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ABSTRACT

Uncertainties regarding the feasibility of using an
annular "waterfall"” of liquid lithium to protect the first
wall in inertial confinement fusion (ICF) reactor cavities
have prompted a theoretical investigation of annular jet
stability. Infinitesimal perturbation techniques are
applied to an idealized model of the jet with disturbances
acting upon either or both of the free surfaces.
Dispersion relations are derived which predict the range
of disturbance frequencies leading to instability, as well
as the perturbation growth rates and jet breakup length.
The results are extended to turbulent annular jets and are
evaluated for the 1lithium "waterfall" design. It is
concluded that inherent instabilities due to turbulent
fluctuations will not cause the jet to breék up over

distances comparable to the height of the reactor cavity.
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NOMENCLATURE

inner and outer radii of unperturbed jet
thickness of unperturbed jet

diameter

equivalent diameter

specified constants

gravitational acceleration

arbitrary dimensional variable (r, @ , or z)
modified Bessel function of first kind, order m
arbitrary dimensional variable (r, @ , or z)

wave numbers of inner and outer surface
perturbations

modified Bessel function of second kind, order m
Prandtl mixing length

angular perturbation modes for inner and outer
surfaces

subscript for jet surface designation ('1' refers
to inner surface, '2' refers to outer surface)

outward pointing unit normal vector in direction j

number of inner and outer surface wavelengths in
control volume

sum of squares of velocity components
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+uZ)

IR
( = up. + uy,



=14

Greek

ol

CLom ,omz

Obml,m,_
Op
N2

iii

radial distance

local inner and outer radii of perturbedrjét
surface area

time

breakup time

velocity vector

velocity component in direction i

volume

uniform axial velocity of unperturbed jet
Weber number based on equivalent jet radius

dimensionless perturbation growth frequencies for
inner and outer surfaces

axial distance
breakup length

axial height of control volume

aspect ratio ( = al/a2 )

initial amplitudes of inner and outer surface
perturbations

amplitudes of inner and outer surface perturbations
perturbation pressure

dimensionless wave numbers of inner and outer
surface perturbations
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Notes

iy

angular direction
curvature of normal plane
curvature of osculating plane

wavelengths of inner and outer surface
perturbations

density
surface tension
stress tensor

normal radial stress component at inner and
outer surfaces

total velocity potential
velocity potential of unperturbed jet

velocity potentials for inner and outer surface
perturbations

phase angle between inner and outer surface
perturbations at 2z = 0

growth frequencies for inner and outer surface
perturbations

1. The subscript 'o' refers to the unperturbed jet;
the subscript '1' refers to the inner surface of the jets
the subscript '2* refers to the outer surface of the jet.

2. Dots above variables denote differentiation with respect
to time; primes denote differentiation with respect to r .



I. INTRODUCTION

The Lawrence Livermore Laboratory has recently brought
forth a conceptual design of a laser-driven fusion power
plant which uses a vertical, free-falling annular jet, or
"waterfall", of liquid lithium to shield the first structural
wall from the photons and ions produced by the exploding tar-
gets (1,2,3). The explosions take place at a frequency of
1 Hz in the center of a cylindrical cavity into which the
annular lithium jet flows downward. The reactions produce
energetic neutrons, alpha particles, photons, and other ionic
debris which impact onto the 1lithium fall. The x-rays and
ions deposit their enefgies in the lithium fall, which serves
as the primary heat transport and tritium breeding medium. In
addition, most of the neutrons' energy is deposited in the fall
so that wall damage by high energy neutrons is considerably re-
duced. The energy deposition, vaporization, and shock waves
produced by the microexplosions cause the jet to momentarily
- disassemble. Recirculating flow through the top of the cavity
reestablishes the lithium flow after each explosion.

Among the many uncertainties associated with this concept
is the problem of jet stability between explosions (5). Dis-
turbances covering a wide range of frequencies may be caused by
a number of factors, including residual pressure pulses and
shock waves, nozzle defects, turbulence, and vibration of the

reactor housing. The effects of these destabilizing influences,



together with the attendant possibility of jet breakup,
constlitute the primary motivation for the theory presented
in this paper.

In Section II, stability criteria for an 1dealized
laminar annular Jet are presented. The derivation follows
a linearized, superposition technique. The closed-form
solutions are extended to turbulent flow situations in Sec-
tion III. These results are applied to the lithium "waterfall®
concept for ICF reactors in Section IV. Conclusions and recom-

mendations are given in Section V.



IT. STABILITY THEORY FOR IDEAL ANNULAR JETS

The pioneering work on the stability of idealized
cylindrical liquid jets was performed by Lord Rayleigh (5,6),
and was subsequently extended by a number of other investiga-
tors. More recently, Anno (7) developed a new "macroscopic"
approach to the stability problem. This method, when combined
with a number of fundamental assumptions outlined by Paul (8),
is readily adaptable to the question of annular jet stability.
Here, a stability theory for an ideal annular jet is presented
along with the underlying assumptions. A more complete and
detailed discussion is furnished by Esser (9).

Consider a section of an annular jet as sketched in Figure
1. In general, the jet is acted upon by disturbances at both
its inner and outer free surfaces. The broken lines represent
the unperturbed jet, while the solid lines indicate the deformed
surfaces. Assume that these surfaces can be defined by the

equations:

b= d, + oty (£) o' m,6 co (kiz+ V) (1a)

r.= 0o, + O(«mz(t) dorr m.6 sz?— (1b)



The cosine representations are actually quite generél, since
by Fourier's hypothesis any continuous waveform can be repre-
sented by summation of a suitable number of sinusoidal com-
ponents. The idealized jet is characterized by the following

assumptions and restrictions:

1. The unperturbed jet is assumed to be an annular
vertical liquid jet with uniform, steady, laminar,
irrotational, incompressible, and inviscid flow
field.

2. The flow field for the perturbed jet is assumed
to be three-dimensional, unsteady, laminar, irro-
tational, incompressible, and inviscid.

3. Linear, superposition analysis is used so that
the total perturbation is determined by superpo-
sition of the disturbances at the inner and outer
free surfaces.

., Infinitesimal initial axial and angular perturba-
tions are assumed.

5. Mechanical energy effects are considered only;
thermal effects are ignored.

6. Gravitational body force only is included.

Now assume a velocity potential of the following form:

¢ = ¢, + 3 + & (2)



Whereﬁi is the component for the unperturbed jet, and is equal
to w_z . To find the perturbation terms ¢/I and ;éz’ , the
continuity equation is combined with the relationship between

veloclty and potential to give the Laplacian equations:

o [/ L 1 3* * dn  _
( + rz_ agz_ + azz_ - O (3)

The subscript n denotes either the inner ( n = 1 ) or outer
(n=2) surface. Equations (3) are solved by separation

of variables with two general boundary conditions. The first
condition requires that the perturbation velocity components
derived from the velocity potential in Equation (2) must
equal the time derivatives of the disturbance waveforms in
Equations (1). Accordingly, the displacement amplitudes are

assumed to vary exponentially with time:
Clmn = Clomn €% (%)

The second condition stipulates that a disturbance
acting upon one free surface of the jet vanishes at the other
surface. This assumption is reflected in the analysis
through the perturbation momentum equation for the

idealized jet:s



P[] = —[grad (5p)], (s)

If a disturbance occurs on one free surface of the jet,
Equation (5) is applied to the other free surface, and the
local perturbatiqn pressure 5;7 is set equal to zero. The
resulting solution of Equation (4) yields the second
required boundary conditione

Following this approach, Equations - (3) are solved and

converted to velocity components to give the results:

U, = F:m [ID:I (kl") Km(k)a'z) - K':“ (k.l’) Im(k’a”')] X

X dorm,8 éor (kz+P) +
(6)
F LT T (ar) Ko (i) = Kl (kar) Tos (kn) ] %

X 0¥ m 0 ot kaz
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U = rk, F [_Irm(k r) Km(k d«i) Km (k:") Im (knd-z)] X

X gin m@ dor (kz+YP) =
(7)
- —:’—lz.%il[]:mz(kzr) Knn.(ktdn) - KML(kiY) I”"*(k’-d")J X

X sin ma0 dov Koz

Uz = Wo -

- oLmu

[Im (k.r) Km (k.dn.) Km (k.?) Im(kuaa)] X

X dorm0O sn (kiz+P) — (8)

- d’m- [Imz(sz)Km(kzdn)" Kut(kt")Imz(kid’l)]x

X dov m, 8 gin- ko2



Foo= Im(ka) Km(kz) = Km (k) I (kaa) (9a)

= Ir:a.(k1-¢1-) Km.( ktd«;) - Ku:z (kzd/t) Im. ( kz¢n) (9b)

(The primes represent differentiation with respect to r.)

The next step in the analysis is specification of the
normal stress components, which arise from surface tension
forces, acting on the free surfaces of the jet. The
derivation of the stress components is given in

Appendix A. = The results are summarized below:

(T,

H

w _ O(.mO"(l_m. k,zd/.,'> X (10a)

X dot 8 éov (kz+P)

(M), = =L+ 00 (o= k2 a) x

(10b)



These relationships, together with the velocity components
obtained earlier, are applied to the mechanical energy
conservation equation written in control volume form. For the
idealized annular jet, a macroscopic energy balance can be

expressed as follows (Reference (7)):

\ys f)’,J Uihj dS ~ S\S_li_.?qlujni oS —
' (11)

= TP AV + §, pqUdy = 0

The control volume consists of a length of the unperturbed
jet, which is an annular cylinder of inner radius a, and outer
radius a,» The length of the control volume is an integral
number of disturbance wavelengths on both free surfaces.
(For example, the length may be the least common multiple of
the two wavelengths that is an integer.) Since the stress
tensor and velocity components are dependent on the axial
distance z only through sinusoidal functions, the surface
integrals taken over the ends of the control volume cancel
each other.

Using this control volume, the individual terms of the
mechanical energy balance in Equation (11) are evaluated in

Appendix B + After simplification, the final result iss
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no . N, g > —
kuarl d,m, d’m' + kzd«z. Cma L. =

= %%L[Km(k-dn):[ml(k.da) - Im(k.an) km (k,dq)] &'m &m +
(12)

+ 2222 [Tllaas) Ko (ke = Kew(ket) Ton (ko) ] e 2

AR m2\K121) Km2(Ks me\Kidz] Lz (Ko nz Oy,

(Dots above variabtles denote differentiation with respect to
time.) Since, by Equations (4), oL,, and ol., are assumed to
vary exponentially with time, Equation (12) can be cast into
two separate relations by equating the coefficients of the
exponential growth terms. Rearrangement of these equations

yields the dispersion relations for the perturbationss

2 1_ I){u (k.&)) km(kia’i) - K£| (kna'l) IMi (k.dq) '/2
@ { ?d}( I~ m k'a. Kur(kia,) Im (k@) = Tmi(kocta) Ko (kiar) } (13a)

(3 k; 1_1 Im_ (kth) Km(kxti:) Km(kzd\) s (kt&n) } ‘/z
W, = ,?d." (, m’ Kt )[Im. (ko) Kma(kiz:) = K (k';a-z)I--(k-.ﬂ (130)

These results can also be expressed in dimensionless forms
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/2

— z 2 I»,u ('71») Kh‘(’ll/d-) - k:. (’Q.)Im(‘?(,./d,)1
X, = {’71,(1- me =y ) [ (%.)1...(%/‘*)..1,..(%),(.,@‘/&“} (14a)

V2

— 2 2y Im (1) Km.(ot"hz" K ("lt)Im(d"Lz)
Xz - { /)L"(I— My = "’) w2 (2.) Kiea (@ 72) - Km("l.z)In(d—”hJ} (14p)

wheres

X, = w,[Z&]" (15)
MNn = kncn (16)
o = 2L (17)

For the particular case where no angular disturbances occur,
m =m, = 0 , and the dimensionless dispersion relations

becomes
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— I () Ko (U Je) + K, () To (/) ) 1/2
X‘ - {/)?4 ( l— ,)L"L) Ka(qu)IO ("Ll/d-)" I (%l) KO("L!/"‘) } (188.)

= 1Y [ 2u) Ko (M) + Ki () To(ama) N V2
X, = {"Li(" VN Lok ey = Ko(12) To (@) } (18b)

It can be shown (Reference (9)) that the factors in
square brackets in Equations (14) are always positive for
Mn> 0 and o< 1 . Therefore, X§< 0 and Xg <0

if my> 1 and m,> 1 . In this case the dimensionless
growth frequencies are both imaginary, indicating that the
jet is stable. However, if my =m, = 0 (no angular
disturbances), the free surfaces may or may not be stable,
depending on the values of 4, and 7, . For this situation,

it is seen that Xi >0 for 0L My < 1 i otherwise

Xi< 0 .« Since the amplitudes of the perturbations grow
exponentially with time when X;> 0 , the jet becomes
unstable. When X:I < 0 , the amplitudes oscillate
sinusoidally but the jet remains stable. Instabilities
can occur at either or both of the free surfaces. When

both surfaces are unstable, the total disturbance is found

by superposition of the individual perturbations.



13

The dispersion relations defined by Equations (18) are
plotted in Figures 2 and 3. The limiting values of Xn are
nonzero as‘?Ln approaches zero, but vanish as 7, tends
toward unity. Furthermore, if the aspect ratio oL is less
than a particular value, the maximum values of Xn occur inm
the limit as %, goes to zero. If oo is greater than this
value, the maxima occur in the range 0< 7, < 1 . (The
transition aspect ratio values are oL & 0.29 for the inner
free surface and oL = 0.06 for the outer surface.)

A disturbance at a given surface is stable (that is, does
not grow with time) if the value of the corresponding wave
number 9, is greater than unity.

In Figure 2, the dispersion curve for oL = 0 is a
limiting case which represents the inner surface of an
infinite jet with a finite-sized central "hole". The curve
agrees with the original analytical result of Lord
Rayleigh (10) for this situation. Similarly, the curve for
ol # 0 in Figure 3 represents the surface of a solid
cylindrical jet, and also matches the classical findings of
Lord Rayleigh (5,6).

Using the stability criteria obtained earlier in this
section, it is possible to derive approximate expressions
for the jet breakup length. This is defined as the distance

along the jet at which the amplitude of a perturbation
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becomes comparable to the jet thickness. Considering
a disturbance at either free surface, the time at which

breakup occurs is found by rearranging Equations (4)5

The breakup time is equal to the breakup length divided by

the jet speed. Consequentlys

S = o (2 (20)

[+

In dimensionless form:

Z - I wao‘dn 1/2 b
R N EE R

The quantity in square brackets represents an effective

Weber number for the jet. Its value depends on the properties

of the fluid and the flow characteristics. The value of Xn is
read directly from the appropriate graph in Figure 2 or 3.
Therefore, if the initial disturbance amplitude OlowsiS known,

the breakup length can be calculated directly from
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Equations (21). Application of this result to laminar flow
situations is discussed in Reference (9). Turbulent flow
cases, which include the annular lithium "waterfall® for ICF

reactors, are examined in the next sectione.
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IIT. STABILITY THEORY FOR TURBULENT ANNULAR JETS

In order to apply the results from ideal laminar
theory to turbulent flows, the jet is assumed to exhibit
"pseudo-laminar" behavior (Reference (11)). In this case,
the disturbance growth rates obey the laminar flow equa-
tions, but the instabilities are actually produced by tur-
bulent velocity fluctuations. This laminar analogy has been
used with varying degrees of success in the turbulence
correlation studies of several researchers (Reference (9))
for solid cylindrical jets. Other possible effects include
the characteristics of the ambient surroundings and viscocity
of the jet fluid (reflected in the value of the Reynolds
number). These influences are, however, ignored in the analysis
of the annular lithium "waterfall"™ for the following reasons.
First, the ambient pressure in the reactor cavity is very
low (£ 0.1l torr), so that external effects should be negligible.
Second, it has been shown (Reference (9)) that the viscous
effects become very small at the high flow velocities encoun-
tered in the jet. Therefore, the remaining parameters which
control the stability behavior of the lithium "waterfall" are

the initial disturbance level and the jet Weber number.
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Phinney (12) reasoned that, in a fully turbulent jet,
surface tension acts as a stabilizing influence, dampiﬁg
the disruptions caﬁsed by internal turbulent motion. This
is opposite to the situation in a purely laminar flow,
where surface tension is the primary breakup mechanism.

This physical model implies that the dependence of the
stability criteria on the frequencies or wavelengths of
external disturbances is not valid for the turbulent case.
In particular, it may be assumed that inherent instabilities
always exist, and that they need not have dimensionless wave
numbers in the range of zero to unity in order to promote
breakupe.

With this information as background, Equations (21) can
now be used to make a rough estimate of the breakup length
for a turbulent annular jet. The relationship between the
jet thickness b and the initial disturbance amplitude lomn
is determined by the following approach. Semiempirical
studies conducted by Nikuradse (13) indicate that the
turbulent eddy of largest size in a circular pipe is

characterized by the expressions

£ .
= = 0.4 (22)
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where £ is the Prandtl mixing length and D is the pipe
diameter. Assume that this expression remains valid for
free turbulent jet flow (Reference (11) ), and that D can be
replaced by De’ the equivalent diameter, for the special
case of annular flow. If the mixing length corresponds to
the eddy size and is taken to be the amplitude of the

initial disturbance, then, since De =2b

- = 0.28 (23)

Substitution into Equations (21) givess

Zs A~ 0.9 ?.S’Wo"dm]'/z (24)
an X o

For the case of the annular lithium "waterfall",
Equations (24) must be corrected for the fact that the flow
is fully turbulent, and not "pseudo-laminar”. The
experiments of Phinney (12) with solid cylindrical jets
suggest that the results can be applied to turbulent flows

if they are multiplied by the following factor:
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(Z8) turbulent 17 |

(Zl)pseudo-lanﬁunr - 0.33 + We (25)
Here We 1is the "true” Weber number of the annular jet,
based on the equivalent diameter, and is given bys:

_ 29wseb

We = == | (26)
After multiplication by the conversion factor (25),
Equations (24) becomes

Zs . 0.3 wao‘atn]\/?— i5 [¢n]'/1

an - X, Lo S (22)

The final step in the analysis is to specify appropriate
values for a, and Xn' Since the random turbulent fluctuations
which promote instability occur throughout the jet, neither
of the free surfaces is disrupted preferentially. Therefore,
since ay < a, » Equations (27) indicate that the shortest
calculated breakup distance occurs when the disturbance is
assumed to evolve from the inside surface ( n =1 ). It
follows that this minimum value of (2 is the actual breakup

distance. Hence, the final result iss
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Zs .. O3V 2¢wia ]2 s a1z
a, — X, o ] -+ X,[.\o] (28)

The proper value of X, to use in Equation (28) is the
maximum, as shown in Figure 2, for a given aspect ratio.
This follows from the "narrow-band" statistical theory of
Lafrance (14), which asserts that turbulent jet breakup is
induced by random perturbations acting on an otherwise
laminar jet. Only a narrow range of wave numbers near the
maximum (as calculated from laminar stability theory) can

participate significantly in the breakup process.
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IV. APPLICATION TO ANNULAR LITHIUM "WATERFALL" CONCEPT

The semiempirical expression for the breakup length of
a turbulent annular jet, as given in Equation (28), can be
applied directly to the case of the liquid lithium
"waterfall” first wall protection concept for ICF reactors.
Table 1 gives some preliminary design values for the key
parameters of the reactor cavity and the lithium flow.
From Figure 2, for an aspect ratio of 0.87, (Xl)max’a'2'7 .
Inserting this and the other appropriate values from
Table 1 into Equation (28), the approximate breakup length
for the "waterfall" is 430 m

This distance is a factor of about 50 greater than the
design height of the reactor cavity. Therefore, it is
concluded that flow instability due to turbulence poses no
significant problems or constraints for this concepts
However, in view of the assumptions and approximations tied
to this analysis and the lack of experimental data, the
result should be looked upon only as a crude,

semiquantitative estimate.
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V. CONCLUSIONS AND RECOMMENDATIONS

Uncertainties in the flow stability of a conceptual
annular liquid lithium "waterfall" for ICF reactors have
prompted a general theoretical investigation of annular
jet stability. By using a first-order, infinitesimal
perturbation approach coupled with superposition and the
fundamental assumption that a disturbance at one surface
vanishes at the other, closed-form solutions for the
perturbation growth rates for idealized laminar jets are
obtained. Sinuscidal surface disturbances are stable if
their dimensionless wave numbers are greater than unitys
otherwise, they grow exponentially with time. Breakup of
the jet is dominated by the disturbance with the fastest
growth rate. The breakup length of the jet can be
determined if the amplitude of the initial perturbation
is known.

The results are extended to turbulent flows by
applying empirical correlations and a "narrow-band"
statistical theory, originally obtained for solid
cylindrical jets, through use of the equivalent diameter
concept. Semiempirical expressions for breakup length
are derived for “pseudo-laminar" and fully turbulent

flows. The estimated distance at which the lithium
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"waterfall" is expected to disintegrate due to turbulence is
430 m , which is far greater than the design height of the
reactor cavity. Consequently, flow stability is not
anticipated to be a limiting constraint for this application.

Undoubtedly the present theory can be improved by con-
sideration of additional factors (for example, flow Reynolds
number, ambient conditions, finite-amplitude disturbances),
and by applying a higher-order method of solution. However,
due to the great effort which would be involved, it is felt
that these refinements should await the results of a broad
experimental program on annular Jjet stability. A full-scale
empirical study of the lithium "waterfall" itself would be a
valuable contribution. The results of such experiments may
be used to confirm or disprove the fundamental assertions

upon which the analytical work is based.
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APPENDIX A: EVALUATION OF BOUNDARY PRESSURES

Surface tension forces produce a discontinuous
difference in pressure between the boundaries of a fluid
jet with curved free surfaces and the ambient surroundings.

The pressure differential is given by (Reference (7))

T = oo (Xo + %n) (A1)

Ko, is the curvature in the osculating (vertical) plane at
the free surface, and )}, is the curvature in fhe normal
(horizontal) plane. The curvature is considered positive
when the fluid is located on the convex side, and negative
when it is on the concave side.

The curvature in the osculating plane is,
respectively, for the inner and outer free surfaces of

an annular jet (Reference (Z)):

(), = (E)[) 4 (L) ]2 (122

(Ko),

i

o n.) [' a(,n.) ]"3/7' (A2b)
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The corresponding curvatures in the normal plane are

given by (Reference [7])s

Obn)y = =L+ 205" - nigge] [+ (£5° 17 asm)

(hnda = [r2+ 2 (& - i ][+ (2T (asw)

Substituting for ry and r, from Equations (1) and

approximating to first order in olw and oL, yieldss

(Xe), & = cmk! o m,@ dos (kz + W) (Aba)

(Ke)y, & OlmK; dotr M0 for kuz (Abb)

R

(), ""aL, “"‘(l—m,)mmawy(kzw»’?’) (A5a)
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(Hm)z = 'a';_ -%?-('“m:>m)‘n1.9ddi’kzz (A5b)

Combining Equations (A1), (A%4), and (A5) gives, after
rearrangement, the expressions shown in Equation (10) of

the article.



APPENDIX Bs: EVALUATION OF TERMS IN MECHANICAL ENERGY EQUATION

As described in the article, the control volume used for
the mechanical energy balance is an annular cylinder of inner
radius a, and outer radius ay e The length of the control
volume is chosen so that it includes an integral number of
sinusoidal disturbance wavelengths on both free surfaces.

If one end of the control volume is located at 2z = 0 , the

position of the other end iss

2mUh _ 21rna (B1)

ZI = 2'2 = Yl.), = hz;lz = k — kz
4

The values of the differential factors in the integrands ares

(“3”J°‘5>. = — d, O bo¥m0 cor(kz+P)dOcLz (B2a)

(UsngdS), = Oyl do¥ M8 dop kuz d@ dz  (B2D)

AV = r d0dzdy (B3)

29
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The limits of integration are 2 =0 to 2z = 3z, = Zy s
6 =0 to 8 =24 , and (for volume integrals) |
r =a, to r = a, e

Consider the first term in Equation (11), which
represents energy generation due to surface forces.
Since there are no shear stresses and nj is the outward
pointing unit normal vector, 'T'.j = TJ,, -+ Substituting

for 7,, from Equations (10) and integrating gives:

§ T uznjds = §, ), und3), +§ @) (unds), (38)

1 L)

k,d,
(B5)
+ TT“-h-:.ko' Omi Olws (,"M:"' k:d:)
10s
Similarly, for the second term in Equation (11):
| |
S.xeqrunds = §, T 99" (un,d3), +
(B6)

+ s,_"'z‘ £9* (urn, 065)1



o
where q2 = ui + u; + ui » Substituting for the velocity
components and performing the indicated operations leads

to the results
S‘s'T?q1 ujh;dS =0 (B7)

The fact that this term vanishes can be understood on
intuitive grounds. The surface integral represents the
net efflux of mechanical energy from the control volume.
As a result of the spatially periodic, sinusoidal nature
of the disturbances, the net outflow of energy must be -
Zeroe.

The third term in Equation (11) gives the rate of
change of kinetic energy within the control volume.
A detailed integration is carried out in Reference (9).

The result is:

Sv 21 eqtdV =
(B8)

— 2-171 nl d| a—m &—NI [Khl(kudﬂ) I.Ml (k.dn.) - Inn(k.d'.) km (k.dq_)
- k? Lo (k1) K (ky @) = Koo (ko) Toms (ke@a)

2.7 N1 0z Qo Coms Twa(kada) Kmalkaay) = Kwa. (Kate) Tma (k;d-.)
k: ms (ka@2) Koma (k3da) = Koes (ks @) Tma (kats)

+
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The last term in Equation (11) represents the increase
in mechanical energy due to gravity. In evaluating this
integral, the unperturbed component of the axial velocity,
W, s is neglected since it is explicitly assumed to remain
constant with respect to both space and time. This is
admittedly an unrealistic constraint, although its
influence diminishes for high speed vertical jets.\
Substituting the perturbation component of u, into this

term and integrating leads to the result:

§ pqudv =0 | (39)

Combining Equations (B5), (B7), (B8), and (B9) yields,
after rearrangment, the result in Equation (12) of the

article.
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Table 1: TLawrence Livermore Laboratory ICF Reactor

and Lithium "Waterfall"™ Design Parameters (1,2,3)

Inner Jet Radius

Outer Jet Radius

Jet Thickness at Midplane
Aspect Ratio

Chamber Height

Inlet Jet Velocity

Jet Reynolds Number

Jet Weber Number

Chamber Pressure

Reaction Pulse Rate

Lithium Temperature
Lithium Density
Lithium Surface Tension

Lithium Viscosity

LeOm
4eb m
0.6 m
0.87

8.0 m

8.0 m/sec
9.8 x 106
1.0 x10°

< 0.1 torr

1.4 Hz

700° x

490 kg/m3

0036 N/m

0.00048 kg/m-sec
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