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ON THE COEFFICIENT FOR BULK RECOMBINATION OF
VACANCIES AND INTERSTITIALS
W. G. Wolfer and A. Si-Ahmed

ABSTRACT

Bulk recombination in the rate theory of void swelling and irradiation
creep is a significant process at low temperatures. The rate of recombination
is proportional to the recombination radius which is evaluated in the present
paper. The computed radius is in good agreement with measured values for
dilute copper alloys at cryogenic temperatures. The theoretical results can
therefore be extended to the temperature range for void swelling, and it is

found that the recombination radius is about two times the lattice parameter.



1. Introduction

The recombination or mutual annihilation of interstitials and vacancies
is an important process which limits the number of point defects absorbed at
dislocations and voids. In fact, a substantial fraction of all the Frenkel
pairs produced by displacement damage recombine either within the collision
cascade or during the long-range migration of the point defects through the
crystal lattice. The recombination of a closely .spaced Frenkel pair is
usually referred to as correlated recombination, whereas distant pairs an-
nihilate by uncorrelated recombination.

Point defects which escape the collision cascade may therefore be an-
nihilated by uncorrelated recombination. If Cy and C; are the average vacancy
and interstitial concentrations per unit volume, respectively, and Dy and Dy
their diffusion coefficients, the rate of uncorrelated recombination (UR) is

given by [1]
UR = 4R (D, + D) C,C; . (1)

Equation (1) is obtained by solving the diffusion equation for interstitials
with vacancies as their sinks [1], assuming that absorption occurs when the
two point defects are within the separation distance Ree This recombination
radius RC depends on the interaction between the vacancy and the interstitial,
and its evaluation represents the major purpose of this paper.
This research was motivated by the fact that there is apparently no

commonly accepted value for RC in the rate theory of void swelling and irradi-
ation creep. A cursory survey of the literature published over the last ten

years revealed that the number of recombination sites chosen varies from 12,



the number of next nearest neighbor sites, to over 2000. This implies that
the recombination radius RC varies by about a factor of 6 among different re-
searchers. The apparent confusion about the value of R. may originate from
two issues. First, measured values of Re have been obtained only for Tlow
temperature irradiations, and their extrapolation to elevated temperatures is
uncertain. Second, it is often not appreciated that there are two parameters
related to RC, namely the spontaneous recombination radius Rys and the capture
efficiency.

Spontaneous recombination without the assistance of thermal activation
will occur at a distance where the Frenkel pair becomes unstable. At this
distance, no activation barrier exists for interstitial migration because of
the strong interaction force between the interstitial and the vacancy. How-
ever, this interaction force still persists at greater distances, but it
merely biases the diffusive jumps. As a result, it increases the mutual
capture distance for recombination from Ry to Re.

Information about Ro can be gained from computer simulation studies of
close Frenkel pairs and from irradiation experiments with electrons at very
low temperatures. The pertinent results of these studies are reviewed in
Section 2. Next, for the evaluation of R., the mechanical interaction between
an interstitial and a vacancy must be known. The various contributions to
this interaction are considered in Section 3. Finally, the recombination
radius R. can be computed by solving a diffusion equation with a drift term
containing the interaction force. Results of this computation are presented
in Section 4, and comparison with available data for copper is made in Section

5.



2. The Spontaneous Recombination Radius

Computer simulation studies of Frenkel pairs [2,3,4] have shown that
there exists around the vacancy a region of instability for the interstitial.
In general, this region is not of spherical shape, so that the distance of
spontaneous recombination depends on the crystallographic direction. Never-
theless, it is possible to define an equivalent recombination sphere, and its
radius will be referred to as the spontaneous recombination radius Ro*
Schroeder and Eberlein [5] have studied the recombination of Frenkel pairs
with a lattice theory of diffusion and with non-spherical recombination
regions. They found that the equivalent recombination radius is simply the
arithmetic mean of the recombination distances along the various crystallo-
graphic directions. Furthermore, the continuous diffusion approximation to
the lattice theory gives excellent results when diffusion takes place by
nearest neighbor jumps.

As a result, we can evaluate the recombination radius with a spherical
diffusion model where the vacancy represents a sink with radius equal to Ro*

The number of lattice sites from which spontaneous recombination takes
place varies from 32 [3] to 74 [4] depending on the assumed interatomic po-
tential used in the computer simulation. Measurements of the spontaneous
recombination volume, reviewed by Wollenberger [6], gave 125 atomic volumes in
~ the case of copper, 48 for platinum, and 135 for gold. However, these values
are uncertain by perhaps a factor of two due to the approximate value of the
electrical resistivity of one Frenkel pair. Hence, it can only be concluded
that the spontaneous recombination volume comprises of the order of 50 to 150
atomic volumes, and that this agrees as well as can be expected with the

computer simulation results.



Fortunately, as will become apparent, the recombination radius R. depends
only weakly on the choice of Roe

3. The Interaction Energy Between a Vacancy and an Interstitial

Various expressions for the mechanical interaction energy between point
defects have been derived in the past. The form of these expressions depends
on how the point defects are modeled, and how the elastic distortions around
the defects are treated. Each of the derived expressions captures usually one
particular aspect of the point defect. Therefore, the total interaction
consists of a sum of various contributions which can be identified as follows.
a) The dipole interaction, UD, in an elastically isotropic and continuous

medium requires that at least one point defect is modeled as a dilatation
center with a non-isotropic dipole tensor Pij' A vacancy 1is commonly
considered as an isotropic center of dilatation, and its dipole tensor is

given by

V =
Pij vasij (2)
where Gij is the Kronecker symbol, K the bulk modulus, and vy the relax-
ation volume of the vacancy.
The interstitial in a fcc crystal, however, must be described by a

non-isotropic dipole tensor as given by

I _ 3
Pij = Mg (845 + méyy8yy) )

when the dumbbell axis is along the xj-direction of the cartesian refer-

ence frame. Here Vi is the relaxation volume for the interstitial and n



is the dipole anisotropy parameter.

The dipole interaction UD is then given by [7]

2 2
= 1 + cos“6 - 1/3
L) = VW 3T & T { u)(f)- o7 — 3 (4)

U

D¢

where 6 is the angle between the dumbbell axis and the distance vector
r connecting the vacancy and the interstitial. The shear modulus and
Poisson's ratio are denoted by u and v, respectively.

As it is well known, the dipole interaction vanishes when both
defects are isotropic, i.e, when n = 0. Furthermore, the angular average
of UD vanishes even when n £ 0.

The dipole interaction in an elastically anisotropic and continuous
medium, UA, does not vanish even for isotropic point defects. This inter-
action has been evaluated by various authors [8,9,10]. When the elastic
anisotropy constant

- Cyp - 20y (5)
is small in comparison to the elastic constants C11s C12s and Cgq of the
cubic crystal, the interaction UM can be expanded in powers of A [9]. The

first-order term can be written as [8]

3/5 - f
Al 5A_ (1 + vy2 4 (6)

£ = vy 717 (T 3

U

where



f4 = (x? + xg + xg)/r4 (7)
and X1, Xy, and x3 are the components of r along the cubic axis of the
elementary cell. Again, as in the case of UD(Q), the angular average
of UA(E) vanishes. The higher order terms for UA(g), being nonlinear in
A, exhibit a more complicated angular dependence but retain the same
radial dependence as the first order term [9]. The angular average of
these higher order terms vanishes also. Since we will be able to replace
the angular variation by a constant in later computations, Eq. (6) will
suffice as an adequate approximation even when the elastic anisotropy
constant is not small in comparison to the elastic constants.

The dipole interaction in a crystalline medium requires further correc-
tions. First, the dipole tensor characterizes a point defect as a set of
three orthogonal double forces attached to a singular point. In reality,
an interstitial atom, for example, exerts forces on its neighboring atoms
attached to their centers rather than to one singular point. To charac-
terize this finite separation of the forces requires multipoles in addi-
tion to the dipole tensor [7]. Second, the elastic Green's function of
the continuum theory also requires lattice corrections when applied to
small separation distances between the point defects [7]. These correc-
tions were first discovered in the lattice statics work of Hardy and
Bullough [11]. As shown by Siems [7], the Hardy-Bullough interaction in

an isotropic elastic medium can be written as

3532, (1+v)2  (3/5-1,)

B
L) =YW oo T -2 5 (8)

U




where a is the lattice parameter. For the fcc lattice, the lattice
parameter is related to the atomic volume by @ = a3/4.

The interaction energies discussed so far are based on the assumption that
the entire crystal, including the regions'occupied by point defects, can
be treated as a medium with uniform elastic properties. Due to the large
distortions close to the point defect, however, the elastic properties of
the region around the point defect are substantially different than in the
perfect crystal. If the point defect is therefore modeled as an inhomo-
geneous inclusion, an additional interaction arises [12]. This so called
modulus interaction between an interstitial and a spherical cavity was

derived previously by Wolfer and Ashkin [13], and it can be written as

r 6
%) (22

M_9 G (=2
"8 %\ ur‘o

U . (9)

Here, r, is the cavity radius, vy the surface stress, and a? is the shear
polarizability of an interstitial. The surface tension Zylro of the
cavity produces a spherically symmetric strain field which is equivalent
to the strain field of an inclusion with appropriately chosen misfit or
relaxation volume. In fact, as shown by Eshelby [12], the equivalent

relaxation volume is given by

v/a = -3 (R ELD) . (10)

If we choose the cavity radius for a vacancy according to 4nr§/3 = Q, we

obtain



for the modulus interaction of an interstitial in the strain field of a
vacancy. Since the vacancy also possesses a shear polarizability as, we
must add the modulus interaction of the vacancy in the strain field of the

interstitial. The total modulus interaction is therefore

R B e L O IR W (11)
It should be noted that the modulus interaction in an isotropic medium has
no angular dependence. In a cubic lattice, however, the shear polari-
zability tensor has two different components. As shown by Trinkaus [14],
the modulus interaction does then depend on the orientation of the sepa-
ration vector r with regard to the cubic axis when the two shear polari-
zabilities are different. But for equal shear polarizabilities, his
expression closely agrees with ours, except that his numerical factor is
Targer by about 18%. This difference appears to be the result of modeling
the point defect as an inhomogeneous spherical inclusion in our case, and
by a set of induced double forces in his case. Considering the dissimi-
larity of the model assumptions, the close agreement of the results is
remarkable. In any case, the numerical difference is of little conse-
quence for the present application.

The total interaction energy consists now of the sum of all the above

contributions, i.e.

U(r) =07 + 0" + U™ + U7 . (12)



The various contributions can be evaluated with the physical parameters given
in Table 1 for copper. The radial dependencies of the interaction energies
are shown in Fig. 1 for the case of copper. It is seen that the dipole inter-
action UD and its lattice correction, the Hardy-Bullough interaction UHB, are
both negligible compared to the modulus interaction UM and the dipole inter-
action UM due to the elastic anisotropy of the lattice.

4. The Recombination Radius

If the interaction energy is only dependent on the radial distance
between the interstitial and the vacancy, then the recombination radius is
given by [20,21]

b/Ro -1
R./b = {fy “d(b/r) exp [U(r)/kT]} (13)

where b is the Burgers vector or the next nearest neighbor distance, k is the
Boltzmann constant, and T the absolute temperature. In order to use Eq. (13)
with the interaction energy as given by Eq. (12), an angular independent
average for U(r) must be chosen. Profant and Wollenberger [22] have performed
an extensive numerical computation to evaluate R.. However, they employed
only the angular dependent interaction UA(E), and compared the exact result
with the approximate result when the angular variation of UA(g) was neglected.
They found that the exact recombination radius R. is 63% of the approximate
one. The two results can be made to agree, however, if the angular factor

in UA(g) is replaced by a constant factor of 0.25. The physical meaning of
this constant factor is that the interstitial has access to the vacancy only

within a cone extending over one quarter of the entire solid angle. In



Table 1

Physical Parameters for Copper, Nickel, and Austenitic Stainless Steels

Stainless Steels

Physical Property Symbo1 Cu Ni 18% Cr, 14% Ni  17.5% Cr, 12% Ni
Shear Tadu1us,

x 10tV Pa u 5.47 9.47 8.78 9.16
Poisson's Ratio v 0.324 0.277 0.254 0.270
Anisotropy Ratio |A|/u 1.89 1.59 1.94 2.03
Relaxation Volume for

Interstitial vi/2 1.45(2)  1,4(b) 1.4(b) 1.4(b)

Vacancy wia  -0.40(a)  _g 2(c) -0.2(c) -0.2(c)
Dipole Anisotropy

Parameter for

Interstitial n 0.053 0.053 0.053 0,053
Shear Polarizability for

Interstitial,

x 10717 § a? ~2.73(d) 2,73 -2.73 -2.73

Vacancy,

x 10-17 as -0.27(d)  _o.27 -0.27 -0.27
Lattice Barameter
x 10-10 a 3.615 3.524 3,582 3,582

3Values from Ref. [15].

bAssumed values,

CTypical value in fcc metals according to estimates by Sherby, Robbins, and Goldert

L16].

dyalues are close to those measured [17,18] and theoretically predicted [19] for

copper.
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directions outside this cone, the interaction UA(E) exerts a repulsive force
on the interstitial migration.

In our case, the total interaction is the sum of UM and UM. Since the
Tatter is attractive in all directions, the accessible solid angle is expected
to be somewhat larger than w=. Accordingly, the constant factor which replaces
the angular factor of UA(g) can be treated as an adjustable parameter when
experimentally derived recombination radii are available.

5. Results

For dilute copper alloys, Lennartz et al. [23] have determined experi-
mentally the recombination radius Re in the temperature range from 50 K to 105
K. Their data are shown in Fig. 2 together with our numerical results ob-
tained from Eq. (12). These results are drawn as solid lines, and the best
fit with the data is achieved when replacing the angular factor of UA(g) with
a constant of 0.3. This is only slightly larger than 0.25, the appropriate
constant if the modulus interaction UM were not included. The dashed line in
Fig. 2 represents the empirical fit of Lennartz et al. [23] to their own data.

Considering the large error bars associated with the data, our fit is as
satisfactory within the data range as is the dashed line. However, our re-
sults show that a straight line extrapolation to higher temperatures would not
be correct.

The various solid curves shown in Fig. 2 represent the computed recombi-
nation radii R, for different values of the spontaneous recombination radius
Ro- Whereas R. is independent of the choice of Ro in the low temperature
range, at least within the range of possible values discussed in Section 2, it
increased with increasing Ro 1n the high-temperature range for void swelling

and irradiation creep. The reason for this dependence is simply that Rc must

12
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approach R, asymptotically with increasing temperature. According to both
computer simulation studies and experiments, the radius of spontaneous
recombination is found to be between the fourth and eighth neighbor distance,
i.e. comprising 54 to 140 lattice sites according to Table 2. As our analysis
shows, the recombination radius R. at elevated temperatures is only stightly
larger than Roe

It is unfortunate that point defect parameters for nickel or austenitic
stainless steels are not known. Assuming, however, that they are similar to
the point defect parameters in copper, as indicated in Table 1, the recombi-
nation radius Rc has been computed for nickel and for two steels whose chromi-
um and nickel contents fall within the specifications of type 316 stainless
steels. The results are shown in Fig. 3 for a spontaneous recombination
radius of R, = a and R, = 2a, respectively. The differences between the three
materials are due to variations in the elastic constants. Their effect on the
recombination radius Rc is seen to be minor.

In order to assess the variation of the recombination radius with the
point defect properties, we examined two additional cases for the 18% Cr -
14% Ni stainless steel. For the "upper estimate" shown in Figure 4, the
relaxation volume of the interstitial is assumed to be Vi = 2 Q, and the shear
polarizabilities are increased by a factor of two compared to the "nominal
estimates” given in Table 1. For the "lower estimate”, the relaxation volume
of an interstitial is chosen as vi = 1 @, and the shear polarizabilities are
assumed to vanish., In this case, UM = 0. As shown in Figure 4, all three
cases give very similar results at high temperatures and for a spontaneous

recombination radius of Ro = 2a. Differences are significant only when

14



Table 2

Near-Neighbor Distances for the FCC Lattice

Order of Distance in Units Total Number
Nei ghbor of b(a) of a of Enclosed Sites
1 1.000 0.708 12
2 1.412 1.000 18
3 1.732 1,226 42
4 2.000 1.416 54
5 2.236 1,583 78
6 2.540 1.734 ‘86
7 2.646 1.873 134
8 2.828 2.000 140
9 3.000 2.124 176
10 3.162 2.239 200

(a)p is the Burgers vector.
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Ro = a. Nevertheless, the recombination radii obtained for the lower and
upper estimate differ by no more than a factor of 1.5 even for this case.

6. Conclusions

The radius R, for bulk recombination of vacancies and interstitials has
been computed based on the long-range mechanical interaction between point
defects. For copper, where experimental results are available for both the
essential point defect parameters as well as the recombination radius at Tow
temperatures, excellent agreement can be obtained between computed and
measured values for R.. Although the recombination radius R, depends on the
spontaneous recombination radius Ry at high temperatures, the possible values
of R, are very close to about 2a, where a is the lattice parameter. In fact,
the remaining uncertainty is substantially less than the spread of values for

Rc used in the literature.
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