

Evaporation Under Intense Energy Deposition

L.L. Loebel and W.G. Wolfer

August 1980

UWFDM-370

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

Evaporation Under Intense Energy Deposition

L.L. Loebel and W.G. Wolfer

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

August 1980

UWFDM-370

Evaporation Under Intense Energy Deposition

L. L. Loebel and W. G. Wolfer

Fusion Engineering Program Nuclear Engineering Department University of Wisconsin Madison, WI 53706

August 1980

UWFDM-370

1. Introduction

Intense heat fluxes on limiters, the plasma chamber wall, and on divertor plates, are encountered in magnetic fusion devices during arcing, when runaway electron beams strike the limiter, and during hard plasma disruptions. The latter are of particular concern in future fusion power reactors, where the thermal energy of the plasma reaches values of the order of 300 MJ. During a hard disruption this energy is deposited within a time estimated to be between 1 to 100 ms on limiters or a portion of the first wall. The resulting energy flux, averaged over the deposition time, may reach values between 10 to 1000 kW/cm². Melting and evaporation of first wall and limiter materials may then occur.

In inertial confinement fusion reactors, evaporation of the first wall may also take place as the x-ray radiation and the debris emanating from the ignited fusion pellet strike the first wall.

It is therefore important to evaluate the amount of material evaporated from an exposed wall or structure for two reasons. First, the evaporated atoms may contaminate the plasma in case of a magnetic fusion device, or induce laser-light breakdown and impair the focussing needed for subsequent pellet implosions. Second, repeated evaporation represents an important erosion mechanism of the first wall in addition to sputtering. This may further limit the ultimate lifetime of the first wall in a fusion reactor.

Evaporation under intense energy fluxes must be distinguished from slow evaporation as it takes place, for example, in high vacuum equipment. In this case, the energy expended in the evaporation process is negligible compared to either the thermal energy stored in the condensed phase, or to the heat conducted into the condensed material. In contrast, under intense energy fluxes,

the energy utilized in the evaporation process is substantial. Therefore, it is necessary to correctly partition the incident energy into the amounts expended for evaporation, for melting, for conduction into the material, for radiation, for heating the vapor, etc. The correct evaluation of the intense evaporation problem calls then, apart from the physical consideration about the kinetics of the evaporation process, for the solution of a moving boundary problem.

In the present paper we shall concentrate on this latter aspect, and not investigate the kinetics of the evaporation process itself. As a consequence, the results presented here represent only an approximation for the amount of material evaporated for a given energy flux and deposition time. Furthermore, as discussed in Section 2, where the slow evaporation process is reviewed, a continuous transition from slow to intense evaporation cannot be made with the present model. A unified treatment of evaporation under any heat flux is presently under investigation, and it will be reported in the near future.

In Section 3, the intense evaporation model of Andrews and Atthey is outlined, and results of its application to a selection of metals are given in Section 4.

2. The Slow Evaporation Process

For the slow evaporation of a solid, the net flux of atoms into the vapor phase is given by the Hertz-Knudsen-Langmuir equation [1]

$$J_{v} = \alpha_{v} (P_{S} - P_{O}) (2\pi MkT)^{-1/2} . \qquad (1)$$

Here, Po is the existing partial pressure in the vapor container, PS the saturation pressure of the vapor, M the mass of the vapor species, and α_{V} is the

evaporation coefficient. The latter is usually assumed to be close or equal to one.

Net evaporation occurs when $P_0 < P_S$, whereas net condensation takes place when $P_0 > P_S$. The first term in Eq. 1 is therefore the evaporation flux into a vacuum.

Behrisch [2] has employed the vacuum evaporation rate contained in Eq. 1 and computed the amount of material evaporated for a temperature excursion of the first wall following a plasma disruption. It was assumed that the entire incident energy is conducted into the first wall, giving rise to a transient in the surface temperature $T_s(t)$. The evaporation rate was integrated over the duration of the temperature transient utilizing the temperature dependence of the saturation vapor pressure $P_s(T_s(t))$.

This approach in computing the evaporation rate is legitimate only if the rate of energy expended in the evaporation is a small fraction of the incident energy. We can define the validity of this approach in more quantitative terms as follows.

Let the energy flux per unit area and unit time be W(t). If L_V is the latent heat of vaporization (or sublimation when no melt layer forms) per unit mass, ρ the mass density, and Ω the atomic volume, then $L_V \rho \Omega J_V$ is the rate of energy utilized in evaporation. Accordingly, the approach of Behrisch is a good approximation of the evaporation rate if

$$L_{V} \rho \Omega J_{V}(t) \ll W(t)$$
 (2)

In this case, the energy balance on the surface

$$W(t) = -K \frac{\partial T}{\partial x} |_{surface} + L_{v} \rho \Omega J_{v}(t)$$
 (3)

(K is the thermal conductivity) can be satisfied by neglecting the second term in Eq. 3. Heat conduction and evaporation can then be treated as uncoupled phenomena.

3. The Intense Evaporation Process

When the inequality (2) does not hold, the heat conduction equation

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{D} \frac{\partial T}{\partial t} \tag{4}$$

must be solved to satisfy the exact boundary condition of Eq. 3. In Eq. 4,

$$D = K/\rho c \tag{5}$$

is the thermal diffusivity and c the specific heat per unit mass.

By writing

$$\Omega J_{V} = \frac{ds}{dt} \tag{6}$$

where s(t) is the instantaneous position of the boundary, it becomes obvious that the condition

$$W(t) = -K \frac{\partial T}{\partial x} |_{s(t)} + L_{v^{\rho}} \frac{ds}{dt}$$
 (7)

calls for the solution of a moving boundary problem.

Equation 3 or 7 represents an inhomogeneous boundary condition which is

linear in the temperature gradient, and extremely nonlinear in the surface temperature T_S through the dependence of the evaporation flux J_V on the saturation vapor pressure [3]

$$P_{S}(T) = P_{O} \exp(-\Delta H/kT)$$
 (8)

where ΔH is an activation energy.

To the authors' knowledge, a solution of this problem does not exist in the literature. Therefore, the following approximation is adopted in the present paper.

From Eqs. 1 and 6, we find that net evaporation commences when

$$P_{S}(T_{V}) = P_{O} . (9)$$

For a given partial vapor pressure P_0 in the plasma chamber, Eq. 9 defines a surface temperature T_v where evaporation begins. We now assume that further heating of the wall does not occur, and that the surface temperature remains at the value of T_v . Note, however, that heat conduction still continues. The boundary condition (6) is therefore replaced by

$$T_s(t) = T_v \quad \text{for } t > t_p$$
 (10)

where t_p is the preheat time required to raise the surface temperature from its initial value T_0 to the boiling or sublimation temperature T_v . Within this approximation, Eq. 10 replaces Eq. 6 and provides a second boundary condition in addition to Eq. 7.

This moving boundary problem was solved by Andrews and Atthey [4] based on a perturbation theory which will be briefly outlined in the following.

First, Andrews and Atthey observe that the latent heat of fusion, L_f , is only a few percent of the latent heat of evaporation. Furthermore the specific heat and the thermal diffusivity of the liquid metal are similar to the values of the solid metal. Therefore, one may in a first approximation neglect the energy expended in melting (or simply include it into L_V), and also treat both melt and solid as one substance with regard to heat conduction.

Second, the Stefan number

$$\varepsilon = \overline{c} \left(T_{v} - T_{0} \right) / L_{v} , \qquad (11)$$

where \overline{c} is an average value of the heat capacity over the temperature range T_0 to T_V , turns out to be a small number for most materials, being of the order of 0.2 or less. It is then possible to expand the temperature

$$T(x,t) = T^{(0)}(x,t) + \varepsilon T^{(1)}(x,t) + ...$$

into a perturbation series in ϵ as well as the boundary velocity ds/dt and the boundary position s(t).

The moving boundary problem is then solved to first-order perturbation in ϵ for a constant energy flux W switched on at time t = 0. By introducing the dimensionless variables

$$\zeta = x/\ell \tag{12}$$

for the distance,

$$\xi = s/\ell \tag{13}$$

for the boundary position,

$$\tau = vt/\ell \tag{14}$$

for the time,

$$\theta = T/T_{v} \tag{15}$$

for the temperature, and

$$\eta = (ds/dt)/v \tag{16}$$

for the surface velocity, a general solution is found. Here, the characteristic length scale is given by

$$\ell = D/v , \qquad (17)$$

where

$$v = W/[L_v + \overline{c} (T_v - T_o)]_{\rho}$$
 (18)

is the asymptotic surface velocity reached for long energy deposition times.

The pre-heat time to reach the surface temperature T_V is in dimensionless units given by [4]

$$\tau_{\rm p} = \frac{\pi}{4} \frac{\varepsilon^2}{(1+\varepsilon)^2} \simeq \frac{\pi}{4} \varepsilon^2 \quad , \tag{19}$$

and the dimensionless surface velocity is

$$\eta \simeq \{1 + \varepsilon \left[\frac{1}{2} \operatorname{erfc} \left(\sqrt{\tau} / 2\right) - \exp(-\tau/4) / \sqrt{\pi \tau} \right]\}^*$$

$$\{\frac{2}{\pi} \left[1 + \varepsilon / \sqrt{\pi \tau} \right]^{-1/2}\} \operatorname{arcsin} \left(\sqrt{1 - \pi \varepsilon^2 / 4\tau} \right),$$
(20)

valid for $\tau > \tau_p$. As noted by Andrews and Atthey, the solution of Eq. 20 has an error of the order of ϵ for times τ close to the preheat time τ_p , but the error reduces to the order of ϵ^2 when τ approaches and exceeds one. For a uniform energy flux W extending over a finite time interval τ , Eq. 20 can be integrated numerically to give the evaporated surface layer thickness ξ or $s = \xi v/D$.

As an example, Figs. 1 and 2 show the dimensionless surface velocity $\eta(\tau)$ and surface position s(t) for values of ϵ = 0.167 and as a function of the time.

4. Representative Results

In this section we present the results for the actual depth evaporated for a few selected metals listed in Table 1. In these calculations it was assumed that evaporation commences at temperatures $T_{\rm V}$ corresponding to vapor pressures of 10^{-3} , 10^{-1} , and 10 Torr.

Since the density, the specific heat, and the thermal diffusivity are functions of the temperature, average values were obtained from tabulated functions [5]; the averaging was performed over the temperature range given in Table 1.

The boiling temperature for a given pressure $\boldsymbol{P}_{\boldsymbol{S}}$ was obtained from the equation

$$log_{10} P_s[Torr] = A/T[K] + E$$

where A and E are constants [3] listed in the last two rows of Table 1. Figures 3 to 8 show the depth of the material evaporated for a given energy flux assumed to be constant for a given deposition time. The straight line

labeled "O" represents the threshold for intense evaporation to occur. This threshold, as well as the lines for a constant depth of evaporated material depend to a minor degree on the pressure $P_{\rm O}$, i.e. on the surface temperature $T_{\rm V}$ that is reached during the intense evaporation process.

For values of energy fluxes and deposition times below the threshold for intense evaporation, some evaporation does occur. The amount of material removed below the threshold can be estimated according to the slow evaporation process discussed in Section 2.

With the present models for slow and intense evaporation, a discontinuous transition between the two evaporation regimes is suggested. In a unified model, however, a continuous transition between the two regimes is expected, and the threshold must then be defined in terms of a finite, but small, depth of evaporated material.

Acknowledgement

This research was supported in part by the INTOR project. Dr. D. L. Smith from Argonne National Laboratory provided much of the insight with regard to the distinction between slow and intense evaporation.

References

- 1. J. P. Hirth and G. M. Pound, "Condensation and Evaporation", Vol. 11 of Progr. Mat. Sciences, Pergamon, New York, 1963.
- 2. R. Behrisch, Nucl. Fusion, <u>12</u>, (1972) 695.
- 3. R. E. Honig and D. A. Kramer, RCA Review, 30, (1969) 285.
- 4. J. G. Andrews and D. R. Atthey, J. Inst. Maths. Applics., <u>15</u>, (1975) 59.
- 5. Thermophysical Properties of Matter (TPRC Data Series), Vol. I, IV, X; ed. by Y. S. Jouloukian, Plenum Data Comp., 1979.
- 6. <u>Handbook of Chemistry and Physics</u>, publ. by The Chemical Rubber Publ. Co., Cleveland, Ohio, 50th Ed., 1963.

Table 1. Materials Parameters

Material	Al	Fe	Ni	Mo	; <u>;</u>	M
Temperature Range, K	450 - 933	1300 - 2716	850 - 1726	1400 - 2883	1000 - 1953	1800 - 3653
Average Specific Heat, (J/gK)	1.115	0.704	0.578	0.432	0.725	1.756
Average Density (g/cm ³)	2.39	7.00	7.80	9.34	4.15	17.6
Thermal Diffusivity (cm ² /s)	0.820	0.080	0.153	0.248	0.078	0.286
Latent Heat of Vaporization (J/g)	11356	6268	6316	6184	8800	4490
Constants for Vapor Pressure						
А	-16764	-20250	-21175	-32535	-23162	-43978
ш	9.24	9.61	9.75	9.78	09*6	10.45

Figure 1. The dimensionless evaporation speed as a function of the dimensionless deposition time.

Figure 2. The depth of evaporated material as a function of time.

Figure 3. Depth of evaporation for aluminum.

Figure 4. Depth of evaporation for iron.

Figure 5. Depth of evaporation for nickel.

Figure 6. Depth of evaporation for titanium.

Figure 7. Depth of evaporation for molybdenum.

Figure 8. Depth of evaporation for tungsten.

Appendix

Listing of the Computer Program

to Construct Figures

for Intense Evaporation

```
10
        REM :
               THIS PROGRAM HAS BEEN WRITTEN USING THE HEWLETT-PACKARD 9845B.
  20
        REM :
               THE OUTPUT OF THE PROGRAM IS A CONTOUR PLOT OF THE LOG(base 10)
  30
               OF FLUX vs. THE LOG (base 10) OF TIME, PER EVAPORATION DISTANCE
  40
        REM :
               OF THE CONTAINMENT WALL.
  50
  60
  70
               SECTION I -- DATA ENTRY:
        REM:
  80
           INPUT "MATERIAL BEING STUDIED?". Material$
  90
           INPUT "INITIAL TEMPERATURE? (K)", TO
  100
           INPUT "PARTIAL PRESSURE OF THE PLASMA? (TORR)".P
  110
           INPUT "LATENT HEAT OF VAPORIZATION? (cal/gm)", Lvap
  120
           INPUT "TIME OF ENERGY DEPOSITION? (sec)". Time
  130
           INPUT "AVERAGE SPECIFIC HEAT? (cal/(gm*K))",C
           INPUT "AVERAGE DENSITY? (gm/cm^3)",Dens
  140
  150
           INPUT "AVERAGE THERMAL DIFFUSIVITY? (cm^2/sec)",Diff
  160
           INPUT "AVERAGE VALUE OF A?",A
  170
           INPUT "AVERAGE VALUE OF E?".E
  180
               SECTION II--DIMENSIONALIZING MATRICES AND INITIALIZING VALUES:
  190
           DIM Realdistance(2501),Realtime(2501)
  200
        REM :
               The Tx matrices are the values of the time when the evaporation
  210
                  distance becomes 10^{-(-x)} cm;
  220
                  The Tx5 matrices are the values of the time when the
  230
                  evaporation distance becomes 5*10^(-x) cm.
  240
           DIM Flux_matrix(19), Tpreheat(19), T55(19), T5(19), T45(19), T4(19), T35(19)
  250
           DIM T3(19), T25(19), T2(19), T1(19)
  260
               Initializing Flux matrix values:
  270
           Count=1
  280
           FOR I=5 TO 6
  290
              FOR J=1 TO 9
  300
                 Flux matrix(Count)=J*10^I
  310
                 Count=Count+1
  320
              NEXT J
  330
           NEXT I
  340
           Flux matrix(19)=1E7
  350
               Initializing Time and Distance matrix values:
  360
           FOR I=1 TO 2501
  370
              Realtime(I)=Realdistance(I)=0
  380
           NEXT I
  390
           FOR I=1 TO 19
  400
              Tpreheat(I)=0
  410
              T55(I)=T5(I)=T45(I)=T4(I)=T35(I)=T3(I)=T25(I)=T2(I)=T1(I)=0
  420
           NEXT I
  430
        REM :
                SECTION III--PRE-INTEGRAL CALCULATIONS:
  440
           FOR J=1 TO 19
  450
              F=Flux matrix(J)
  460
              Count=1
  470
              Tuap=A/(LGT(P)-E)
  480
              Epsilon=C*(Tvap-T0)/Lvap
  490
              V=F*.1/(Dens*(Lvap*4.184)*(1+Epsilon))
  500
              Tau=Time*V^2/Diff
  510
              Taupre=PI*Epsilon^2/4
  520
              Tpreheat(J)=Taupre*Diff/V^2
  530
              IF Taupre>=Tau THEN GOTO 880
  540
               SECTION IV--CALCULATION OF THE INTEGRAL:
        REM :
  550
               PART 1--FROM Tpreheat TO 5*Tpreheat, STEP Tpreheat/100
  560
        REM :
                 (The integral is calculated using the trapezoidal rule;
        REM :
  570
                 the first portion is divided into 500 pieces.)
  580
              Taunorm=Taupre
              GOSUB Compute eta
  5,90 -
  600
              Old=Eta
              Sum=0
  610
  620
              Realdistance(Count)=0
630
              Realtime(Count)=Tpreheat(J)
```

6-06-3

```
640
            Deltatau=Taupre/100
650
            Count=Count+1
660
            FOR Taunorm=Taupre+Deltatau TO 5*Taupre STEP Deltatau
670
               GOSUB Compute eta
680
                Sum=Sum+Deltatau/2*(01d+Eta)
690
               Realdistance(Count)=Diff*Sum/V
700
               Realtime(Count)=Taunorm*Biff/V^2
710
               Old=Eta
720
               Count=Count+1
730
            NEXT Taunorm
      REM : PART 2--The rest of the interval is divided into 2000 pieces
740
750
         Count=501
760
         Deltatau=(Tau-5*Taupre)/2000
            FOR Taunorm=5*Taupre TO Tau STEP Deltatau
770
               GOSUB Compute_eta
780
790
               Sum=Sum+Deltatau/2*(01d+Eta)
800
               Realdistance(Count)=Biff*Sum/V
810
               Realtime(Count)=Taunorm*Diff/V^2
820
               01d=Eta
830
               Count = Count + 1
840
            NEXT Taunorm
            IF Realdistance(2501)=0 THEN GOSUB Last_value
850
860
      REM : PART 3--Pick up the values of Time at the significant distances:
870
            GOSUB Time_datapoints
880
         NEXT J
890
          : SECTION V--PRINT OUT AND GRAPH DATA VALUES:
900
         CALL Print_all(Flux_matrix(*),Tpreheat(*),T5(*),T55(*),T4(*),T45(*),T3(
*),T35(*),T2(*),T25(*),T1(*))
910
         CALL Graph_data(Flux_matrix(*),Tpreheat(*),T4(*),T3(*),T2(*))
920
         CALL Print out(Flux matrix(*),Tpreheat(*),T4(*),T3(*),T2(*))
930
940
      Ţ
950
      REM
              END OF MAIN PROGRAM--SUBROUTINES FOLLOW
         STOP
960
970
980
990
1000
1010
1020
1030
      REM
          : PICK UP DESIRED TIME VALUES:
1040 Time datapoints:
1050
         Count=1
1060
         IF Realdistance(Count)>=1E-5 THEN GOTO 1100
1070
            Count=Count+1
            IF Count<Dimension THEN GOTO 1060
1080
            GOTO Return
1090
1100
         T5(J)=Realtime(Count)
1110
         IF Realdistance(Count)>=5E-5 THEN GOTO 1150
1120
            Count=Count+1
            IF Count<Dimension THEN GOTO 1110
1130
1140
            GOTO Return
1150
         T55(J)=Realtime(Count)
1160
         IF Realdistance(Count)>=1E-4 THEN GOTO 1200
1170
            Count=Count+1
1180
            IF Count (Dimension THEN GOTO 1160
1190
            GOTO Return
1200
         T4(J)=Realtime(Count)
1210
         IF Realdistance(Count)>=5E-4 THEN GOTO 1250
1220
            Count=Count+1
1230
            IF Count (Dimension THEN GOTO 1210
1240
            GOTO Return
1250
         T45(J)=Realtime(Count)
1260
         IF Realdistance(Count)>=1E-3 THEN GOTO 1300
```

62111

```
1270
            Count=Count+1
1280
            IF Count<Bimension THEN GOTO 1260
1290
            GOTO Return
1300
         T3(J)=Realtime(Count)
1310
         IF Realdistance(Count)>=5E-3 THEN GOTO 1350
1320
            Count = Count + 1.
            IF Count<Dimension THEN GOTO 1310
1330
            GOTO Return
1340
1350
         T35(J)=Realtime(Count)
1360
         IF Realdistance(Count)>=1E-2 THEN GOTO 1400
1370
            Count = Count + 1
1380
            IF Count (Dimension THEN GOTO 1360
1390
            GOTO Return
1400
         T2(J)=Realtime(Count)
1410
         IF Realdistance(Count)>=5E-2 THEN GOTO 1450
1420
            Count=Count+1
            IF Count (Dimension THEN GOTO 1410
1430
1440
            GOTO Return
         T25(J)=Realtime(Count)
1450
1460
         IF Realdistance(Count)>=.1 THEN GOTO 1500
1470
            Count = Count + 1
1480
            IF Count<Dimension THEN GOTO 1460
1490
            GOTO Return
1500
         T1(J)=Realtime(Count)
1510 Return:
               RETURN
1520
1530
      ı
1540
      ļ
1550
1560
              COMPUTE THE LAST VALUE OF INTEGRAL:
                (Necessary due to computer accuracy limitations.)
1580 Last value:
1590
        Taunorm=Tau
1600
        GOSUB Compute_eta
1610
        Sum=Sum+Deltatau/2*(Old+Eta)
1620
        Realdistance(2501)=Diff*Sum/V
1630
        Realtime(2501)=Time
1640
        RETURN
1650
1660
1670
1680
      REM : COMPUTE VALUE OF ETA:
1690
1700 Compute_eta:
1710
           W=EXP(-Taunorm/4)
1720
           X=SQR(Taunorm*PI)
1730
           Y=SQR(1-PI*Epsilon^2/(4*Taunorm))
1740
           Z=SQR(Taunorm)/2
1750
           CALL Comp errorfon(Z,Erfcz)
1760
           Eta=2/PI*ASN(Y)*(X/(X+Epsilon))*(1+Epsilon*(Erfcz/2-W))
1770
           RETURN
1780
1790
      ļ
1800
      1
1810
1820 REM
          : COMPUTE THE NECESSARY ERROR FUNCTION (USED IN COMPUTING ETA):
1830
      SUB Comp errorfon(X,Erfcx)
1840
           OPTION BASE 1
1850
           DIM A(5)
           P=.3275911
1860
1870
           T=1/(1+P*X)
1880
           A(1) = .254829592
1890
           A(2)=-.284496736
1900
           A(3)=1.421413741
           A(4) = -1.453152027
1910
```

```
1920
            A(5)=1.061405429
1930
           Enfcx=0
1940
           FOR I=1 TO 5
1950
               Enfcx=Enfcx+A(I)*T^I
1960
           NEXT I
1970
           Enfcx=Enfcx*EXP(-X^2)
1980
        SUBEXIT
1990
      - !
2000
      1
2010
2020
      REM : GRAPH THE CONTOUR LOG PLOTS OF FLUX VS. TIME FOR EACH DISTANCE:
2030
      SUB Graph data(F(*), Tpre(*), T4(*), T3(*), T2(*))
2040
      PLOTTER IS "GRAPHICS"
2050
2060
      GRAPHICS
      REM : PART 1--Take the logs (where possible):
2070
         FOR I=1 TO 19
2080
2090
            F(I)=LGT(F(I))
2100
             Tpre(I)=LGT(Tpre(I))
2110
             IF T4(I)>0 THEN T4(I)=LGT(T4(I))
             IF T3(I)>0 THEN T3(I)=LGT(T3(I))
2120
             IF T2(I)>0 THEN T2(I)=LGT(T2(I))
2130
         NEXT I
2140
2150 REM: PART 2--Find maximum and minimum values (used for scaling graph):
         Tmin=10
2160
2170
         Tmax = -10
2180
         FOR I=1 TO 19
             IF (Tpre(I)\langle \rangle0) AND (Tpre(I)\langle1min) THEN Tmin=Tpre(I)
2190
             IF Tpre(I)>Tmax THEN Tmax=Tpre(I)
2200
            IF (T4(I)<>0) AND (T4(I)<Tmin) THEN Tmin=T4(I)
2210
             IF T4(I)>Tmax THEN Tmax=T4(I)
2220
             IF (T3(I) <> 0) AND (T3(I) < Tmin) THEN Tmin=T3(I)
2230
2240
             IF T3(I)>Tmax THEN Tmax=T3(I)
2250
             IF (T2(I)\langle >0) AND (T2(I)\langle Tmin) THEN Tmin=T2(I)
             IF T2(I)>Tmax THEN Tmax=T2(I)
2260
2270
         NEXT I
2280
         Tmin=INT(Tmin)
2290
         Tmax=INT(Tmax)
      REM : PART 3--Draw and label axes:
2300
2310
         FRAME
2320
         SCALE 3,7.5, Tmin-1, Tmax+1
2330
         CLIP 5,7, Tmin, Tmax
2340
         AXES 1,1,5, Tmin
2350
         UNCLIP
2360
         CSIZE 2.5
         FOR X=5 TO 7
2370
            MOVE X, Tmin-1/4
2380
2390
            LABEL X
2400
         NEXT X
2410
         FOR Y=Tmin TO Tmax
2420
            MOVE 4.75,Y
2430
            LABEL Y
2440
         NEXT Y
         CSIZE 3.5
2450
2460
         MOVE 5.5, Tmin-1/2
         LABEL "LOG (base 10) of FLUX"
2470
2480
         RAD
2490
         LDIR PI/2
         MOVE 4.50, (Tmin-Tmax)/2-1
2500
2510
         LABEL "LOG (base 10) of TIME"
2520
         LDIR 0
2530
      REM : GRAPH CONTOUR PLOTS WITH VARYING LINE TYPES:
2540
            MOVE F(1), Tpre(1)
2550
            LINE TYPE 9
2560
            FOR I=1 TO 19
```

CA + 63

```
IF Tpre(I)(>0 THEN PLOT F(I), Tpre(I)
2570
            NEXT I
2580
2590
            MOVE F(1), T4(1)
2600
2610
            LINE TYPE 4
2620
            FOR I=1 TO 19
                IF T4(I)<>0 THEN PLOT F(I),T4(I)
2630
2640
2650
            MOVE F(1), T3(1)
2660
            LINE TYPE 3
2670
2680
            FOR I=1 TO 19
2690
                IF T3(I)<>0 THEN PLOT F(I),T3(I)
            NEXT I
2700
2710
2720
            MOVE F(1), T2(1)
2730
            LINE TYPE 1
2740
            FOR I=1 TO 19
                IF T2(I)(>0 THEN PLOT F(I),T2(I)
2750
            NEXT I
2760
2770
         CSIZE 2.5
2780
2790
         LDIR 0
2800
         CLIP 3,4.25, Tmin-1, Tmin+3
2810
         FRAME
2820
         MOVE 3.25, Tmin+2.5
2830
      REM : CREATE LEGEND:
         LABEL "LEGEND:"
2840
         CSIZE 2.25
2850
            MOVE 3, Tmin+1.6
2860
            LINE TYPE 9
2870
2880
            DRAW 3.25, Tmin+1.6
2890
            DRAW 3.5, Tmin+1.6
2900
            DRAW 3.75, Tmin+1.6
2910
            DRAW 4, Tmin+1.6
2920
            DRAW 4.25, Tmin+1.6
            MOVE 3.20, Tmin+1.7
2930
2940
         LINE TYPE 1
2950
         LABEL "Preheat time, X = 0"
2960
            MOVE 3, Tmin+.9
            LINE TYPE 4
2970
2980
            DRAW 4.25, Tmin+.9
            MOVE 3.25, Tmin+1
2990
         LINE TYPE 1
3000
         LABEL "X = 1E-4"
3010
            MOVE 3, Tmin+.2
3020
            LINE TYPE 3
3030
3040
            DRAW 4.25, Tmin+.2
3050
            MOVE 3.25, Tmin+.3
3060
         LINE TYPE 1
3070
         LABEL "X = 1E-3"
3080
            MOVE 3, Tmin-.5
            DRAW 4.25, Tmin-.5
3090
            MOVE 3.25, Tmin-.4
3100
3110
         LABEL "X = 1E-2"
3120
         DUMP GRAPHICS
3130
3140
         EXIT GRAPHICS
3150
      SUBEXIT
3160
3170
```

```
3180
3190
3200
             PRINT THE NUMERICAL VALUES ON THE GRAPH:
      REM :
3210
      SUB Print out(F(*), Tpre(*), T4(*), T3(*), T2(*))
3220
         FIXED 5
3230
         PRINT
         PRINT
3240
3250
         PRINT
         PRINT "DATA VALUES ON GRAPH:"
3260
3270
         PRINT
3280
         PRINT
3290
                                     LOG(Tpre)
         PRINT "LOG(Flux)
                                                   E0G(T4)
                                                               L0G(T3)
                                                                           LOG(T
2) "
3300
            FOR I=1 TO 19
3310
               PRINT F(I); TAB(22); Tpre(I); TAB(34); T4(I); TAB(46); T3(I); TAB(58); T2
(1)
3320
            NEXT I
3330
         PRINT
3340
      SUBEXIT
3350
3360
3370
3380
             PRINT THE COMPLETE NUMERICAL VALUES BEFORE GRAPHING:
3390
      SUB Print all(F(*),Tpre(*),T5(*),T55(*),T4(*),T45(*),T3(*),T35(*),T2(*),T2
3400
5(*),T1(*))
         FIXED 7
3410
3420
         PRINTER IS 0
3430
         PRINT
3440
         PRINT
3450
         PRINT "COMPLETE DATA VALUES:"
3460
         PRINT "
3470
         PRINT
3480
                                   PREHEAT TIME
        PRINT
                        FLUX
                                                   X = 1E - 5
                                                                X = 5E - 5
                                                                            X = 1E
        X=5E-4
-4
3490
            FOR I=1 TO 19
3500
               PRINT F(I): TAB(21): Tpre(I): TAB(33): T5(I): TAB(46): T55(I): TAB(58): T
4(I);TAB(70);T45(I)
3510
            NEXT I
3520
         PRINT
         ***********
3540
         PRINT
3550
         PRINT "
                        FLUX
                                                   X=5E-3
                                      X=1E-3
                                                                X=1E-2
                                                                            X=5E
-2
        X=1E-1
3560
            FOR I=1 TO 19
3570
               PRINT F(1); TAB(21); T3(1); TAB(33); T35(1); TAB(46); T2(1); TAB(58); T25
(I);TAB(70);T1(I)
3580
            NEXT I
3590
         PRINT
      SUBEXIT
3600
```