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1. Introduction

Intense heat fluxes on limiters, the plasma chamber wall, and on divertor
plates, are encountered in magnetic fusion devices during arcing, when run-
away electron beams strike the limiter, and during hard plasma disruptions.
The Tatter are of particular concern in future fusion power reactors, where
the thermal energy of the plasma reaches values of the order of 300 MJ.

During a hard disruption this energy is deposited within a time estimated to
be between 1 to 100 ms on limiters or a portion of the first wall. The
resulting energy flux, averaged over the deposition time, may reach values
between 10 to 1000 kW/cmz. Melting and evaporation of first wall and limiter
materials may then occur.

In inertial confinement fusion reactors, evaporation of the first wall
may also take place as the x-ray radiation and the debris emanating from the
ignited fusion pellet strike the first wall.

It is therefore important to evaluate the amount of material evaporated
from an exposed wall or structure for two reasons. First, the evaporated
atoms may contaminate the plasma in case of a magnetic fusion device, or
induce laser-Tight breakdown and impair the focussing needed for subsequent
pellet implosions. Second, repeated evaporation represents an important
erosion mechanism of the first wall in addition to sputtering. This may
further 1imit the ultimate Tifetime of the first wall in a fusion reactor.

Evaporation under intense energy fluxes must be distinguished from slow
evaporation as it takes place, for example, in high vacuum equipment. In this
case, the energy expended in the evaporation process is negligible compared to
either the thermal energy stored in the condensed phase, or to the heat con-

ducted into the condensed material. In contrast, under intense energy fluxes,



the energy utilized in the evaporation process is substantial. Therefore, it
is necessary to correctly partition the incident energy into the amounts
expended for evaporation, for melting, for conduction into the material, for
radiation, for heating the vapor, etc. The correct evaluation of the intense
evaporation problem calls then, apart from the physical consideration about
the kinetics of the evaporation process, for the solution of a moving boundary
problem.

In the present paper we shall concentrate on this latter aspect, and not
investigate the kinetics of the evaporation process itself. As a consequence,
the results presented here represent only an approximation for the amount of
material evaporated for a given energy flux and deposition time. Furthermore,
as discussed in Section 2, where the slow evaporation process is reviewed, a
continuous transition from slow to intense evaporation cannot be made with the
present model. A unified treatment of evaporation under any heat flux is
presently under investigation, and it will be reported in the near future.

In Section 3, the intense evaporation model of Andrews and Atthey is
outlined, and results of its application to a selection of metals are given in
Section 4,

2. The Slow Evaporation Process

For the slow evaporation of a solid, the net flux of atoms into the vapor
phase is given by the Hertz-Knudsen-Langmuir equation [1]
- -1/2
JV = uV(PS - Po)(ZanT) . (1)
Here, P, is the existing partial pressure in the vapor container, Pg the satu-

ration pressure of the vapor, M the mass of the vapor species, and a, is the



evaporation coefficient. The latter is usually assumed to be close or equal
to one.

Net evaporation occurs when Py < Pgs whereas net condensation takes place
when Py > Pg. The first term in Eq. 1 is therefore the evaporation flux into
a vacuum,

Behrisch [2] has employed the vacuum evaporation rate contained in Eq. 1
and computed the amount of material evaporated for a temperature excursion of
the first wall following a plasma disruption. It was assumed that the entire
incident energy is conducted into the first wall, giving rise to a transient
in the surface temperature Ts(t). The evaporation rate was integrated over
the duration of the temperature transient utilizing the temperature dependence
of the saturation vapor pressure Ps(Ts(t)).

This approach in computing the evaporation rate is legitimate only if the
rate of energy expended in the evaporation is a small fraction of the incident
energy. We can define the validity of this approach in more quantitative
terms as follows.

Let the energy flux per unit area and unit time be W(t). If Ly is the
lTatent heat of vaporization (or sublimation when no melt layer forms) per unit
mass, p the mass density, and @ the atomic volume, then Lyr@d, is the rate of
energy utilized in evaporation. Accordingly, the approach of Behrisch is a

good approximation of the evaporation rate if

L ead (t) €HW(t) . (2)

In this case, the energy balance on the surface
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W(t) = - X Isurface

+ vaQJv(t) (3)
(K is the thermal conductivity) can be satisfied by neglecting the second term
in Eq. 3. Heat conduction and evaporation can then be treated as uncoupled
phenomena.

3. The Intense Evaporation Process

When the inequality (2) does not hold, the heat conduction equation

3T 1
ax2 D

1=

2 (4)

=g

must be solved to satisfy the exact boundary condition of Eq. 3. In Eq. 4,
D = K/pc (5)

is the thermal diffusivity and ¢ the specific heat per unit mass.
By writing
_ds
QJV = T (6)
where s(t) is the instantaneous position of the boundary, it becomes obvious
that the condition
aT

W(t) = K == |S(t) + va-g% (7)

calls for the solution of a moving boundary problem.

Equation 3 or 7 represents an inhomogeneous boundary condition which is



linear in the temperature gradient, and extremely nonlinear in the surface
temperature Tq through the dependence of the evaporation flux J, on the

saturation vapor pressure [3]

PS(T) = PO exp(-aH/kT) (8)
where aH is an activation energy.

To the authors' knowledge, a solution of this problem does not exist in
the literature. Therefore, the following approximation is adopted in the
present paper.

From Eqs. 1 and 6, we find that net evaporation commences when
P(T)="P_ . (9)

For a given partial vapor pressure P, in the plasma chamber, Eq. 9 defines a
surface temperature TV where evaporation begins. We now assume that further
heating of the wall does not occur, and that the surface temperature remains
at the value of T,. Note, however, that heat conduction still continues. The

boundary condition (6) is therefore replaced by

Ts(t) = TV for t » tp (10)
where tp is the preheat time required to raise the surface temperature from
its initial value T, to the boiling or sublimation temperature Tye Within
this approximation, Eq. 10 replaces Eq. 6 and provides a second boundary

condition in addition to Eq. 7.



This moving boundary problem was solved by Andrews and Atthey [4] based
on a perturbation theory which will be briefly outlined in the following.

First, Andrews and Atthey observe that the latent heat of fusion, Les s
only a few percent of the latent heat of evaporation. Furthermore the
specific heat and the thermal diffusivity of the liquid metal are similar to
the values of the solid metal. Therefore, one may in a first approximation
neglect the energy expended in melting (or simply include it into LV), and
also treat both melt and solid as one substance with regard to heat conduc-
tion.

Second, the Stefan number
e=¢ (T - T L, (11)

where ¢ is an average value of the heat capacity over the temperature range T0
to T, turns out to be a small number for most materials, being of the order

of 0.2 or less. It is then possible to expand the temperature
Txot) = TO oty + T xgt) + ..

into a perturbation series in € as well as the boundary velocity ds/dt and the
boundary position s(t).
The moving boundary problem is then solved to first-order perturbation in
e for a constant energy flux W switched on at time t = 0. By introducing the
dimensionless variables
z = x/% (12)

for the distance,



£ =5/2 (13)

for the boundary position,

T = vt/e (14)
for the time,
6 = T/TV (15)
for the temperature, and
n = (ds/dt)/v (16)

for the surface velocity, a general solution is found. Here, the character-
istic length scale is given by

L =D/v , (17)
where

v = W/[Lv +C (Tv - TO)]p (18)

is the asymptotic surface velocity reached for long energy deposition times.
The pre-heat time to reach the surface temperature Ty is in dimensionless

units given by [4]
T e _.r.? | (19)
and the dimensionless surface velocity is

ne= {1+ eﬂ% erfc (V1 / 2) - exp(-t/4)//7t 1}*

{%-[1 + e/fmt ]-1/2} arcsin (/1 - ne’ /41 )



valid for t > Tp. As noted by Andrews and Atthey, the solution of Eq. 20 has

an error of the order of ¢ for times t close to the preheat time t,, but the

p»
error reduces to the order of 2 when t approaches and exceeds one. For a
uniform energy flux W extending over a finite time interval 7, Eq. 20 can be
integrated numerically to give the evaporated surface layer thickness & or
s = gv/D.

As an example, Figs. 1 and 2 show the dimensionless surface velocity n(t)
and surface position s(t) for values of ¢ = 0.167 and as a function of the

time.

4. Representative Results

In this section we present the results for the actual depth evaporated
for a few selected metals listed in Table 1. In these calculations it was
assumed that evaporation commences at temperatures T, corresponding to vapor
pressures of 10'3, 10'1, and 10 Torr.

Since the density, the specific heat, and the thermal diffusivity are
functions of the temperature, average values were obtained from tabulated
functions [5]; the averaging was performed over the temperature range given in
Table 1.

The boiling temperature for a given pressure P was obtained from the

equation
10910 PS[Torr] = A/T[K] + E
where A and E are constants [3] listed in the last two rows of Table 1.

Figures 3 to 8 show the depth of the material evaporated for a given energy

flux assumed to be constant for a given deposition time. The straight line



Tabeled "0" represents the threshold for intense evaporation to occur. This
threshold, as well as the lines for a constant depth of evaporated material
depend to a minor degree on the pressure Pys 1.e. on the surface temperature
T, that is reached during the intense evaporation process.

For values of energy fluxes and deposition times below the threshold for
intense evaporation, some evaporation does occur. The amount of material
removed below the threshold can be estimated according to the slow evaporation
process discussed in Section 2. |

With the present models for slow and intense evaporation, a discontinuous
transition between the two evaporation regimes is suggested. In a unified
model, however, a continuous transition between the two regimes is expected,
and the threshold must then be defined in terms of a finite, but small, depth

of evaporated material.
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to Construct Figures

for Intense Evaporation
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Lo TR

16 REM ; THIZ PROGRAM HAS BEEH WRITTEN USING THE HEWLETT-FACKARD 9845E,
e REM : THE QUTPUT OF THE PROGRAM IS5 A COMTOUR PLUT OF THE LOGibase 18>
3t REM : OF FLUX ws. THE LOG tbaze 183 OF TIME, PEF EYAPORATION DISTAMCE
{ 48 REM ¢ DF THE CONTRIWMENT WALL.
! s |
§ e REM @ SECTIOH I--DATR EWTRY:
i ga IHFUT "MATERIAL BEIWMG STUDIELD?",Material$
| 1% INPUT "IHITIAL TEMFERATURE? (K»",T@
§ 185 INPUT "PARTIAL PRESSURE OF THE FLASMA? <TORRI",P
! 118 IHFUT "LATENT HEAT OF VYAPORIZATIONY <cal-gm>",Luvap
128 IMPUT "TIME OF EMERGY DEPOSITIOMT Yseci",Time
13 INFUT "RAMERHAGE SFECIFIC HERT? fLal'(gm*K})",E
146 INFUT "RAVYERAGE DENSITY? C(am-cm~32",Dlens
156 IMFUT "AVERAGE THERMAL DIFFU:I”IT&? temt2ssec ), DifT
1668 IHFPUT "AVYERAGE YALUE OF RA7?",H
178 IMFUT "RAWERAGE VALUE OF E?",E
128 REM @ SECTIOW II-~-DIMENSIOHWALIZIMG MATRICES AMD IWNITIALIZIMHG VALUES:
128 IIM Realdizstanced2381),Realtimel25681>
28 REM 1 The Tx matrices are the values of the time when the =vaporation
218 ! distance becomes 18-¢(-x) cm;
228 ! The T=S matrices are the values of the time when the
; 238 ! evaporation distance becomes 5#18-~0-x) cm.
24@ DIM Flux_matrix({l13),Tpreheat (19, TSSui?;,Tuil?* TAS0190, TAC19, T3SC19
258 nIm 13« 19J.T”5(19) T2(19) Tic19
2EE REM Initializing Flux matrix values:
27a Count=1
280 FOR I=5 T0D &
290 FOR J=1 TO 9
3ea Flux_matriz(Count i=J*18"]
216 Count=Count+1
320 HERT J
33a HEXT 1
3449 Flus_matrix(193=1E7
358 REM : Initializing Time and Diztance matrix values:
368 FOR I=1 TO 25al
3v Fealtimedlr=Realdizstance(l =0
389 HE®T 1
398 FOR I=1 TO 19
488 Tereheat (1 3=8
418 TESCI =TSl )=T45CI0=T4CI =T3S [ 0=T3 1 0=T2SIo=T2 I s=T1:12=8
426 HEXT 1
438 REM SECTIOM III--FPRE-INTEGRAL CALCULATIOHS:
445 FOrR J=1 TO 19
454 F=Flusx_matrixiJ)
458 Count=1
T Twap=A-CLGT(PY~E)
428 Epsilon=C#{Tvap-Ta@s-Luap
438 V=F#. 1 s0Dens#(Luap*4, 184 % 1+Epzilaonid
508 Tau=Time®¢~2--Diff
Sia Taupre=PIl#Epsilon~2-4
Sz28 Tpreheat I =Taupre*Diff-¥~2
Sz8 IF Taupre>=Tau THEHN GOTO 2238
S48 REM ¢ SECTIOM IV¥--CALCULATION OF THE IMTEGRAL:
55& REM ¢ PART. 1-~FROM Tpreheat TO S*Tpreheat, STEP Tpreheat 168
Sea REM 3 tThe integral is calculated using the trapezoidal rule;
570 REM the first portion is divided into 588 pieces.)
584 Taunorm=Taupre
028 GOSUE Compute_eta

COl1d=Et's : e B
Sum=8
Pwald1=fdnuerfount) 5
FealtimeCount)=Tpreheat (J)
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6448

650
6Ed
eva
686
298
Faa
7l
rao
rig
748
vEaE
rea
vra
vea
7a8
cog
2o
BZe
836
249
258
=1y

rg
see
334d
FEE

Ieltatau=Taupre~1008
Coumt=Count+1
FOR Tauwnorm=Taupre+Deltatauy TO S*Taupre STEP Deltatau
GOSUB Compute_eta
Sum=Sum+leltataus2#(01d+Et ad
RFealdistance(Count 2=Diff*Sun-Y
Eealtime(Count »=Taunormn*Dif-y-2
01d=Eta
Count=Caunt+1
HEXWT Taurnorm
FEM ! PART 2--The rest of the interwval is divided into 2006

B

=

=

Count=381
DeltatausdTau-5«Tauprel 20048
FORE Taunorm=5#Taupre TO Tau STEP Deltatau
LOSUB Compute_eta
Sum=Sum+Dleltatau-2#(01d+Et al
Fealdistance{Count i=liff*Sum-V
Realtime{Count )=Taurormn®Dlif W2
Old=Eta
Count=Count+1
HEST Taunorm
IF Realdistance(23@13=8 THEH GOSUE Last_wvalue

REM ¢ FART 2--Pick up the walues of Time at the significant distances:

GOSUE Time_datapoints
MEXT T
FEM ¢ SECTIOM Y--PRINT OUT AHD GRAFH DATA YALLES:

CALL Print_al 1 (Flux_matrix (%), Tpreheat (%), TS0#), TSS e, T s, TA45C%0, T3¢

#3,T3S0#,T2C%),T25¢%), T1(%20
CALL Graph_datacFlux_matrix(#), Tpreheat (%>, T40%, T30e0, TE0%0 0

91i
928
938
948
258
269
978
958
396
1608
leis
1624
1a3a

CHLL Frint_out (Flux_matrix(#), Tpreheat (%3, T40%3, T30%0,T21

REM EWD OF MAIN FROGRAM--SUBROUTIMES FOLLOW

Tap

w

REM ¢ FICK UP DESIRED TIME WARALUES:

1848 Time_datapoints: i

1856
18&@
1878
1gae
1898
1166
111@
1120
1130
1146
1158
1168
117a
1138
1194
12808
1210
1228
1238
1240
1256
1260

Cournt=1 .

IF Realdistance(lount)»=1E-% THEMW GOTO 1186
Count=Count+l
IF Court<Dimenzian THEHW GOTO 1G&54
GOTD Return

TS Tr=Realtime(Count s

IF Realdizstance(Count ) >=5SE-5 THEW GOTO 1158
Count=Count+1
IF Count<Dimenzion THEHW GOTO 1118
GOTO Return

TE5S(J=Realtime(Count 2

IF Fealdistance(Countd>=1E~-4 THEN GOTO 1288
Count=Count +1
IF Count<Dimension THEN GOTO 11&8
GOTO Return

T4dcJr=Realtime{Count

IF Rraldistance(Count»>=5E-4 THEN GOTO 1256
Count=Count+1
IF Count<Dimenzion THEHM GOTO 1218
GOTO Return

T45cTr=Realtime{Count )

IF EealdistanceiCount2»=1E~32 THEM GOTO 1284

22
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!

e _ I et e R S [T b

1278 Count=Count+1
12848 IF Court<Dimension THEH GOTO 1250
12909 GOTO Return
1368 Tad(Jr=RealtimeCaunt 2
1318 IF RealdistanceiCount»»=5E-3 THEM GOTO 1358
132a Count=Count+l
12328 IF Count<Dimenzion THEW GOTO 1318
{ 1348 GOTD Return
f 1358 TESCIr=RealtineCount
i 1265 IF Realdistance(Countdr»=1E~-2 THEH GOTO 1488
i 1378 Count=Count+1
; 13809 IF Count<Dimension THEW GOTO 1358
? 1398 GOTO Return
] 1460 TZoIr=Realtime(Count )
‘ 1418 IF Realdistance(Countd»=5E~-2 THEM GOTO 1458
1426 Count=Count +1
1428 IF Count<Dimensicon THEN GOQTO 14108
1448 GOTO Return
14508 T25(I=Realtimel{Count
1468 IF Realdiztance{Count2>»=,1 THEH GOTD 1580
14708 Count=Count+1
1428 IF Count<Dimemsion THEH GOTO 1458
1438 GOTOD Return
15686 Tl J»=Realtime(Count
1518 Returmn? RETURM
1528
1538 |
1549 !
1558 |
15668 REM :  COMPUTE THE LAST VWALUE OF IMTEGRAL:
1578 REM ¢ (Mecessary due to computer accuracw limitatians.:
1580 Last_value: !
1394 Taunorm=Tau
iga8e GOSUR Compute_eta
1&18 Sum=Sum+leltatau-2(01d+Et ad
1628 Realdistance (25301 =Dif*Sum-~Y
16328 Eealtime (2581 =Timne
1648 FETURH
16586 |
1660 |
N S
lezg |

1698 FREM 1+ COMPUTE WALUE OF ETH:
1788 Compute_etal !

1714 HW=EXP(-Taunorm- 42

1vz8 A=SARCTaurnormsP 1)

17328 Y=SGRRC1-PI*#Epsiton-2-04%Taurnorm)

1748 Z=SAR(Taunorm) <2

1758 CARLL Comp_errorfontZ,Erfocz

17&B Eta=2FPI#ASHCY M (K+Epsilond ¥ (1+Epzilon* (Erfecz-Z-Wo1n
1778 RETURH

1vae !

1798 |

18ed !

1818 | :

1e28  REM : COMPUTE THE MECESSARY ERROR FUMCTIOW CUSED IW COMPUTIHG ETH:

1838  SUEB Comp_errorfon(X,Erfexd

1348 OFTION BRSE 1

158 DIM R(S)

1866 P=.3275911

l1gve T=1s014P &K

lgsa AC10)=,254829592

1894 Ri2i=-,284496736
& 1988 HC32=1.421413741
%, 1218 Ard4r=-1,452192827
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e ot SRR AR R

1921 AiSo=1.061405429

1328 CErfocx=8

1948 FOR I=1 TO S

1958 Erfox=Erfcu+RACIo*T~1
1966 HEXT I

1978 Erfcx=Erfox#EXP(-x~22
1988 SUBEXIT

1998 |

2968 |

281a | *
2ezn !

2838 REM ©  GRAPH THE CONTOUR LOG PLOTS OF FLUX WS, TIME FOR ERCH DISTAHCE:
2848  SUE Graph_datatFo#), Tpre(*), Ta(®), T3, T2C*)

2858 PLOTTER IS “"GRAPHICSM

286@ GRAPHICS

287 REM ¢ FART 1--Take the logs twhere possibled:

2088 FOR I=1 TO 19

28948 FOId=LGTIFCIa2

2188 TprelI s=LET TprelIa:

211@ IF T4<I»>8 THEW T40Ix=LGT«T4cIa0
2120 IF T3CI>>8 THEH T3CIx=LGTL(TICIxn
2130 IF T2¢I5:8 THEH T2CIr=LGTCT2¢Ix
2148 HE®T 1

-

2138 REM ¢ PART 2--Find maximum_and minimum values Cused for scaling araph’:

2len Tmin=18

2irve Tmax=-16

2iza FOR I=1 TO 19

2198 IF @Tpredls<:8) AHD ‘Tpredls<Tmins THEN Tmin=Tpreol
2zed IF Tpredls>*Tmax THEN Tmax=Tpreil)

2218 IF £T4¢Ix<»@8» AND (T4 Ir<Tminy THEM Tmin=T4{I
222 IF T40Id>Tmax THEH Tmax=T4(I)

2238 IF CT3CI >8> AND CT3CI2<Tminy THEM Tmiwn=TI<I>
2240 IF T3CI2>Tmax THEN Tmax=T3(I>

2258 IF CT2CI30%@y AND (T2¢12<Tminy THEN Tmin=T2(I2
2268 IF T2¢Ix>Tmax THEM Tmax=T2¢I

2278 HEKT 1

2288 Tmin=INT(Tmin:

2298 Twma=z=IHT Tmaxs -

22388 EREM ! PART Z--Draw and label axes:

2218 FRAME

2328 SCALE 2,7.5,Tmin-1, Tmax+1

2336 CLIP 5,7, Tmin, Tmax

2346 RXES 1,1,95,Tmin

2358 UNCLIP

2360 CSIZE 2.9

2370 FOR =5 TO 7

2380 MOVE &, Tmin-1-4

239a LABEL =

2486 HEXT X

24186 FOR “=Tmin TO Tmax

2420 MOVE 4,.75,Y

2438 LAREEL ¥

2448 HERT ¥

2458 CSIZE 3.5

2468 MOYE 5.5, Tmin-1-2

247@ LABEL "LOG <hase 18> of FLUK"

2486 RAD

2430 LDIR PI-2

2504 MOYE 4.58,  Tmin-Tmaxi~2-1

25184 LABEL "LOG i‘base 183 of TIME"

2528 LDIR ©

2538 REM ! GRAFH CONWTOUR PLOTS WITH VARYIMGE LIME TYPES:
2548 MOYE Fol),Tpredl)

2550 LIME TYPE 9

2568 FOR I=1 TO {9

24
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2638
2640
2650
2668
2ETB
2650
2698
27ed
2viae
2vz2a
27z
2744
2758
2VEl
2v7a
2vag
2798
28008
2818
2828
2838
28408
2858
2864
287y
2ago
28968
2988
291a
2920
2938
2940
2558
2968
2978
2388
29%8
3008
3818
3eza
3838
2844
38358
3868
3eva
o6&
3638
3186
3118
212a
31318
3148
31356
3lc8
3178

IF Tprecly<»® THEM PLOT FoIy,Tprecls
HEXT I
]
MOYE FC12,T4¢1)
LIMNE TYFPE 4
FOR I=1 TO 19
IF T4¢I»<>@ THEM PLOT F(I),T4(l
HEXT 1
I
MOYE F(1),T3C10
LINE TYFE 3
FOR I=1 TO 19
IF T2¢1»<*3 THEM PLOT Fil»,T3CI)
HEXT 1
|
MOYE FC1a,T2C1D
LINE TYPE 1
FOR I=1 TO 19
IF T20I1)<>»3 THEW PLOT FCIy,T2¢I)
HEXT 1
i
C5IZE 2.5
LDIR ®
CLIP 2,4.25,Tmin-1,Tmin+3
FRAME
MOYE 3.25,Tmin+2.5
: CRERTE LEGEND:
LABEL "LEGEHD:"
CEIZE 2.25
MOVE 3,Tmin+l.6
LINE TYPE 9
DRAW 3.25,Tmin+l.6
DRAM 2.5,Tmin+1.6
DRAW 3.75,Tmin+1.6
DRAKM 4,Tmin+l.6
DRAM 4.25,Tmin+l.6
MOVE 3.28,Tmin+l.7
LINE TYFE 1
LAEEL "Preheat time,¥ = @
MOYE 3, Tmin+.?
LIME TYPE 4
DRAWN 4.25,Tmin+.9
MOVE 3.25,Tmint+l
LIME TYPE 1
LABEL "¥ = 1E-4"
MOVE 3,Tmin+.2
LINE TYPE 2
DRAW 4.25,Tmin+.2
MOVE 2.25,Tmin+.3
LIME TYFE 1
LABEL "X = 1E-3"
MOYE 3,Tmin-.5
DRAW 4.25,Tmin-.5
MOYE 3.25,Tmin-.4
LAEEL "¥ = 1E-2"
1
DUMF GRAPHICS
EXIT GRAFHICS

SUBERIT
!
!

25



BTN
3198 |
3288 REM @ PREIMT THE HUMERICAL WRLUES OW THE GRAFRH:
3218 SUR Primt _outdF(#), Tpre(#3, T4, T3(x0,T2C*2D

32208 . FIKED 5

32308 . PRINT

3248 PRINT

3258 FRINT

3280 FRINT "DATA VALUES OH GRAFH: "

32ve FRIHT "

32848 FRIWT

2296 FRINT "LOGCFTuxd LOGC Thied LOGCTdD LOGCT3D LOGeT
2) h

EELL FOR I=t TO 19

3218 FRINT FOLasTARCZZ2) i Tpret I s TABC242 T4 Iy TARCEE N TRACTI A TRECSE YT
Cls

"33z2e HE®T 1

3338 FPRINT

3348 SUEBERIT

3358 !

3368 !

3378 |

3388 |

3398 REM ¢ PRIWT THE COMPLETE MNUMERICHL “ALUES BEFORE GRAFHIMG!:
3488 SUE Frint_all1(Fo#), Tpreds, TOCxD, TEI (%0, T3, T45 (%), T3C*0, T350%) , T20#), T2
SC#2,T1o%00

3418 FIWED 7
3420 FRINTER 15 @&
3438 FRINT
3448 FRIHT
3458 FRINT "COMFLETE DATHR YALUES:®
3458 FRIWT " o
3478 FRINT .
3438 FRIWT " FLLx FEEHEAT TIHME w=1lE~-3 w=EE-S w=lE -
-4 W=SE-4 ¢

3490 FOR I=1 TO 19
2588 PRIMNT FOIag TREBCZ1 0 Tpred I i TABCZZ D TSI s TAECAS 3 s TSSCI O TREBCSB T
4 I TABLTA Y T4S(L
3518 HE®T I

C25ze PEIMT
2520 FRINT "SR iR b SRR SRR SR A R R SR EE L LR F L SR P LA LR LA RFRLFEREFERREEEE
EEEFFXEEFEF XS EEN
3544 FRIMT
355a FRINT " FLUAX W=1lE~-32 w=3E-2 n=lE-& #=5E
-2 n=lE-1 "
35c8 FOrR I=1 TO 19
35748 FRINT FOIdsTARABCZI D TECI s TRAECSS T35l s TABCYE 3 T20 10 TRBOSEY;TES
Cly3 TABCF@E3TLICID
3588 MEXT 1
3534 FEINT
2608 SUBESIT
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