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Abstract

The electrostatic potential profile in the thermal barrier is calculated
using a collisional model for the ion distribution function. It is seen that
this model gives a continuous potential profile near the barrier magnetic
field peak, unlike other works which have yielded a discontinuous potential
there. Between the barrier magnetic field minimum and the plug, the electron
distribution function is taken to be piecewise Maxwellian at the central cell
and plug electron temperatures. Using this model, the electrostatic potential

profile from the barrier peak field to the plug mirror throat is calculated.



I. Introduction

The thermal barrier(l) is a region of reduced magnetic field strength and
density between the end-plug and central cell of a tandem mirror. The thermal
barrier allows the electrons in the plug to be heated to a higher temperature
than those in the central cell and consequently permits one to obtain an
electrostatic potential peak in the plugs even when the plug density is less
than the central cell density. This greatly improves the Q (ratio of fusion
power to total injected power) and reduces the need for high magnetic fields
in the end-plugs. These improvements are a significant advance in the tandem
mirror confinement scheme.

Successful operation of the thermal barrier requires that the density of
trapped ions in the barrier be kept small by some pumping mechanism which
either removes them from the plasma, as in drift-orbit pumping,(z) or converts
them back to passing ions, as in neutral beam(3) or RF pumping.(4)

The thermal barrier concept presents a variety of physics questions
requiring further analysis. Among these are the electrostatic potential
profile in the barrier. The electrostatic potential plays an important role
in determining the parallel motion of the trapped ions in the barrier, and
hence has an effect on their drift motion. Knowledge of the latter is
required for assessing the efficiency of drift orbit pumping. The
electrostatic potential profile along magnetic field lines also determines the
turning point of the passing ions and hence determines the effective volume of
the barrier. This is needed in 0-D codes which calculate the performance of
tandem mirrors.

The electrostatic profile in the thermal barrier has been analyzed by

5)

Kesner( using the assumption of a piece-wise Maxwellian distribution for the

passing ions, with the trapped ions treated phenomenologically through a



parameter y. The limit y+0 is the 1imit of no trapped ions in the barrier,
i.e., perfect pumpout. Kesner then calculates the potential as a function of
the mirror ratio (me/B) and y. Here B is the local magnetic field strength
and By is its value at the peak field in the barrier. Kesner found the
surprising (and unphysical) result that as B+Byp, the potential ¢»-.77 Tg
whereas it was taken to be zero at Bppe Hence the potential drops
discontinuously at the beginning of the barrier in his calculation. Cohen(s)
used a model trapped ion distribution function which was chosen to resemble
the results of Fokker-Planck calculations(7) and to connect to a Maxwellian
distribution function for the passing ions. His calculations show no
discontinuity in the potential near the barrier peak field, except in the
limit of very small trapped ion density (smaller than expected attainable
values).

Both of the above papers treat only the part of the barrier on the
central cell side of the minimum field point. In this paper we consider the
potential profile not only on the central cell side, but also on the plug side
of the minimum field point. In this region there are 2 classes of
electrons: the first are the passing electrons from the central cell and the
second are the plug electrons whose turning points lie in the barrier. These
two classes cause the electron distribution function to be piece-wise
Maxwellian, but with different “temperatures" in different regions of velocity
space. These regions must be connected by a collisional boundary layer at the
interface between them. We also use a different model for the distribution
function of the trapped and passing ions. The result of our calculation is a
continuous and smooth axial potential profile from the barrier magnetic field
peak through the minimum field point to the mirror throat of the plug, where

the density of hot, magnetically confined ions begins to rise.



II. The Model

A schematic of the axial magnetic field and potential profile for an
inboard thermal barrier is shown in Figure 1. We consider only the inboard
configurations in this report, although similar concepts apply also to other
barrier configurations.

The basic assumption made is that the bounce frequency for trapped (or
passing) particles in the thermal barrier is much greater than the collision
frequency. Consequently, particle dynamics is assumed to be collisionless.
The parallel motion is described using guiding center theory with the magnetic
moment, u, treated as a constant of the motion (i.e., an adiabatic invariant)
along with the total particle energy, E. The jon distribution function is
assumed to have relaxed to a collisional distribution function since the
equilibrium lasts for times longer compared with the mean collision time.
Shown in Fig. 2 is the E-p space for ions in the thermal barrier. Ions in
Region I are passing ions; they have sufficient energy and low enough u to
penetrate the barrier peak field and enter the central cell. Ions in Regions
IT and III are trapped in the barrier. Ions in Region IV would also be
trapped, but it is assumed that this region is unpopulated because of barrier
pumping. Pumping is treated phenomenologically by imposing the boundary
condition that the ion distribution function vanish along the line A in Fig.
2. Region III differs from Region II in that ions can scatter from Region I
to Region II by pitch angle scattering, but can only get to Region III by
scattering in energy.

We define a series of u's as:
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The angles 6¢ and 6P are the pitch angles measured at the midplane of the
central cell and the bottom of the barrier, respectively. The angles

e;b and egb are the loss-cone angles corresponding to the mirror ratio
betweeen the barrier peak and the central cell, or bottom of the barrier,

respectively.

The ion distribution function in the barrier is obtained by using a pitch



angle scattering operator in the Fokker-Planck equation. The effect of

barrier pumping is treated in a rather phenomenological manner by introducing

the boundary condition that the distribution function vanishes at the pitch

angle ob = eg . The result is
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The part in Region III, which cannot be reached by simple pitch angle
scattering, is chosen to match continuously at the interface between Regions
IT and III the value of F; in Region II. It is also chosen to agree
qualitatively with Fokker-Planck calculations of the barrier.(7)

Since the thermal barrier appears as a potential "hill" to the electrons,
they are treated differently than the ions. Between the barrier minimum and
the central cell, the electrons have a Maxwellian distribution and therefore
satisfy the Boltzmann relationship between the electron density and potential
using the central cell electron temperature, Tece We do not consider in this
report the possibility of hot, magnetically trapped electrons in the barrier.

Between the barrier minimum and the plug, there are at least two classes



of electrons. First, there are electrons from the plug which are assumed to
have come from a Maxwellian distribution at the plug electron temperature,
Tep’ Second, there are electrons from the central cell which were
sufficiently energetic to penetrate the barrier. These electrons are assumed
to reflect off the falling potential on the other side of the plug and pass
back through the barrier into the central cell. The E-u phase space of the
electrons between the barrier and the plug is shown in Fig., 3. The passing
electrons from the central cell occupy Regions I and II and are assumed to
have a Maxwellian distribution in I and II. The plug electrons occupy Region
IIT in Fig. 3. Region IV corresponds to electrons which are electrostatically
trapped by the barrier on one side and magnetically trapped by the plug on the
other side. Since these electrons equilibrate more rapidly with the central
cell electrons, we assign them the temperature Tace The electron distribution
function is then taken as

—E/Tec
FC e (Regions I,II,IV)

f(E) =
F e . (Region III)(4)

The coefficients Fo and Fp are determined by requiring that the electron

density ne, where
- 3 5
ne(¢,B) = f d-v f(E) ’ ( )

reduces to the electron density at the barrier minimum and to the plug density



as one enters the plug. The electron density at the barrier minimum is given
by the solution for the potential between the barrier minimum and the central
cell. The plug density, plug potential, and central cell density are inputs

to this calculation.

This completes the basic model used to calculate the potential profile in
the thermal barrier. It differs from the work of Kesner(3) and Cohen(6) in
two respects. First, we consider the potential profile on both sides of the
barrier minimum. Second, the passing ion distribution is a collisional
distribution, which approaches a Maxwellian distribution in the limit of poor
barrier pumping, but deviates from a Maxwellian in the limit of good
pumping. In particular, F;+0 on the loss-cone boundary of passing ions when
there are no trapped particles in the barrier. The models used by Cohen and
Kesner were discontinuous in this limit.

III. Numerical Results

The electrostatic potential profile is obtained by invoking quasi-
neutrality, i.e., nj(¢,B) = ng(¢,B) and solving the resulting equation
for ¢(B), given the input parameters and the magnetic field profile.

First we consider the region between the barrier peak and the barrier
minimum. In this region the electrons are Maxwellian and thus ne depends only
on ¢ and not B, while n; depends on both. Fig. 4 shows the electron density
and the ion density as a function of ¢/T,. (assuming Tic=Tec=Tc) for different
magnetic field values (here B =B/By, where Bpp = 10 Bb). The intersections
give the value of ¢ for each B. For each value of B, there is only one
solution and it approaches zero (the assumed potential at B) as B+Bpyp
Consequently, we do not see the discontinuity in the potential found by
Kesner(s) and Cohen.(s) These results are for the case of no trapped ions in

the barrier.



If we had assumed that the passing ions had a Maxwellian distribution,
then we would have gotten the curves shown in Fig. 5 (again for the case of no
trapped ions). In this case ¢+-.77 Tac as B»Bhp and a second solution appears
at ¢=0 for B=By,. This is the mathematical origin of the discontinuous
solution found by Kesner.(s)

For the region between the barrier minimum and the plug, we use the
piecewise Maxwellian distribution given in Eq. (4) for the electrons and get
the result shown in Fig. 6. As B changes, there is only a single intersection
which changes continuously, giving a continuous potential profile. An
interesting mathematical peculiarity occurs if it is assumed that the
electrons in Region IV of Fig. 3 are collisional equilibrium with the plug
electrons rather than the central cell electrons and that the passing ions are
Maxwellian. In this case one obtains the n;j(¢) and ny(¢) curves of B, and one
gets three solutions for ¢ (Fig. 7). This multiple-valuedness is nonphysical
but perplexing. It does not occur if the Region IV electrons have temperature
Tece A speculation concerning this difference in behavior is that the rate at
which the electron distribution function makes the transition between
satisfying a Boltzmann relation at temperature Tac (e.g., near the bottom of
the barrier) to a Boltzmann relation at temperature Tep (e.g., in the plug) is
significant. The rate of this transition is slower when Region IV electrons
have temperature Tg..

Fig. 8 shows the electrostatic potential profile from the barrier peak
field to the plug mirror throat.
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Figure Captions

The axial electrostatic potential and magnetic field profile in an
inboard thermal barrier.

E-u phase space for ions.

Electron phase space between the barrier minimum and the plug.
Electron and ion density versus potential and magnetic field for the
region between the barrier peak and the barrier minimum using the
collisional ion distribution.

Electron and ion density versus potential and magnetic field for the
region between the barrier peak and the barrier minimum using a
Maxwellian distribution for the passing ijons.

Electron and ion density for the region between the plug and the

barrier minimum versus ¢ and B. The Region IV electrons have

temperature Tec.

Same as Fig. 6 except that the Region IV electrons have temperature
Tep and a Maxwellian distribution for the passing ions. The three
intersections indicate a multiple-valued solution for the potential.
Calculated electrostatic potential profile in the thermal barrier for
the magnetic field profile shown. This calculation assumes

Tec=Tic=Tc and no trapped ions in the barrier.
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