

TSTRESS - A Transient Stress Computer Code

R.R. Peterson, R.D. Watson, W.G. Wolfer, and G.A. Moses

December 1980

UWFDM-382

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TSTRESS - A Transient Stress Computer Code

R.R. Peterson, R.D. Watson, W.G. Wolfer, and G.A. Moses

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

December 1980

UWFDM-382

TSTRESS - A Transient Stress Computer Code

Robert R. Peterson Robert D. Watson Wilhelm G. Wolfer Gregory A. Moses

Fusion Engineering Program Nuclear Engineering Department University of Wisconsin Madison, Wisconsin 53706

UWFDM-382

December 1980

i.

.

Table of Contents

I.	Introduction	1
11.	Theory	2
III.	Units and Zoning Conventions	14
IV.	Equation of Zone Expansion	15
۷.	Stress Rate Equations	16
VI.	Temperatures	17
VII.	Conservation of Membrane Load Check	18
VIII.	Time Step Control	20
IX.	Zone Skipping	21
Χ.	Computer Code Description	22
XI.	Input Manual	31
XII.	Sample Problem	36

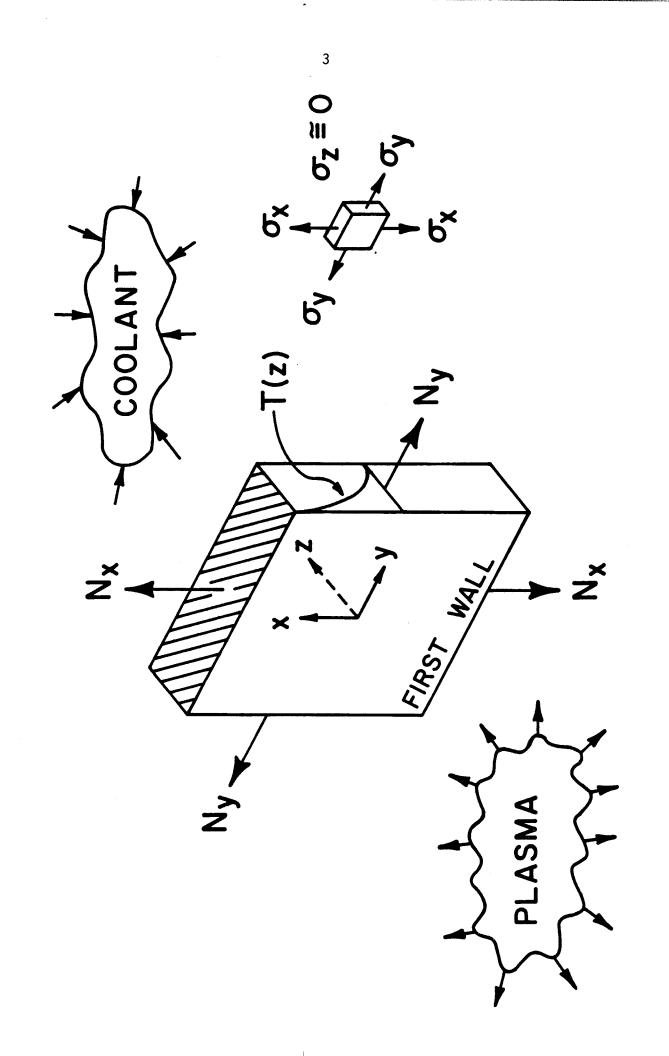
1

Page

I. Introduction

TSTRESS is a one-dimensional inelastic stress analysis code used to calculate the time history of plane stresses in a section of a first wall of a fusion power reactor. The code is applicable to either inertially confined or magnetically confined fusion reactors. TSTRESS computes stresses which are caused by four different sources: 1) membrane loads from internal coolant pressures or pulsed external shock wave overpressures, 2) temperature gradients through the wall caused by either steady-state heat fluxes or pulsed heat fluxes, 3) irradiation induced differential swelling gradients through the wall, and 4) residual stress gradients caused by both thermal and irradiation creep-induced stress relaxation. TSTRESS, then, provides the user with a complete time history of the one-dimensional stress gradients through the first wall of a fusion power reactor.

One of the most important uses of this code is to provide the stress histories which are needed for self-consistent calculations of either fatigue damage or fatigue crack growth of a pre-existent surface flaw. By selfconsistent we mean that the physical interrelationships between the mechanical property changes, stress histories and damage accumulation processes are accounted for simultaneously. When the effects of irradiation on fracture toughness (embrittlement) are included, then the coupling of TSTRESS to a fatigue life code will provide the user with a very sophisticated and flexible package for doing integrated lifetime assessments of fusion reactor first walls.


The thin-walled shell element that is used in TSTRESS represents a flat section of the first wall and is assumed to be constrained from bending, but not from expansion. The model is, therefore, applicable to spherically and

cylindrically shaped first walls whose radii of curvature are large when compared to the wall thickness.

The computation of the stress distribution and redistribution with time is based, in principle, on the boundary integral method formulated for time dependent plastic deformation. In the present case, however, the boundary integral method reduces to a one-dimensional integration of the plastic strain components through the wall thickness. These integrals are then converted to sums by employing the Simpson rule of numerical integration. As a result, we are able to express the stress rates at a given point as a function of the stresses at all other points through the wall thickness when inelastic deformation takes place. The time evolution of the stress distribution requires then only the numerical integration over time of a system of coupled ordinary differential equations of first order. The basic structure used in TSTRESS, then, is the numerical solution of N coupled initial value problems using Euler's method, with automatic selection of the time step interval. II. Theory

In this chapter the two coupled integral equations for the timeindependent in-plane stresses $_{x}(z)$ and $\sigma_{y}(z)$ are derived. Then, the two integro-differential equations for the time-dependent stress rates $\sigma_{x}(z)$ and $\sigma_{y}(z)$ are derived. These equations are then converted into a coupled set of one-dimensional, first-order, ordinary differential equations and solved numerically in TSTRESS as an initial value problem for the stresses.

The physical model of the first wall which is used in TSTRESS is a thinwalled shell element, as shown in Figure 1. The element is loaded with externally applied in-plane membrane loads N_X and N_y . Also, the element is subjected to time-dependent temperature and swelling loads which are assumed to vary only along the z-direction. In addition, the stresses are allowed to

relax as a function of time due to the combined influence of thermal and irradiation creep. The elastic properties are temperature dependent and the neutron flux is assumed to remain constant through the wall's thickness. In most first wall designs these assumptions are reasonably well satisfied.

This model can be used to predict the stresses in either tubular first walls, cylindrical modules with ellipsoidal end closures, U-bend cells, or any generally curved thin-walled pressure vessel-type enclosure, so long as the wall's thickness is small when compared to its radius of curvature, namely $h/R \leq 0.1$. In this case, the flat plate model shown in Figure 1 is found to be a good approximation for computing stresses. Also, since the normal stress $\sigma_z \approx -p$ pressure, then it may be neglected because the in-plane stresses σ_x and σ_y are typically found to be much larger than the internal coolant pressure. This model also assumes that the lateral stress variation over the whole first wall structure is small enough as to not cause a significant change in the radius of curvature and it is also small compared to stress variation through the thickness. This condition requires, then, that the shell element be constrained from bending, and hence, remain flat. It is free to expand in all directions, however.

IIa. Time-Independent Stress Equation

Based on the model of a first wall as a thin-walled shell element, the equations for time-independent stresses are derived in this section as functions of the inelastic strains and membrane loads. We begin by writing Hooke's law for the three principal stresses:

$$\sigma_{\chi}(z) = 2\mu (\epsilon_{\chi} - e_{\chi}) + \lambda (\epsilon - e)$$
 (II-1)

$$\sigma_{y}(z) = 2\mu (\varepsilon_{y} - e_{y}) + \lambda (\varepsilon - e) \qquad (II-2)$$

$$\sigma_{z}(z) = 2\mu (\varepsilon_{z} - \varepsilon_{z}) + \lambda (\varepsilon - \varepsilon)$$
 (II-3)

where: $\varepsilon_{X}, \varepsilon_{y}, \varepsilon_{Z} = \text{total strains}$ $e_{X}, e_{y}, e_{Z} = \text{inelastic strains}$ $\varepsilon = \varepsilon_{X} + \varepsilon_{y} + \varepsilon_{Z}$ $e = e_{X} + e_{y} + e_{Z}$ $\mu = \text{shear modulus}$ $\lambda = 2\mu \left[\frac{\nu}{1-\nu}\right]$ $\nu = \text{Poisson's ratio}$.

The inelastic strains are composed of four separate parts, namely:

$$e_{x} = e_{x}^{th} + e_{x}^{ic} + e_{x}^{tc} + e_{x}^{sw}$$
 (II-4)

where:

$$e_x^{th}$$
 = thermal strain
 e_x^{ic} = irradiation creep strain
 e_x^{tc} = thermal creep strain
 e_x^{sw} = swelling strain .

Next, we impose the boundary condition for plane stress, $\sigma_z{=}0,$ and then solve Eqn. (II-3) for $\epsilon_z{:}$

$$\varepsilon_{z} = e_{z} + \frac{v}{1-v} \left[e_{x} + e_{y} - (\varepsilon_{x} + \varepsilon_{y}) \right] . \qquad (II-5)$$

Substituting this expression for $\boldsymbol{\epsilon}_{Z}$ into Eqns. (II-1) and (II-2) then gives:

$$\sigma_{x}(z) = \frac{2\mu}{1-\nu} (\varepsilon_{x} - e_{x}) + \frac{2\mu\nu}{1-\nu} (\varepsilon_{y} - e_{y})$$
(II-6)

and,

$$\sigma_{\mathbf{y}}(z) = \frac{2\mu}{1-\nu} (\varepsilon_{\mathbf{y}} - \mathbf{e}_{\mathbf{y}}) + \frac{2\mu\nu}{1-\nu} (\varepsilon_{\mathbf{x}} - \mathbf{e}_{\mathbf{x}}) . \qquad (II-7)$$

As a result of the requirement that the shell element be constrained from bending, the total strains ε_x and ε_y <u>cannot</u> be functions of the depth, z, through the wall. Therefore:

$$\varepsilon_{\rm X} = K_{\rm X} = {\rm constant}$$
 (II-8)

and

$$\varepsilon_y = K_y = \text{constant}$$
 (II-9)

Using this, Eqns. (II-6) and (II-7) can be rewritten as:

$$\sigma_{x}(z) = \frac{2\mu}{1-\nu} (K_{x} - e_{x}) + \frac{2\mu\nu}{1-\nu} (K_{y} - e_{y})$$
(II-10)

and,

$$\sigma_{y}(z) = \frac{2\mu}{1-\nu} (K_{y} - e_{y}) + \frac{2\mu\nu}{1-\nu} (K_{x} - e_{x}) . \qquad (II-11)$$

Next, we write the boundary conditions which are used for static equilibrium:

$$N_{x} = \int_{0}^{h} \sigma_{x} dz \qquad (II-12)$$

and,

$$N_{y} = \int_{0}^{h} \sigma_{y} dz$$
 (II-13)

For the case of a pressurized tube of radius = R and pressure = P, the axial membrane load is given by $N_{axial} = PR/2$ and the circumferential membrane load is given by $N_{hoop} = PR$. In a pressurized sphere or hemisphere the membrane loads are equal to each other and are given by $N_x = N_y = PR/2$.

Substituting the stresses, as given by Eqns. (II-10) and (II-11), into the boundary conditions (II-12) and (II-13) gives:

$$\frac{1-\nu}{2\mu} N_{x} = (K_{x} + \nu K_{y})h - \int_{0}^{h} (e_{x} + \nu e_{y})dz \qquad (II-14)$$

and,

$$\frac{1-\nu}{2\mu} N_{y} = (K_{y} + \nu K_{x})h - \int_{0}^{h} (e_{y} + \nu e_{x})dz . \qquad (II-15)$$

After some algebra, these two equations can be solved for ${\rm K}_{\rm X}$ and ${\rm K}_{\rm Y}$:

$$K_{x} = \frac{N_{x} - vN_{y}}{2\mu(1 + v)h} + \frac{1}{h} \int_{0}^{h} e_{x} dz \qquad (II-16)$$

and,

$$K_{y} = \frac{N_{y} - vN_{x}}{2\mu(1+v)h} + \frac{1}{h} \int_{0}^{h} e_{y} dz . \qquad (II-17)$$

The final step is to substitute these expressions for $K_{\rm X}$ and $K_{\rm y}$ into Eqns. (II-10) and (II-11) to give the stress equations

$$\sigma_{x}(z) = \frac{N_{x}}{h} + \frac{1}{h} \int_{0}^{h} \frac{2\mu}{1-\nu} (e_{x} + \nu e_{y}) dz - \frac{2\mu}{1-\nu} (e_{x} + \nu e_{y})$$
(II-18)

and,

$$\sigma_{y}(z) = \frac{N_{y}}{h} + \frac{1}{h} \int_{0}^{h} \frac{2\mu}{1-\nu} (e_{y} + \nu e_{x}) dz - \frac{2\mu}{1-\nu} (e_{y} + \nu e_{x})$$
(II-19)

and,

$$\sigma_{z} = 0 \quad . \tag{II-20}$$

To calculate the initial elastic stresses in the first wall, caused only by membrane (pressure) loads and temperature gradients in the z-direction, we neglect the swelling and creep strains and define the inelastic strains as simply being:

$$e_{x} = e_{y} = e_{z} = \alpha \Delta T(z) \qquad (II-21)$$

where:

$$\Delta T(z) = T(z) - T_0$$

 α = coefficient of thermal expansion.

Substituting this into Eqns. (II-18) and (II-19) gives the thermo-mechanical elastic stresses:

$$\sigma_{\rm x}(z) = \frac{N_{\rm x}}{h} + \sigma_{\rm th}(z)$$
 (II-22)

and,

$$\sigma_{y}(z) = \frac{N_{y}}{h} + \sigma_{th}(z) \qquad (II-23)$$

where:

$$\sigma_{th}(z) \equiv \frac{1}{h} \int_{0}^{h} 2\mu \left(\frac{1+\nu}{1-\nu}\right) \alpha \Delta T dz - 2\mu \left(\frac{1+\nu}{1-\nu}\right) \alpha \Delta T(z) . \qquad (II-24)$$

By using the identity: $2\mu = E/(1+\nu)$, Eqn. (II-24) can be rewritten in a more traditional form:

$$\sigma_{th}(z) = \frac{1}{h} \int_{0}^{h} \frac{\alpha E}{(1-\nu)} \Delta T dz - \frac{\alpha E \Delta T(z)}{(1-\nu)} . \qquad (II-25)$$

IIb. Stress-Rate Equations

The time history of first wall stresses is determined by solving the time-dependent stress-rate equations, which are derived in this section.

We begin by assuming that the wall thickness, h, and the membrane loads, $N_{\rm X}$ and $N_{\rm y},$ are independent of time. We also neglect the time-dependence of

the elastic constants: α, μ, ν, E . Using these assumptions, we now take the time derivative of Eqns. (II-18) and (II-19) to get:

$$\sigma_{x}(z) = \frac{1}{h} \int_{0}^{h} \frac{2\mu}{1-\nu} (e_{x} + \nu e_{y}) dz - \frac{2\mu}{1-\nu} (e_{x} + \nu e_{y})$$
(II-26)

and,

$$\sigma_{y}(z) = \frac{1}{h} \int_{0}^{h} \frac{2\mu}{1-\nu} (e_{y} + \nu e_{x}) dz - \frac{2\mu}{1-\nu} (e_{y} + \nu e_{x})$$
(II-27)

where:

$$e_x = e_x(z)$$
 and $e_y = e_y(z)$.

The next step is to assume a constitutive law for inelastic deformation which describes the inelastic strain rates e_x and e_y as functions of both the current values of stress, temperature, dose and dose rate, and the previous history of these parameters. We assume, then, that:

 $\dot{\mathbf{e}}_{\mathbf{X}} = \alpha T + \frac{1}{3} S + (\sigma_{\mathbf{X}} - \frac{1}{2} \sigma_{\mathbf{y}}) \psi \qquad (II-28)$

and,

$$e_y = \alpha T + \frac{1}{3}S + (\sigma_y - \frac{1}{2}\sigma_x)\psi$$
 (II-29)

where:

The total creep compliance, ψ , is assumed to be the sum of thermal and irradiation creep compliances:

$$\Psi = \Psi$$
 thermal $+ \Psi$ irradiation (II-30)

We now substitute the constitutive Eqns. (II-28) and (II-29) into the stress-rate Eqns. (II-26) and (II-27) to obtain:

$$\begin{aligned} \sigma_{\chi}(z) &= \frac{1}{h} \int_{0}^{h} 2\mu \left(\frac{1+\nu}{1-\nu}\right) \left(\alpha T + \frac{1}{3}S\right) dz \qquad (II-31) \\ &- 2\mu \left(\frac{1+\nu}{1-\nu}\right) \left(\alpha T + \frac{1}{3}S\right) \\ &+ \frac{1}{h} \int_{0}^{h} \frac{\mu \psi}{(1-\nu)} \left[(2-\nu)\sigma_{\chi} - (1-2\nu)\sigma_{y}\right] dz \\ &- \frac{\mu \psi}{(1-\nu)} \left[(2-\nu)\sigma_{\chi} - (1-2\nu)\sigma_{y}\right] , \end{aligned}$$

and,

$$\hat{\sigma}_{y}(z) = \frac{1}{h} \int_{0}^{h} 2\mu \left(\frac{1+\nu}{1-\nu}\right) \left(\alpha T + \frac{1}{3} S\right) dz$$
(II-32)
$$- 2\mu \left(\frac{1+\nu}{1-\nu}\right) \left(\alpha T + \frac{1}{3} S\right)$$

$$+ \frac{1}{h} \int_{0}^{h} \frac{\mu \psi}{(1-\nu)} \left[(2-\nu)\sigma_{y} - (1-2\nu)\sigma_{x}\right] dz$$

$$- \frac{\mu \psi}{(1-\nu)} \left[(2-\nu)\sigma_{y} - (1-2\nu)\sigma_{x}\right] .$$

These two coupled differential equations are solved numerically in the computer code TSTRESS as an initial value problem, where the initial stresses are given by Eqns. (II-22) through (II-24).

Eqns. II-31 and II-32 may be transformed into the more convenient forms,

$$\frac{\partial}{\partial t} \sigma(z) = \frac{1}{h} \int_{0}^{h} [F(z') + \Psi(z') \sigma(z')] dz'$$

$$- F(z) - \Psi(z) \sigma(z) \qquad (II-33)$$

and

$$\frac{d\tau(z)}{dt} = \frac{1}{h} \int_{0}^{h} \phi(z') \tau(z') dz' - \phi(z) \tau(z) , \qquad (II-34)$$

where

$$\sigma(z) \equiv \frac{1}{2} \left[\sigma_{x}(z) + \sigma_{y}(z) \right]$$
 (II-35)

and

$$\tau(z) \equiv \sigma_{\chi}(z) - \sigma_{y}(z) . \qquad (II-36)$$

 $\Psi(z)$ and $\phi(z)$ are related to the creep compliance by

$$\Psi(z) = \mu \left(\frac{1+\nu}{1-\nu}\right) \psi(z) \qquad (II-37)$$

and

$$\phi(z) = 3\mu \psi(z)$$
, (II-38)

while F(z) is a function of expansion and swelling,

$$F(z) = \mu \left(\frac{1+\nu}{1-\nu}\right) \left\{2\alpha T(z) + \frac{2}{3}S(z)\right\}.$$
 (II-39)

III. Units and Zoning Conventions

TSTRESS uses the following units:

Length		CM
Time	aa .a	second
Stress		ksi
Temperature		Kelvin .

Finite difference indexing is done using the following conventions:

Time indexing: (n + 3/2) A (n + 1) B (n + 1/2) C (n) D (n - 1/2) E (n - 1) F

Spatial zone indexing:

j - 1 j j + 1 $j - \frac{3}{2}$ $j - \frac{1}{2}$ $j + \frac{1}{2}$ $j + \frac{3}{2}$

Since there will always be one more zone boundary than there are zones, we start numbering the zone centers at J=2. Quantities measured on the zone boundaries have FORTRAN variable names ending with a 2 while the zone centered quantities are unnumbered.

IV. Equation of Zone Expansion

The equation of zone expansion is written as

$$\frac{1}{\ell} \frac{d\ell}{dt} = \left[\alpha T + \frac{1}{3} S(z)\right] - \frac{1}{2} \psi(z) \qquad (IV-1)$$

where ℓ is a unit of length along the direction perpendicular to the plane of the plate (the z-direction). $\alpha(z)$ is the coefficient of thermal expansion, S the swelling rate and $\psi(z)$ the creep compliance. The temperature is denoted by T.

Eq. IV-1 is solved by converting it into the difference equation,

$$\Delta z_{j}^{n} = \Delta z_{j}^{n-1} \Delta t_{j}^{n-1/2} (\alpha_{j}^{n} T_{j}^{n} + \frac{1}{3} S_{j}^{n} - \psi_{j}^{n}) + \Delta z_{j}^{n-1} . \qquad (IV-2)$$

Here, Δz_j^n is the width of the j'th zone at time t^n and $\Delta t_j^{n-1/2}$ is the difference between t^n and the time when quantities were most recently calculated. This code has an option where quantities are calculated more frequently in zones that undergo changes in certain parameters most rapidly so that $\Delta t_j^{n-1/2}$ may be different for each zone.

The width of each zone and the total thickness of the plate h are calculated using Eqn. IV-2 in subroutine WIDTH with the thermal expansion

coefficient coming from subroutine TPROP. The swelling rate S_j^n is found in subroutine SWELL and the creep rate in subroutine CREEP.

V. Stress Rate Equations

Eqns. II-33 and II-34 are solved by converting them to the difference equations,

$$\sigma_{j}^{n+1/2} = \Delta t_{j}^{n} \{ \frac{1}{h^{n}} \sum_{j} [F_{j}^{n} + \Psi_{j}^{n} \sigma_{j}^{n-1/2}] \Delta z_{j}^{n}$$
$$- F_{j}^{n} - \Psi_{j}^{n} \sigma_{j}^{n-1/2} \} + \sigma_{j}^{n-1/2}$$
(V-1)

and

$$\tau_{j}^{n+1/2} = \Delta t_{j}^{n} \left[\left(\frac{1}{h^{n}} \sum_{j} \phi_{j}^{n} \Delta z_{j}^{n} \tau_{j}^{n-1/2} \right) - \phi_{j}^{n} \tau_{j}^{n-1/2} \right] + \tau_{j}^{n-1/2} . \qquad (V-2)$$

Eqns. V-1 and V-2 are solved in subroutine STRESS while F_j^n is calculated in subroutine SWELL and Ψ_j^n and ϕ_j^n are calculated in subroutine CREEP. Properties of the material, α , μ , and ν are determined in TPROP.

VI. Temperatures

The temperature in each zone is calculated at each time step in one of two ways. Whichever way is chosen, the temperatures are calculated in subroutine TEMP.

The first way is to interpolate on a grid of temperatures read from an input file in the subroutine INIT. The grid is in position and time and the size and spacings are automatically set to that of the input data. This input data is read in as sets of temperatures at up to 50 points in space, each set corresponding to a different time. The time corresponding to each such set of temperatures is found in the second element of a 10 element parameter vector called WSCAL, which precedes each set of temperatures in the input file. Following all of the sets of temperatures WSCAL is read from the input file again. Here WSCAL(1)<0 is a flag informing TSTRESS that the end of the temperatures has been reached and the positions for the temperatures are then read in. These times and positions are unrelated to the grid of times and positions that TSTRESS uses, so that to find the temperature at the zone boundary at position $x_{i+1/2}$ and time t^n , a standard bilinear interpolation is used. The temperature of the zone center is then found by averaging the temperatures at the zone boundaries. The time derivatives of the temperature are also provided at each zone center.

The second method of determining the zone center temperatures is to just use a time independent linear profile. TSTRESS is told to use this method by the setting of the parameters LINEAR=1 and IRDTMP=1. Other input parameters are TFRONT and TBACK, which are the temperatures at the front and back of the plate, respectively. Of course, if this option is used, the time derivatives of the temperatures are zero.

VII. Conservation of Membrane Load Check

In the model we have chosen, the membrane loads in the x and y directions,

$$N_{x} = \int_{0}^{h} \sigma_{x}(z',t) dz' \qquad (VII-1)$$

and

$$N_{y} = \int_{0}^{h} \sigma_{y}(z',t) dz' \qquad (VII-2)$$

are constants in time or else given. This conservation of membrane load is tested in subroutine SCHECK by comparing N_x and N_y calculated using the current stresses with the originally specified values of N_x and N_y .

Normally these membrane loads are zero initially but if non-zero membrane loads are desired, this may be accomplished in subroutine INITS.

If it occurs that the membrane loads at some cycle deviate from those calculated initially, SCHECK includes an option allowing the stresses to be adjusted so that conservation of membrane load is preserved. This option is used when the input parameter IADJ≠1 and it works by changing each stress by a small amount so that the membrane load never deviates from its original value:

$$\sigma_{x_{j}}^{n+1/2} = \sigma_{x_{j}}^{n+1/2} + \frac{N_{x}}{h^{n+1/2}} - \frac{1}{h} \sum_{i} \sigma_{x_{i}}^{n+1/2} \Delta z_{i}^{n+1/2}$$
(VII-3)

and

$$\sigma_{y_{j}}^{n+1/2} = \sigma_{y_{j}}^{n+1/2} + \frac{N_{y}}{h^{n+1/2}} - \frac{1}{h} \sum_{i} \sigma_{y_{i}}^{n+1/2} \Delta z_{i}^{n+1/2} . \qquad (VII-4)$$

Here ${\rm N}_{\chi}$ and ${\rm N}_{y}$ are the membrane loads at the start of the calculation.

VIII. Time Step Control

After each cycle the time step for the next cycle is determined so that a set of stability and accuracy constraints are maintained. This is determined by

$$\Delta t_{j}^{n+1} = Min \qquad TGROW* \ \Delta t_{j}^{n}$$

$$DTMAX$$

$$\Delta t_{j}^{n}/RTEMP$$

$$DTPULS (during the temperature pulse) (VIII-1)$$
for cycles after cycle number NEARLY, or

$$\Delta t_j^{n+1} = DTEAR$$
 (VIII-2)

for the first NEARLY cycles. Here RTEMP is a measure of the stability and accuracy of the previous cycle,

$$\begin{aligned} \text{RTEMP} &= \text{MAX} \quad |2(\sigma_{x_j}^{n+1/2} - \sigma_{x_j}^{n-1/2})/(\{\sigma_{x_j}^{n+1/2} + \sigma_{x_j}^{n-1/2}\} \text{ TGSIG})| , \\ &|2(\sigma_{y_j}^{n+1/2} - \sigma_{y_j}^{n-1/2})/(\{\sigma_{y_j}^{n+1/2} + \sigma_{y_j}^{n-1/2}\} \text{ TGSIG})| , \\ &|2(\Delta z_j^n - \Delta z_j^{n-1})/(\{\Delta z_j^n + \Delta z_j^{n-1}\} \text{ TGZ})| , \\ &|2(T_j^n - T_j^{n-1})/(\{T_j^n + T_j^{n-1}\} \text{ TGT})| , \end{aligned}$$

RCMIN .

(VIII-3)

In the above, DTMAX is the maximum time step, TGROW is the maximum allowable fractional growth in the time step, DTPULS is the maximum time step during the temperature pulse and DTEAR is the early time step. TSIG, TGZ and TGT are the maximum allowable fractional changes in stress, zone widths and temperatures, respectively.

This prescription for finding the time step for the next cycle is followed in subroutine TIMING.

IX. Zone Skipping

To avoid unnecessary calculation, TSTRESS has the option of not calculating zone properties for every zone on every time step. The integer variable CALC(J) records which zones are to be calculated on the current time step. If CALC(J)=0, zone J is calculated; if CALC(J)=1, quantities in zone J are not changed from their previous values on the current cycle. The value of CALC(J) is calculated at the start of each time step in subroutine TSORT. TSORT uses the following criteria for finding CALC(J):

 $t^n - TLAST(J) > \Delta t^n_j$ CALC(J) = 0 if or

otherwise, CALC(J)=1. Here TLAST(J) is the time of the last calculation for this zone and n' is the cycle number of the last calculation for this zone.

X. Computer Code Description

The TSTRESS code is written in FORTRAN to be run on any main frame computer. A schematic flow chart of TSTRESS is shown in Figure 2. Variables

All real variables are implicit double precision. To be consistent, all real constants must be specified in the D notation (i.e. 1.DO). All variables necessary for the computation are contained in named common blocks. The variables are grouped so that a subroutine will have to call upon a small fraction of all of the commons. We now list all of the variables by common block. In the tables below, * indicates that the variable has a default value and ** indicates that it must be set to start the calculation.

Common Blocks

COMMON/CNTRL/

NCYCLE	Current cycle number
JMAX**	Number of zones
JMAXM1	JMAX-1
JMAXP1	JMAX+1
NMAX	Maximum number of cycles
NCYC(53)	Number of times each zone has been
	calculated
CALC(53)	Flag for calculation in each zone
TGSIG*	Maximum allowable change in stresses on a cycle
TGT*	Maximum allowable change in temperature on
	a cycle
IOUT(20)*	Standard output frequencies
IVIEW(50)*	Optional output frequencies
IOBIN(5)*	Binary output frequencies

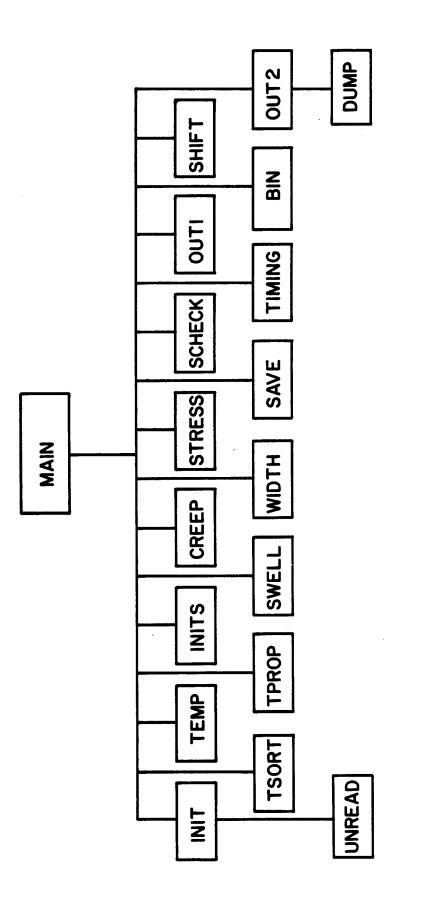


Figure 2 Schematic Flow Chart for TSTRESS

JSIG*	Zone number of binary output stress
CON(50)*	Constants used in calculation
NWAIT*	Maximum number of cycles between calculation
	cycles for any zone
ICOND(53)	Time step limiting condition for each cycle
NEARLY*	Number of "early" cycles where time step
	is DTEAR
INMAX	Number of spatial zones in input mesh of
	temperatures
MMAX*	Number of times in input mesh of temperatures
JCOND	Zone which determines time step for whole cycle
ICOND1(53)	Limiting conditions for each zone
ICOND2(53)	
KCOND1	Limiting conditions for whole cycle
KCOND2	
ICOUNT(53)	Number of cycles since last calculation for
	each zone
TGZ*	Maximum allowable change in zone width on
	a cycle
IADJ*	Readjustment flag
RCMIN*	Minimum change ratio
TGROW*	Largest allowable fractional growth in
	time step
IMAXP1	INMAX+1
TGRDP*	Width of temperature pulse
DTPULS*	Maximum time step during temperature pulse
IRST*	Restart flag

IRDTMP*	Read in temperature flag
COMMON/COEF/	
MUD(53)	µ ⁿ shear modulus for each zone
ALFD(53)	α_{j}^{n} expansion coefficient for each zone
NUD (53)	v_{j}^{n} Poisson's ratio for each zone
CAPFD(53)	F ⁿ j
PSID(53)	
SDOTD(53)	ψ ⁿ j Š ⁿ j
DPADOT**	DPA rate
CPSID(53)	yn j
PHID(53)	n ¢j
COMMON/CORE/	
MSTRXC	$N_x^{n+1/2}$ x-component of membrane load at time $t^{n+1/2}$
MSTRX0*	$N_x^{1/2}$ x-component of membrane load at time 0
MSTRYC	Ny ^{n+1/2}
MSTRYO*	$N_{y}^{1/2}$
COMMON/LENGTH/	5
LTEMPE	Number of single precision words in common
	block TEMPE
LCNTRL	Number of single precision words in common
	block CNTRL
LSTRES	Number of single precision words in common
	block STRES
LCOEF	Number of single precision words in common
	block COEF

LTIME	Number of single precision words in common
	block TIME
LSAVEV	Number of single precision words in common
	block SAVEV
LCORRE	Number of single precision words in common
	block CORRE
COMMON/SAVEV/	
NSAVE	Number of saved cycles
SSAVE(100)	Saved stresses
TSAVE(100)	Saved times
HSAVE(100)	Saved thicknesses
SMXTOT	Maximum x-component of stress in times up to
	present
SMYTOT	Maximum y-component of stress in times up to
	present
ТМХТОТ	Time of maximum x-component of stress up to
	present
ТМҮТОТ	Time of maximum y-component of stress up to
	present
JMXTOT	Zone of maximum x-component stress up to
	present
ЈМҮТОТ	Zone of maximum y-component of stress up to
	present
COMMON/STRES/	
XD(53)	z ⁿ positions of zone centers
XF(53)	z ⁿ⁻¹
SIGXC(53)	on+1/2
	XJ

SIGXE(53)	σ ^{n-1/2} xj
SIGYC(53)	on+1/2 yj
SIGYE(53)	_n-1/2
SIGC(53)	yj ^{n+1/2} ^j
SIGE(53)	o ^{n-1/2}
TAUC(53)	^π n+1/2 j
TAUE (53)	n-1/2
HD	h ⁿ thickness at time t ⁿ
HF	h ⁿ⁻¹ thickness at time t ⁿ⁻¹
DELHD	Change in thickness on time step n
MAXJX	Zone of maximum x-component of stress during
	present cycle
MAXJY	Zone of maximum y-component of strss during
	present cycle
SMAXX	Maximum x-component of stress during present
	cycle
SMAXY	Maximum y-component of stress during present
	cycle
DZD(53)**	∆zjn
DZF(53)	∆z ⁿ⁻¹
XD2(53)	Positions of zone boundaries at time t ⁿ
COMMON/TEMPE/	
TZONE (50)	Spatial positions of input temperatures
TEMP1(50,20)	Input temperatures on input zone boundaries
TEMP2D(53)	T ⁿ j
TDOTD(53)	†n j
TTIME(20)*	Times of input temperatures

TDOTM	Maximum †
MAXJTD	Zone of maximum †
TEMP2F(53)	T ⁿ⁻¹ j
LINEAR*	Linear temperature profile flag
TFRONT	Temperature at front of plate in linear profile
ТВАСК	Temperature at back of plate in linear profile
TEMP2(50)	Input temperature at input zone centers
COMMON/TIME/	
ТА	t ^{n+3/2}
ТВ	t ⁿ⁺¹
TC	t ^{n+1/2}
TD*	t ⁿ
TE	t ⁿ⁻¹
DTB(53)	∆t ⁿ⁺¹ j
DTC(53)	$\Delta t_{j}^{n+1/2}$
DTD(53)	∆t ⁿ j
DTE(53)	$\Delta t_{j}^{n-1/2}$
DTEAR*	Time step for cycles in the first NEARLY
DTMAX*	Maximum allowable time step
TMAX*	Maximum time
TLAST(53)	Most recent time each zone was calculated
DTMIN	Minimum time step
DTCYC	Time step for the cycle
	(minimum of ∆t ⁿ⁺¹)
DTF(53)	∆t ⁿ⁻¹

Subroutines

BIN	Writes results into a binary file in unit 9
CREEP	Calculates the creep compliance $\psi_{,i}^n$ and
	the functions
	Ψ_{j}^{n} and ϕ_{j}^{n}
DUMP	Writes the common blocks onto unit 20 for use
	in a restart
INIT	Initializes variables, calls UNREAD, sets
	default values, reads in changes to variables
	and prints out all of the initial parameters
	and headings
INITS	Sets the initial stresses and membrane loads
OUT1	Prints out results at cycles determined by
	IOUT(20)
0UT2	Prints out a final summary of results, calls DUMP
	and writes final parameters onto unit 9
SAVE	Finds and saves the maximum stresses and changes
	in temperature
SCHECK	Computes the membrane loads, compares them with
	the initial values and has the option of
	correcting the stresses to give the proper
	membrane loads
SHIFT	Moves all of the variables into the next time
	step
STRESS	Calculates the stresses $\sigma_{j}^{n+1/2}$, $ au_{j}^{n+1/2}$,
	$\sigma_{xj}^{n+1/2}$ and $\sigma_{yj}^{n+1/2}$
SWELL	Calculates the swelling rates S_j^n

TEMP	Calculates the temperatures ${ t T}_j$ and ${ t T}_j^{ extsf{n}}$ from
	the input temperatures, the positions z ⁿ
	and the time t ⁿ
TIMING	Calculates the time steps ${\scriptscriptstyle\Delta t}_j^{n+1}$, ${\scriptscriptstyle\Delta t}_j^{n+1/2}$ and
	Δt^{n+1} and the times t^{n+1} and $t^{n+1/2}$
TPROP	Calculates the thermal properties ν_j^n , α_j^n and
	n ^µ j
TSORT	Determines which zones will be calculated on
	this cycle
UNREAD	Reads in the common blocks from unit 21 during
	a restart
WIDTH	Calculates Δz_j^n and h^n

Input/Output Units

The TSTRESS code uses 4 different I/0 units. These units are listed along with their specific functions.

<u>Unit #</u>	Function
4	TSTRESS reads input temperature
	from this unit
9	TSTRESS writes binary output for
	plotting and use in other
	programs onto this unit
20	TSTRESS writes out the common
	blocks at the end of the
	problem onto this unit for use
	in a restart

TSTRESS reads the common blocks from this unit at the beginning of a restart.

Storage Requirements and Execution Time

21

TSTRESS requires about 20 K words of core storage on a UNIVAC 1180 computer and uses about 1 msec of CPU time for each zone cycle.

Adding Variables to TSTRESS

When adding a variable to a TSTRESS common block, the common block length must be changed. These lengths are set in subroutine INIT and they are used when one uses the subroutines DUMP and UNREAD to write and read the common blocks. Those lengths are the number of single precision words in each common block. Because the structure of words changes from computer to computer, care must be taken if TSTRESS is used on machines other than UNIVAC 1180's.

XI. Input Manual

The TSTRESS code reads the namelist input, &BEGIN, from I/O unit 5. The variables and constants that must be inputted are listed in Table XI-1. Those with default values, which must be inputted only if they need to be changed, are given in Table XI-2. Optional output variables are described in Table XI-3.

Table XI-1

Required Input Variables and Constants

	Default	Description
NMAX		Number of cycles
JMAX		Number of zones
DPADOT		DPA rate
DZD(J)		Zone widths
IOUT(20)		Output frequencies
additionally	if LINEAR=1 and IRDTMP=1	
TFRONT		Temperature at front of plate
ТВАСК		Temperature at back of plate

Optional Input Variables	and Constants
Default	Description
0.05D0	Allowable fractional change
	in stresses over a cycle
0.05D0	Allowable fractional change
	in zone widths over a
	cycle
0.05D0	Allowable fractional change
	in temperatures over a
	cycle
1.5D0	Allowable fractional growth
	in time step over a cycle
1.D-18	Minimum ratio of expected
	change in values
	to present values
100	Binary output frequencies
100	Binary output frequencies
1	Binary output stress zone
10	Maximum number of cycles a
	zone may wait between
	calculations
10	Number of "early" cycles
1	If IADJ≠1, adjust stresses
	to conserve membrane
	loads
	Optional Input Variables Default 0.05D0 0.05D0 0.05D0 0.05D0 1.5D0 1.5D0 1.00 100 100 10 10 10

Table XI-2

AD-0.5 38 (0.-0.

LINEAR	0	If LINEAR=1, a linear time
		independent temperature
		profile is used (even if
		IRDTMP=0)
IRDTMP	0	If IRDTMP=0, temperatures are
		read in from unit 4
MSTRXO	0.D0	Initial N _X
MSTRYO	0.D0	Initial N _y
IRST	0	Restart flag
MMAX	1.D-1	TTIME(MMAX) is temperature
		pulse period
1VIEW(1-50)	0	Optional output frequencies
CON(1-50)	0.D0	Constants (unused)
NCYCLE	1	First cycle number of problem
DTEAR	1.D-12	Early time step
TD	1.D-18	Initial time step
ТМАХ	1.D0	Maximum time
DTMAX	1.D-3	Maximum time step
DTCYC	DTEAR	Time step of first cycle
TGRDP	1.D-4	(See TIMING)
DTPULS	1.D-4	(see TIMING)
CALC(J)	0	Calculation switch
SIGXE(J)	0.D0	Initial σ _{xj}
SIGYE(J)	0.D0	Initial σ _{yj}
SIGE(J)	0.D0	Initial σ _j
TAUE(J)	0.D0	Initial _{Tj}
TEMP1		Input temperatures

TZONE	 Spatial positions of TEMP1
INMAX	 Number of points in TZONE

<u>Table XI-3</u>

Optional Output Frequencies IVIEW(I)

I	Subroutine	Variables Printed
1	TIMING	TB,TC,DTCYC
2	TIMING	NCYCLE,ICOND,ICOND2,JCOND,
		KCOND1,KCOND2
3	TSORT	NCYCLE,TD,TLAST,DTD,CALC
4	STRESS	NCYCLE,CAPFD,CPSID,PSID,SIGC,
		TAUC
5	TEMP	NCYCLE, INDT, DUMTD, FRACT, XD,
		IPTEMP, TEMP1, TEMP2D, TDOTD
6	SWELL	NCYCLE,DPADOT,TD,TEMP2D,R,
		FNOT, ALPHA, SDOTD
7	INITS	DUMS,MSTRXC,MSTRYO,HD,ALFD,
		NUD,MUD,DZD,SIGXE,SIGYE

1

XII. Sample Problem

We have tested the accuracy of TSTRESS by running a sample problem which has a known analytic result. This problem serves as both an example of how to use the code and as a verification of the code. This test problem involves the creep relaxation of a linear residual stress distribution across a flat plate. There are no membrane forces imposed ($N_x=0,N_y=0$) and swelling and irradiation creep are ignored. The creep law chosen is for thermal creep and given by

$$\hat{e}_{eq}^{c} = A \sigma_{eq}^{4}$$
 (XII-1)

where

$$\sigma_{eq} = (\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_x)^{1/2} \qquad (XII-2)$$

and

$$A = 1.5 \times 10^{-14} hr^{-1} - ksi^{-4}$$
.

The initial linear residual stress profile is established by imposing a time independent linear temperature profile across the plate. This is done by setting LINEAR=1 and IRDTMP=1. The initial stresses are then

$$\sigma_{x} = \sigma_{y} = \frac{2\alpha(1+\nu)\mu\Delta T}{(1-\nu)h} (z - \frac{h}{2})$$
 (XII-3)

where ΔT is the temperature difference across the plate.

36

As time advances the stresses for this problem may be written exactly as

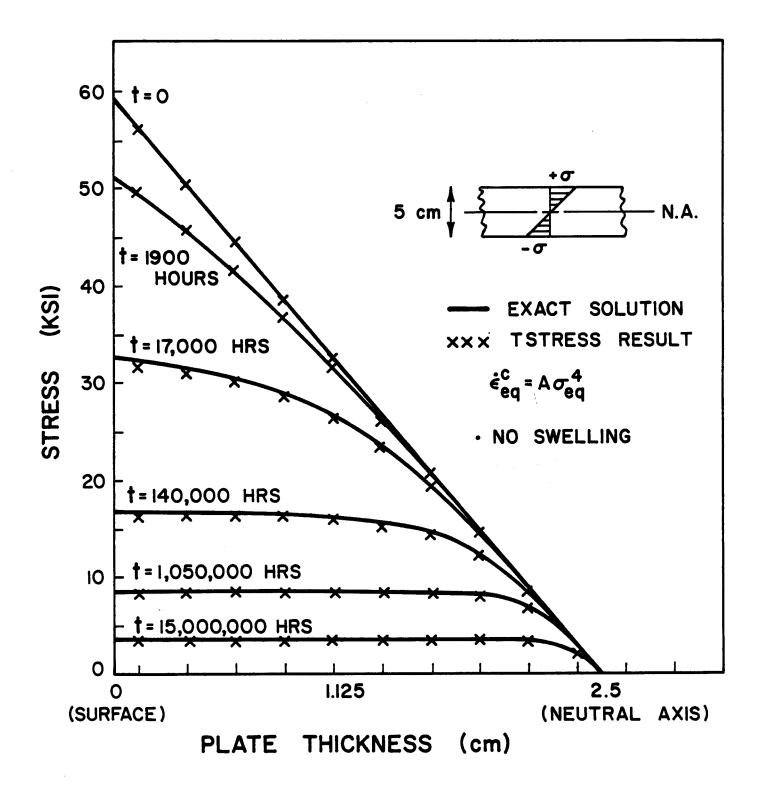
$$\sigma_{x}(z,t) = [3BAt + \sigma_{x}^{-3}(z,t=0)]^{-1/3}$$
 (XII-4)

and

$$\sigma_{y}(z,t) = [3BAt + \sigma_{y}^{-3}(z,t=0)]^{-1/3}$$
 (XII-5)

where

$$B = \mu(\frac{1+\nu}{1-\nu}) \quad . \tag{XII-6}$$


Figure 3 shows a calculation of these stresses done by TSTRESS. Here, we have used the parameters

 $\alpha = 9.5 \times 10^{-6} \text{ K}^{-1}$ $\mu = 1.112 \times 10^{5} \text{ ksi}$ $\nu = 0.33$ h = 5.0 cm $\Delta T = 200 \text{ K} .$

These calculations show excellent agreement between analytic and the numerical TSTRESS results.

To start this calculation on TSTRESS, the input namelist is

&BEGIN NMAX=200, MSTRX0=0.D0,

CREEP RELAXATION OF A LINEAR RESIDUAL STRESS DISTRIBUTION

Figure 3 Creep Relaxation of a Linear Residual Stress Distribution.

MSTRY0=0.DO, LINEAR=1, TFRONT=3.D2, 1ADJ=1,TBACK=1.D2, JMAX=20, DPADOT=0.D0, TMAX=1.D8, DTMAX=1.D7, DZD=20*2.5D-1, IOUT=3*5,IRDTMP=1, NWAIT=1, NMAX=1, TTIME=1.DO, IOBIN=2*100, TGSIG=5.D-2, &END .

Inertial Confinement Example

A sample of the printed output is presented on the following pages for a run that was started with the input file,

&BEGIN NMAX=3000, JMAX=32, TMAX=4.D-3, DTMAX=5.D-5,

```
DPADOT=3.D-7,
DZD=10*1.D-4,9*1.D-3,13*3.769D-2,18*2.5D-1,
IOUT=3*1000,
NEARLY=10,
NWAIT=1,
DTEAR=1.D-9,
TGSIG=.008D0,
IOBIN=50,20,
&END .
```

This problem is an example of how TSTRESS is currently being used at the University of Wisconsin to calculate the transient stresses in the walls of inertial confinement fusion reactors. The wall temperatures used in this problem come from a temperature diffusion code which calculates the timedependent temperatures for a given surface heat flux. The output of TSTRESS may be used in a crack growth code to determine the life of the wall. Acknowledgement

This work was supported by Sandia Laboratories under contract #13-9838.

TSTRESS - A CUDE TO COMPUTE THE THERMAL STRESS IN A PLATE FOR TIME DEPENDENT TEMP PROFILES WRITTEN BY ROBERT R. PETERSON

.

INPUT PARAMETERS

# OF CYCLES	
INITIAL CYCLE #	
# OF ZONES	
STRESS SAVING FREG	
TIME STEP OUTPUT FREM ****	
ZONE VALUES OUTPUT FREG	1600
GLOBAL VAL OUTPUT FREQ	1000
BINARY ZONE OUTPUT FREG	50
BIN HISTORY INCREMENT	20
INITIAL TIME	.100000-017
EARLY TIME STEP	.100000-008
# GF EARLY CYCLES	10
MAX TIME STEP	
MAA TIME	
MAX # OF CYCLES TO CALE	1
SPA RATE	
# OF TEMP PROFILES INPUT .	
# OF POINTS / INPUT PROF .	
INITIAL WINTH OF PLATE	.499970+000
MINIMUM CHANGE RATIO	
STRESS CHANGE RATIO	
WID TH CHANGE RATIO	.800000-002
TENFERATURE CHANGE RATIO .	
A-COMP OF MEN STRESS	
Y-COMP OF MEM STRESS	.0000+000
MANLAL T READ FLAG	Ŭ
ADJEST MEMBRANE STRESS	1
PULSE STRUCTURE TIME	
TIME STEP EARLY IN PULSE .	.100000-003

IVIEW - OPTIONAL OUTPUT PARAMETERS

0	и 0	0	0	0	0	0	0	0	0
U	U U	U U	0	0	0	0	n	0	•
õ	õ	ŏ	0	0	0.	0	0	0	0

INPUT TEMPERATURE PROFILES

TZONE (CM) - POSITIONS OF INPUT ZONES

.10000-017	.100000-004	.20000-004	•500000-004	.10000-303
.20000-003	.50000-003	.10000-002	•500000-002	.10000-001
.20000-001	.309000-001	.40000-001	•500000-001	.10000+000
•150000+0C0 •400000+CC0	-20000+000 -450000+000	•250000+000 •507000+000	.300000+000	.350000+000

TTIME(SEC) - TIMES OF INPUT PROFILES

.240000-003	.48000-603	+720000-003	.960000-003	.120000-002
.144000-0C2	.16000-002	•192000-002	.216000-002	-240000-002
.264000-0C2	.288000-002	•224000-001	.612000-001	

EMPTIDEG K) -	INPUT TEMPERATURE	PROFILES		
• 578916+0 (3 • 578611+0 (3 • 575183+0 (3 • 573960+0 (3 • 573023+0 (3	•578300+003 •575136+003 •575538+003	•578876+003 •577167+003 •575076+003 •573273+003 •573005+003	•578832+003 •575799+003 •574921+003 •573128+003	•578764+003 •575285+003 •574507+003 •573056+003
• 582853+0 C3 • 582455+0 C3 • 575218+0 C3 • 573961+0 C3 • 573023+0 C3	-582841+003 -58205+003 -575136+003 -573538+003 -573039+003	• 5 82 808 + 03 • 5 80 174 + 03 • 5 75 07 4 + 003 • 5 73 27 3 + 003 • 5 73 005 + 003	•582756+003 •577387+003 •574919+003 •573128+003	•582667+003 •575704+003 •574506+003 •573056+003
• 584762+0 [3 • 584403+0 [3 • 575325+0 [3 • 573961+0 [3 • 573023+0 [3	-584751+003 -583986+003 -575144+003 -573539+003 -573009+003	• 584722+003 • 582224+003 • 575073+003 • 573274+003 • 573005+003	•584676+003 •579035+003 •574918+003 •573129+003	•584596+003 •576401+003 •574506+003 •573057+003
• 585542+C (3 • 565242+C (3 • 575507+C (3 • 573962+U (3 • 573023+C (3	.585532+003 .584891+003 .575165+003 .573540+003 .57309+003	• 5 85 508 +003 • 5 83 37 6 +003 • 5 75 07 4 +003 • 5 73 27 5 +003 • 5 73 006 +003	•585471+003 •580297+003 •574917+003 •573129+003	•585404+003 •577147+003 •574506+003 •573057+003
• 585878+0 C3 • 585624+0 C3 • 575742+0 C3 • 573963+0 C3 • 573024+0 C3		•585848+003 •584024+003 •575078+003 •573275+003 •573006+003	•585817+003 •581182+003 •574916+003 •573130+003	• 585761+003 • 577818+003 • 574506+003 • 573057+003
• 586139+0C3 • 585909+0C3 • 576006+0C3 • 573963+0C3 • 573024+0C3	•585639+003 •575265+003	•586112+003 •584460+003 •575086+003 •573276+003 •573006+003	•586085+003 •581813+003 •574916+003 •573130+003	-586034+003 -578391+003 -574505+003 -573057+003
• 5 57205+0 [3 • 5 56915+0 [3 • 5 76282+0 [3 • 5 73964+0 [3 • 5 73024+0 [3	•580588+003 •575342+003 •573542+003	•587174+003 •585228+003 •575100+003 •573276+003 •573006+003	•587139+003 •582421+003 •574918+003 •573130+003	•587074+003 •578899+003 •574505+003 •573057+003
• 5 8 8 8 3 + 0 C3 • 5 8 8 5 8 7 + 0 C3 • 5 7 6 5 6 8 + 0 C3 • 5 7 3 9 6 4 + 0 C3 • 5 7 3 0 2 4 + 0 C3	•>8-231+003 •>75434+003 •573543+003	• 5 68 8 5 2 + 0 C 3 • 5 66 66 0 + 0 0 3 • 5 7 5 1 2 1 + 0 0 3 • 5 7 3 2 7 7 + 0 0 3 • 5 7 3 0 0 6 + 0 0 3	•588817+003 •583393+003 •574920+003 •573131+003	•588750+003 •579461+003 •574505+003 •573058+003
. 5 8 7 1 3 + U (3 . 5 8 8 7 1 3 + U (3 . 5 7 6 3 7 3 + U (3 . 5 7 3 9 6 5 + U (3 . 5 7 3 0 2 4 + D (3	•588200+003 •575541+003 •573544+003	• 5 88 68 7 + 0 03 • 5 86 962 + 0 03 • 5 75 14 8 + 0 03 • 5 73 277 + 0 03 • 5 73 0 06 + 0 03	•588660+003 •584048+003 •574925+003 •573131+003	•588607+003 •580044+003 •574505+003 •573058+003
• 5 36 56 7+ 0 (3 • 5 8 3 6 3+ 0 (3 • 5 77 1 8 4+ 0 (3 • 5 73 96 6+ 0 (3 • 5 73 0 2 4+ 0 (3	•580117+003 •575602+003 •573544+003	• 5 88 54 6 + 0 0 3 • 5 87 0 3 7 + 0 0 3 • 5 75 1 8 3 + 0 0 3 • 5 73 2 7 8 + 0 0 3 • 5 73 C 0 6 + 0 0 3	•588522+003 •584414+003 •574931+003 •573131+003	•588476+003 •580524+003 •574505+003 •573058+003
• 5 6 8 6 8 6 4 0 C3 • 5 8 8 4 8 6 4 0 C3 • 5 7 7 4 8 9 4 0 C3 • 5 7 3 9 6 6 4 0 C3 • 5 7 3 0 2 4 4 0 C3	+588247+603 +575795+603 +573545+003	• 5 88 66 4 + 0 0 3 • 5 87 20 2 + 0 0 3 • 5 75 22 6 + 0 0 3 • 5 73 27 9 + 0 0 3 • 5 73 0 0 6 + 0 0 3	•588641+003 •584701+003 •574940+003 •573132+003	•588595+003 •580919+003 •574505+003 •573058+003
• 5 09 30 0+ C (3 • 5 09 07 5+ C (3 • 5 77 783+ C (3 • 5 73 96 7+ C (3 • 5 73 02 4+ C (3	•588801+003 •575936+003 •573546+003	5 69 28 4 + 0 03 5 67 6 3 3 + 0 03 5 75 2 7 6 + 0 03 5 73 2 7 9 + 0 03 5 73 0 0 6 + 0 03	•589256+003 •585034+003 •574952+003 •573132+003	•589203+003 •581277+003 •574505+003 •573058+003

TEMP1(DEG K) - INPUT TEMPERATURE PROFILES

. 5	578357+003	.575349+003	.578332+	003	. 5783	04+003	578253+003				
	578149+0C3	.578001+003	.577936+				577885+003				
	577701+0 (3	•577390+0ú3	.576996+				574865+003				
	574055+013	.573607+003	•573326+		-						
	573033+063	.573014+003	.573009+		. 21 21	024005 .	573075+003				
• •			• • • • • • • • • • • • • • • • • • • •	003							
	576778+003	.576771+003	.576754+	003	6747	27+003 .	576680+003				
	576592+0C3	.576490+003	.576486+								
	576446+0(3	.570350+003	.576221+				576500+003				
	574331+003	.573770+003	.573427+				575161+003				
	573054+003				+2122	26+003 .	573114+003				
• • •	1303470(3	•573025+003	•573017+	003							
. 5	576177+0C3	.576170+003	.576153+	0.03	5744	27+003 .	576083+003				
	76007+003	.575933+003	•575936+								
	575923+0 C3	.575872+003	.575804+				575951+003				
	574476+6(3	•573924+003	•573541+				575140+003				
	573081+603	.573041+003			• 2 (3 3	01+003 .	573159+003				
• -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*373041+003	•573028+	003							
ZONE	TEMP	POISSON'S	EXP COEF	SHEAR	MOD	CREEP RT					
(#)	(DEG K)	RATIO			MOV		SWELL RT	ZONE WIDTH		STRESS Y	POSITION
	(DEG K)	RATIO	(1/DEG K)	(KSI)		(1/KSI-SEC) (1/SEC)	(CM)	(KSI)	(KSI)	(CN)
1	.5761+(03	.2950+800	.1220-004	0070							
ż	.5760+003	.2950+000	.1220-004	.9070		.1265-011	.2341-008	.1000-003	8700+000	8700+000	.1000-003
3	.5760+003	• 2950+000		•9070		.1265-011	.2362-008	.1000-003	8367+000	8367+000	.2000-003
4	• 5760+ (03		.1220-004	.9070		.1265-011	.2375-008	.1000-003	8162+000	8162+000	.3000-003
ŝ	• 5759+ (03	+2950+000	.1220-004	•9070		.1265-011	.2382-008	.1000-003	8062+000	8062+000	.4000-003
ó	• 5759 + (03	+2950+000	.1220-004	.9070		.1265-011	.2368-008	.1000-003	7963+000	7963+000	.5000-003
7	• 5759+ (03	.2950+000	.1220-004	.9070		.1265-011	.2392-008	.1000-003	7914+000	7914+000	.6000-003
8		+2950+000	.1220-004	.9070		.1265-011	.2391-008	.1000-003	7917+000	7917+000	.7000-003
ŝ	• 5759 + C03	.2950+000	.1220-004	.9070		.1265-011	.2391-008	.1000-003	7919+000	7919+000	.8000-003
	• 5759+ (03	+2950+000	.1220-004	.9070		.1265-011	.2391-008	.1000-003	7921+000	7921+000	• 90 0 0-003
10	• 5759 + 03	.2950+000	.1220-004	.9070		.1265-011	.2391-008	.1000-003	7924+000	7924+000	.1000-002
11	• 5759 + 03	-2950+000	.1220-004	.9070		•1265-011	.2390-008	• 1000-002	7938+000	7938+000	.2000-002
12	• 5759 + 03	+2950+000	.1220-004	.9070		.1265-011	.2388-008	1000-002	7963+000	7963+000	.3000-002
13	.5760+(03	+2950+000	.1220-004	.9070		.1265-011	.2387-008	.1000-002	7988+000	7988+000	•4000 - 002
14	• 5760 + 03	-2950+000	.1220-004	.9070		.1265-011	•2385-008	.1000-002	8013+000	8013+000	.5000-002
15 16	• 5760 + 03	·2950+000	.1220-004	.9070		.1265-011	•2385-008	.1000-002	8021+000	8021+000	.6000-002
17	• 5760+ 03	+2950+000	.1220-004	•9070·		.1265-011	·2385-008	.1000-002	8013+000	8013+000	.7000-002
	.5760+003	•2950+00D	.1220-004	.90701		.1265-011	•2386-008	.1000-002	8004+000	8004+000	.8000-002
16	• 5760 + 03	+2950+000	.1220-004	.9070		.1265-011	•2386-008	•1000-00z	7996+000	7996+000	.900 -002
19	• 5760 + 03	.2950+000	.1220-004	.90701		•1265-011	.2387-008	.1000-002	7987+000	7987+000	.1000-001
20	• 5759 + CO3	.2950+300	.1220-004	.9070		.1265-011	.2406-008	.3769-001	7688+000	7688+000	•4769-001
21	.5755+003	.2950+000	.1220-004	.9070+		.1265-011	.2516-008	.3769-001	6008+000	6008+000	.8538-001
22	• 5751 + CO 3	•2950+C00	.1220-004	.9070		.1265-011	.2617-008	•3769-001	4459+000	4459+000	1231+000
23	• 5746 + CD 3	.2950+000	•1220-004	.90704		.1265-011	.2750-008	.3769-001	2424+000	2424+000	.1608+000
24	•5741+C03	.2950+000	.1220-004	.90704		1265-011	.2866-008	.3769-001	6605-001	6605-001	• 1984+000
25	• 5738 + 03	·2950+000	.1220-004	.90704		.1265-011	•2962-J08	.3769-001	.7921-001	.7921-001	.2361+000
26	• 5735 + CO3	·2950+000	.1220-004	.90704		.1265-011	.3036-008	.3769-001	1908+000	1908+000	.2738+000
27	• 5733 + 603	·2950+000	.1220-004	.90704		.1265-011	.3085-008	.3769-001	.2646+000	.2646+000	.3115+000
Zô	• 5732 + 03	·2950+000	.1220-004	.9070+		.1265-011	.3118-008	.3769-001	+3138+000	.3138+000	.3492+000
29	• 5731 + CG 3	•2950+00ü	.1220-004	.90704		.1265-011	.3140-008	.3769-001	.3478+000	.3478+000	.3869+000
30	• 5731 + 003	.2950+000	.1220-304	.90704		.1265-011	•3155-0ù8	•3769-001	• 37 00 + 000	+3700+000	.4246+000
31	• 5730+ C03	.2950+000	.1220-004	.90704		.1265-011	.3163-008	.3769-001	.3623+000	.3823+000	.4623+000
32	• 5730 + 603	.2950+000	.1220-004	.90704	004	.1265-011	.3167-008	.3769-001	.3878+000	.3878+000	.5000+000

.

.

ZONE TEMP PUISSON'S EXP COEF SHEAR MOD CREEP RT SWELL RT ZONE WIDTH STRESS X STRESS	
2 •5782+103 •2950+000 •1220-004 •9070+004 •1266-011 •1764-008 •1001-003 -•1589+001 -•1589+ 3 •5781+103 •2950+000 •1220-004 •9070+004 •1265-011 •1798-008 •1001-003 -•1543+001 -•1543+ 4 •5780+103 •2950+000 •1220-004 •9070+004 •1265-011 •1828-008 •1001-003 -•1510+001 -•1510+ 5 •5779+103 •2950+000 •1220-004 •9070+004 •1265-011 •1851-008 •1001-003 -•1490+001 -•1490+	5 Y POSITION (CM)
6 5778+(03 2950+000 1220-004 9070+004 1265-011 .1874-008 .1001-003 1469+(01) 1469+(01) 7 5776+(03 .2950+000 .1220-004 .9070+004 .1265-011 .1910-008 .1001-003 1427+(01) 137+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+(01) 127+($\begin{array}{cccccccccccccccccccccccccccccccccccc$

GLOGAL QUANTITIES

MAXINUM X - COMP OF TOTAL STRESS MAXIMUM Y - COMP OF TOTAL STRESS FASTEST TEMP CHANGE THICKNESS OF PLATE	=158931+001 =158931+001 = .989647+006 = .500552+000	IN ZONE # 1 IN ZONE # 1 IN ZONE # 1
---	---	---

MEMBRANE STRESS CONSERVATION (KSI)

	THIS CYCLE	ORIGINALLY
X-COMPONENT	2045-001	.0000+000
Y-COMPONENT	2045-001	+ 0000+000

44

.

45

POSITION (CM)

.1002-003

14 32	• 5 7 5 5 1 - 6 6 2 • 5 0 0 3 0 0 - 0 0 4											
ZONE (#)	TEMP (deg k)	POISSON'S RATIO	EXP COEF (1/deg k)	SHEAR MOD (KSI)	CREEP RT (1/KSI-SEC)	SWELL RT (1/SEC)	ZONE WIDTH (CM)	STRESS X (KSI)	STRESS Y (KSI)	P (
1	.5886+003	.2950+000	.1220-004	.9070+004	.1268-011	7949-009	.1002-003	5365+001	5365+001			

ż	• 5885 + C	0.3 . 49 5	50+000	.1220-0	04 .9070		.1268		767		.1002			326+001	.2004-003
3	• 5884 + C		50+000	.1220-0			.1268.		741		.1002			295+001	.3006-003
4	•5883+C		50+000	.1220-0			.1268-		720		.1002	-003527	5+001 - 5	275+001	.4008-003
5	.5882+0		50+000	.1220-0			.1268-		699		.1002			254+001	.5009-003
6	•5881+C		50+000	.1220-0			.1268-		661		.1002			224+001	.6011-003
7	.5879+0		50+000	.1220-0			.1268								
. 8	•5876+0		50+000	.1220-0					608		.1002			185+001	.7013-003
ş	.5874+0		50+000				.1268.		555		.1002			146+001	.8015-003
10				.1220-0			.1268		502		.1002-			107+001	.9017-003
	• 5872+0		000	.1220-0			•1268-		449		.1002			068+001	.1002-002
11	• 5868 + C		50+000	1220-0			1267		349		·1002·			963+001	.2004-002
12	• 5862 + C		50+000	.1220-0			.1267-		200		.1002-			791+001	.3006-002
13	• 5855 + C		50+000	.1220-0			.1267.			2-010	.1002-		8+0014	618+001	.4007-002
14	• 5849+ 0		50+000	.1220-0			·1267·	-011	.990	1-010	.1002	-002444	6+0014	446+001	• 5009-002
15	• 5843 + C		50+000	+1220-0	.9070	+004	.1267.	-011	.262	2-009	. 1002-	-002 422	5+0014	226+001	.6011-002
16	• 5836 + C		50+000	.1220-0		+004	.1267-	-011	.438	1-009	.1002-	-002395	9+0013	959+001	.7013-002
17	• 5828+C		50+000	+1220-0	.9070	+004	.1266-	-011		0-009	.1002-			692+001	.8015-002
18	•2851+0	03 .295	50+000	.1220-0	.9070	+ 004	.1266-	-011	.793	0-009	.1002-			4 25 +001	.9017-002
19	.5814+0	03 .295	50+000	.1220-0	.9070	+004	.1266-			0-009	.1002-			159+001	.1002-001
20	.5762+(03 .295	50+000	.1220-0			.1265-			8-008	.3776-			121+001	.4777-001
21	• 5749+(50+000	.1220-0			.1265-			8-008	.3776-	-001549		491+000	.8553-001
22	.5745+0		50+000	.1220-0			.1265-			9-008	•3776-	-001349		4 92 +000	.1233+000
23	• 5741+C		50+000	.1220-0			.1265-			1-008	.3776-			130+000	.1610+000
24	.5737+C		0+000	.1220-0			.1265-			2-008	.3776-				
25	• 5735+0		50+000	.1220-0										582-001	-1958+000
26	.5733+0		50+000	.1220-0			.1265-			3-008	.3776-			461+000	.2366+000
27	• 5732 • 0		50+000	.1220-0			.1265-			4-008	.3776-			661+000	.2743+000
28	.5731+0		50+000				.1265-			4-008	. 3776-			419+000	.3121+000
29	• 57 30 + 0			.1220-0			•1265*			2-008	776.			901+000	.3498+000
30	• 5730+0		50+000	.1220-0			.1265-		.316	3-008	.3776-			2 17 +000	.3876+000
31			50+000	.1220-0			•1265-			0-008	• 3776-			407+000	.4253+000
	• 5730+0		50+000	.1220-0			.1265-			3-008	.3776-		5+000 .5	496+000	•4631+000
32	• 5730+C	.295	50+000	.1220-0	.9070	+004	.1265-	-011	•317	4-008	.3776-	-001 .551	9+000 .5	519+000	.5008+000
					5613+001 K					T TIME		-002 SEC			
M.M.	XIMUM Y-C	OMP OF TO	OTAL STRE	ESS =	5613+001 K	SI IN	ZONE A	,	1 A	T TIME	.2794-	-002 SEC			
		TC	DTAL STRE	ESS(KSI)	IN ZONE	1									
	700+000	8757+00			8899+000		0+000				116+000				338+000
		9489+00			9642+000		0+000	97	798+00	09	877+000	9956+000			012+001
		1029+00			1046+001		4+001		063+00		072+001	1082+00	F -• 1091+	0011	101+001
		1122+00		54+001	1147+001		1+001	11	176+00	11	192+001	1210+00	1229+	0011	249+001
		1295+00			1349+001		9+001	14	12+00	11	447+001	1492+00	11540+	0011	589+001
		1695+00			1819+001	189	1+001	17	731+00	118	827+001	2070+00	2283+	0012	536+001
		3391+00	01380	00+001	4118+001	433	7+001	45	539+00	15	009+001	5468+00	5528+	0015	506+001
5	491+001											-			
TI	Nr(SFC)														
- 1	M _E (SEC) 223-006	.6616-00	5 .133	9-004	.1944-004	.249	2 -004	. 29	96-004	14	64-004	.3902-004	.4316-0	104 4	709-004
	083-004	.5442-0J		7-004	.6121-004		3-004		56-004		060-004				
	215-004	.8491-00		2-004	.9032-004	0 30	7-004		59-004		320-004	.7356-004			934-004
	038-003	.1116-00		5-003	.1176-003	420	9-003					.1008-003			061-003
	442-003	.1487-00		4-003	.1583-003		6-003		43-003		280-003	.1317-003			399-003
	028-003	.2099-00		2-003	.2255-003		1-003				47-003	.1815-003			956-003
	660-003	.5648-00		7-003	.8554-003				02-003		66-003	.2993-003			851-003
	394-002			1	•0004-000	• 107	7-002	• 13	77-002	• 10	577-002	.1954-002	-2194-0	102 - 2	473-002
•••	574 002														
PL	ATE WIDTH	(M)													
	000+000	.5000+00	0	0+000	.5000+000	= 0.0	0+000		00.000					-	
	000+000	.5004+00		0+000	•5000+000		0+000		00+000		00+000	+5000+000			000+000
	001+000	.5001+00		1+000	• 500 1+000		1+000				000+000	•5001+000			001+000
	002+000	.5002+00		2+000	.5002+000		2+000		01+000		01+000	.5001+000			001+000
	003+000	.5003+00		3+000	.5004+000		4+000		02+000		02+000	.5002+000			003+000
	006+000	.5006+00		7+000	5007+000		8+000		04+000		04+000	.5005+000			006+000
	008+000	.5002+00		8+000	.5008+000		8+000		08+000		000+800	.5008+000			008+000
	038+000					. 500		• 50	08+000	• • • • • •	000+80	• 5008 + 000	• 5 0 0 8 + 0	.50	005+000
	-														

CYCLE TIME(SEC) TIME STEP(SEC) LIMITING CONDITION(SIGY) WOULD BE(SIGY) IN ZONE(20)