passing and trapped ions. Consequently, they
get trapped in the barrier much more easily in this model than in Rognlien's
model.

For a good thermal barrier tandem mirror, one wants the actual end loss
current much Tess than the "non-plugged" end loss current (perhaps by a factor

of 50 or so) and the barrier pumping current much less than the end loss

current. This says one wants Ir > 50, which is much above the values given in
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Table 1. At the same time, one wants g, small (~ 2) in order to get a good b
and have an effective barrier. These goals can be obtained in principle, but
at a much larger central cell to barrier volume ratio than the value of 5 used
in Table 1.
V. Summary

A model for the jon distribution function in the central cell and barrier
has been presented. This model assumes the distribution function is
collisional with boundary conditions determined by the requirement of a
particle current balance. The effect of pumping in the barrier is treated
somewhat phenomenologically by the requirement that the trapped ion distri-
bution function vanish at a pitch angle for trapped ions. This model allows
the barrier pumpout current and trapped jon density to be calculated. Numeri-
cal results are given for a particular example. The results show trends which
are in agreement with simple physical intuition, but the model requires more

refinement before one can have some confidence in the quantitative estimates.
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