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ABSTRACT

The concepts of effective time and interaction time are examined
in a unified context that includes electron cyclotron resonance heating
as well as fast and slow wave ion cyclotron resonance heating. Here
effective time t, is defined by Av, = (eE+/m)te, while interaction time t; is
the period over which the phase between the particle and the wave is
slowly changing. Elliptically polarized travelling waves are assumed
obliquely incident upon an arbitrary magnetic mirror field. Arbitfary
harmonics and Doppler shift are included in the analysis.
It is shown that, for ECRH and slow wave ICRH, te = 0.7 ti for
particular resonance locations, but both te and ti become ill-defined
in between, owing to overlapping resonances. A new expression is derived
relating te and ti for fast wave ICRH. A cubic equation, valid for ti<<tb,
the bounce time, is derived for a general magnetic well and solved numerically for a

parabolic well. A simple condition for resocnance overlap is given by
the vanishing of the discriminant of the cubic. The results are applied
to ECRH with k” > 0 and to fast wave midplane heating,for which kv, <<uw.

In general, resonances are found to be much broader in typical ICRH

experiments than for ECRH.



1. INTRODUCTION

The notion of effective time plays a central role in single particle
theories of electron and ion cyclotron resonance heating (SPROTT and
EDMONDS, 1971; JAEGER et al, 1972; STIX, 1975). This time (te) is defined in
such a way that the maximum perpendicular velocity gained or lost by an ion
or electron passing through resonance is Lv, = (eEi/m)te, where E, is the
left or right hand circularly polarized component of E. GUEST (1968)
and CANOBBIO (1969) defined
a "correlation" or "transit time" such that E, and v, undergo a relative
phase slip of #90°; we shall employ the more descriptive terms "interaction

time" or "resonance width" (ti)' 't has often been assumed, or shown

indirectly in special cases (GRAWE, 1969) that te and ti are roughly
equal. However, it is not a priori obvious why these two concepts should

be equivalent.

In this paper we unify previous derivations of te by means of a rig-
orous asymptotic expansion of a phase integral common to most cases of
interest. An elliptically polarized travelling wave is assumed obliquely
incident upon an arbitrary magnetic well possessing a symmetry plane;
arbitrary harmonics and Dopper shift are allowed. This treatment encom-
passes the fast magretosonic and slow Alfven waves, as well as nonrelativistic
electron cyclotron waves. By expanding the phase about the resonance
point, ti is obtained as the solution of a cubic equation valid when
ti<<tb. We find that te z U.7ti for midplane, turning poiht resonance
and aregion in between where the phase is locally quadratic in time, but
that both te and ti become ill-defined for intermediate points
where resonances overlap. Midplane and turning point
resonances are described by the same formula, owing to the fact that
the particle sees a slowly changing B-field in each case. For slow

wave heating te must include a Doppler term, while for the fast wave te



acquires a Bessel function J;(k,p) and is no longer equivalent to t,.

The behavior of te in the nebulous overlap regions is quite
complicated and has been reported elsewhere (HOWARD and KESNER, 1979).
Fortunately, it is possible to assign a meaning to ti in these regions
with the aid of an overlap condition, which is simply that the dis-
criminant of the cubic vanish. In the next section this condition is
exhibited for a parabolic well in the limit of zero Doppler shift and
shown to be itself a cubic. The original cubic is solved numerically
for a parabolic well in order to bridge the gap between the analytically
tractable limits.

One motivation for this study is to determine the true resonance
width in practical RF heating situations in order to see whether or not
an impulsive heating model is justified. The numerical results for

ky v, <<wshow that under typical ECRH conditions (wce = ZDDmb), midplane
heating is well localized, but that off-midplane heating is likely to
be more evenly distributed unless a rather extreme clustering of turning
points occurs at the resonance position. In general, resonance widths
are substantially largér in ICRH, where typically Woy = 20 Wy - Since the
resonance width is roughly proportional to v,, it is not unusual to reach a
point where heating occurs evenly throughout most orbits. Under these
conditions the basic idea of a resonance is lost and heating falls off
dramatically. A concomitant mathematical snare is the failure of asymptotic
expansions based on localized resonances. Again, this is much more
likely to be a problem in ICRH than in ECRH.
Another important consequence of a broad resonance width is the

heating of non-resonant particles.



Our numerical calculations of power absorption (HOWARD and KESNER, 1979)

show this to be a large effect in ICRH. A related relativistic resonance

broadening in ECRH has been studied by GRAWE (1969). Finally, we apply
the parabolic well results to fast and slow wave heating in Phaedrus,

the University of Wisconsin tandem mirror experiment (SMITH et al., 1979).
For fast wave midplane heating, the small but nonnegligible Doppler shift
has a modest broadening effect on ti’ caused by the partially merged mid-
plane resonances. A simple overlap criterion is derived for this case

and shown to be independent of Vie A curious phenomenon that arises only
in midplane heating is the occurrence of virtual resonances for small
Doppler shifts. The heating effect of these ''ghost" resonances is very
sensitive to the separation of the real resonances, so that the power

absorption falls off very rapidly with increasing kll'

2. THEORY FOR A GENERAL MAGNETIC WELL
A. Effective Time

We consider an elliptically polarized travelling wave

-

E = E X €Oos & + Eyoy sin £, (1)

where

£ = kzvZ + kxvx - wt, (2)

obliquely incident on a static magnetic field B = B(z)z. Here we have
arbitrarily taken ky = 0 so that kz = k) and kX = k,, and Ez has been
neglected compared to Ex and Ey' Figure 1 shows the location of the

four cyclotron resonances in a magnetic well. Solving the nonrelativistic
equations of motion for an ion moving in the combined fields including

the RF magnetic field of the wave, it is straightforwara to show (HOWARD and

KESNER, 1979)



that the amplitude of the velocity kick is

Av' :e_E:_’-.

- m JR,-i (kLp) IG]7 (3)

where 2 is the harmonic number, p is the midplane gyroradius, and

E+ = %(EXO + Eyo) is the left hand circularly polarized component of
E.

Here we have defined a ''gain integralV

L2 .
c={qQ - kzvz/w)e1¢ dt, (4)
“th/2
where
t
(L) = zf a(t')dt! + kz - t (5)

0

is the phase slip between E+ and v,, and Q(t) is the local cyclotron
frequency.

JAEGER et al. (1972) define an effective time such that

+ t (6)
so that

t, = 32—1 (k,0) |G] . (7)



For an isolated resonance somewhere along a trapped orbit where
¢(t) = 0, the G-integral may be evaluated asymptotically by the method

of steepest descents;
G (1 - kv /u) l%ﬁ‘ exp i(4 £ 1), (8)
z' z 5 4

. ~ . 302
where ¢ is evaluated at t. This formula is valid for ¢<<(¢) , which
is usually satisfied for a resonance point abcut midway between the

midplane and a turning point. For this case (7) and (8) give

b= (1~ kov /o) 3, (k) |2, (9

© s
In fast wave ICRH and slightly nonrelativistic ECRH, the Doppler
shift is so small that pairs of merged resonances occur for midplane or

turning point heating. Since

d = 2Q'v_ + k_v
z z'z

©
]

n, 2 1o N
(0 v, + 8 vz) + kzvz, (10)

where primes denote z-derivatives, we see that 5 >>(:1;)3’2 near these
extremes. The standard procedure when ¢ is small is to retain the cubic

term in the expansion of ¢,




$t2 + 2 413, (11)

Rsg
)
© @
+
|

where we have taken t = 0. Using this series in (4) yields, for

k_v_<<w,
zz

6 ~ 21 (1 - kv /o) <%.\1/3 Ai(-x), (12)

¢

where Ai(-x) is the Airy function and

-2/3 [3/2/] u/3
X = 2 ¢ ¢ . (13)

Note that (12) is still an asymptotic expansion, and applies equally
well to midplane and turning point resonance. When ; = 0 (completely

merged resonances), (12) simplifies to

6] - 2nAi(0)3,  (k,p) (%.)1/3, (14)
¢
so that
£ = 1.33 Jz_l(klp)(}__l,)lh , (15)
¢

where the prime serves to distinguish té from (9). Although one may

retrieve (8) from (12) by letting x » <, the reader is caltioned that



(12) is not valid for large finite x. There does not seem to be a
uniform expansion that smoothly bridges the gap between (8) and (12).
Rigorous asymptotic expansions have been derived by HOWARD and KESNER
(1979) for most cases of interest.

B. Interaction Time

Following GUEST (1968) we define an interaction time during which

the wave-particle phase is slowly changing via

26 = lo(ty) - 4] = F . (16)

Defined in this way, t. is a physical quantity, whereas te as defined
by (6) is a mathematical definition. In solving this equation, we
naturally choose the two closest roots ti(l) and ti(Z) bracketing t = 0

and usually find |ti(2)] z lti(])

. The interval 2ti is then a rough
measure of the full width of the resonance. A similar relation has been
studied by CANOBBIO (1969) for the special case of a linear magnetic
field. The relationship of t; to t, is not obvious, although they are
often identified in the literature. We now determine the conditions
under which t, and t, are interchangeable. When the motion is known, as
in a parabolic well, (16) may be solved numerically. However, when the
resonance is ''marrow' (ti<<tb) a useful approximate equation may be de-

rived with the help of the series (11), which gives

3 34, 2 3 (17)

This cubic is easily solved in the limiting cases corresponding to

t_and t! . For off-midplane heating, where ¢ > 0,

|1r
ti = ;‘ (18)



and for midplane or turning point heating,

t 3

Comparing te with the total interaction time Zti then gives

tg = 2\2 (1 -k,v/0) 3 (kpe) (2t) (20)
ty = 0.67 (1- kv /w) 3, (k) (2t]) . (21)

For ECRH, kz;z/w = ;Z/c << 1, 2 = 1, and k,p<<l so thet t, = 0.7(2ti)
and té = 0‘7(2ti)‘ Thus, te < 2ti for ECRH in the three limiting
cases of (17). For slow wave heating (2 = 1), k,p = 0.5, so that
JO(kLp) 1, but the large Doppler shift can réduce t, by 50%. Thus,

t, 035 (Zti) for slow wave heating. Although hot plasma effects
reduce the spatial variation of kz, the strong falloff of E+ at the
magnetic beach severely limits the value of single.particle calculations.
For fast wave heating (usually with 2 = 2), taking J;(k,p) = 0.5 k,p

and ignoring the small Doppler term gives t_ = 0.35 k,p (Zti), so that
one can have te<<2ti in this case.

Thus far, in calculating ti we have examined only resonances near
the extrema of an orbit and a (possibly narrow) region about midway
where $.+ 0. What happens at the intermediate points where 5‘: 5312?
For a fixed off-midplane resonance position and a given midplane distri-
bution function, which scaling law do most particles obey? In principle,

one has only to solve the cubic (17) or at worst the transcendental
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equation (16). However, solution of the cubic is complicated by
coalescing resonance pairs as E approaches the midplane or a turning
point. The simplest case to handle seems to be true midplane heating
with kzvz/w<<l as in ECRH, for which (19) may safely be used. For
fast wave midplane heating, however, kzvz/w ~ 0.025, which splits the
resonance and broadens the interaction time. This case will be
examined quantitatively in the following section.

We now consider off-midplane heating, which is the way ECRH or ICRH
is normally done. While some particles will always penetrate the
resonance zone, a number will turn near the resonance point, this
fraction increasing as heating increases v,. If ti<<tb, tﬁe transition
from off-midplane to turning point resonance is described by the cubic
(17). The number of real roots is governed by the sign of the dis-
criminant, which is proportional to

.3

D= 31 - 402y, (22)
¢

where o is the sign of the right hand side of (17). When D > O there
exists one real root ti and when D < 0 there exist three real roots,
two of these merging as D » 0.

In general, $ is positive for 0 < t < %tb while a’is positive near
the midplane, changing sign about halfway to the turning point, where
$‘< 0. Thus, for o =1 (¢ (ti) > &), a transition occurs from two to
three roots to one real root as one proceeds from the midway point (where

;.z 0 and the cubic becomes a quadratic) toward the turning point.
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A single lower root exists for o=-1, except in the vicinity of the

midway point. Fiqure 2 illustrates the metamorphosis of ¢(t) for k, =0

as the resonance point moves from the midplane to a turning point.

Clearly, t, is difficult to define in the regions (b) and (d) where two roots
merge. At this point the minimum of a peak roughly coincides with the bottom
of its neighboring valley and we take this to be our resonance overlap con-
dition; two resonances overlap when two roots of (17) merge, i.e. D = O.

From (22) we then obtain the general overlap condition,
)32 =% Pr §. (23)

At this point the total resonance width is about Bti. In order to apply
(23) and examine the variation of t, one must know the particle dynamics;
this is done in the next section for the important case of a parabolic
well. We shall also calculate the splitting of midplane resonances due
to a small Doppler shift and develop an appropriate overlap condition.

A corresponding ambiquity occurs in the meaning of te when resonances
overlap. For (9) describes the effect of a single resonance, while (15)
gives the velocity kick due to two partially mergeﬁ resonances. It is
well known that two neighboring resonances can interfere, so that the
net kick is less than the sum of the individual kicks. However, even a
small degree of collisionality can destroy phase information (MOMOT A
and TAKIZUKA, 1974). 1If collisions are sufficiently infrequent, the single
resonance formula (9) should be modified to include beating among all
four resonances occuring in one bounce time. This has been carried out

by HOWARD and KESNER (1979) and used to calculate power absorption for
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ICRH in a parabolic well. In the limit of very low collisionality and
high particle energy, such phase correlations can lead to the ordered
motion known as superadiabaticity (LICHTENBERG and LIEBERMAN, 1973).

The present work is relevant to superadiabaticity theory, inasmuch as

the resonances must be well localized to justify an impulsive heating model.
3. RESONANCE WIDTH IN A PARABOLIC WELL

In the previous section we saw that the concepts of effective time
and interaction time become nebulous when resonances partially overlap.
The rather complicated behavior of te has been studied for cyclotron
heating in a magnetic mirror using asymptotic methods, and will be reported
elsewhere. In this section we clarify the meaning of ti by solving
the cubic (17) for a parabolic well.

Consider adiabatic particle motion in the parabolic field,
B =B, (1+2%/L%). (24)
The guiding center solution is then
z = 1 sin e, (25)

with amplitude

~N
1

v, L/vig (26)

and orbital angle 6 = Q_t, where Q

b = Vlo/L is the total bounce

b

frequency.
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The phase slip (5) may then be conveniently written
¢ = Af(e), (27)
where
f(e) =6 cos26y - %sin 26 - 2sin 6. (28)

Here 6; is the orbital resonance angle, given by Z; = Zsing; and we

have introduced the useful dimensionless parameters.

N} zo (29)
ZQb Vio
and
6 = K2Vzo [Vio\2 (30)
) v .
o Zo

Physically, B locates the Doppler-shifted resonance, while 27X is
the phase slip between E_and v, in one complete orbit (6 >0 + 21).

The required derivatives of (28) are

f’ll

2 sin 26 + 28 sin © (31)

f‘"l

4 cos 26 + 28 cos @,
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which are to be evaluated at the resonance angle 6 found by setting

f'(6) = 0. This gives
- L
cos® = % | -B +(B%+4cos?6,)2 |. (32)
Defining the resonance half-width A6 = ei - €= thi, (17) takes the form

1"
(88)% + 2 (a0)2 = 210, (33)

where o = +1. It is then perfectly straightforward to solve (33) for

l .
given v__, v,gand 8;. Note that 45 - — for off-midplane heating while
-1 -
A8~ x for midplane or turning point heating.

A. ECRH

It is instructive to solve (33) for B = 0, corresponding to

the conditions of ECRH. Using (31) yields

3 ., 3 2 _ 310
(88)3 + > tan 26; (a8)? = - Sec 26. (34)
The discriminant is proportional to
D(X,81) = 37 - 20X sin 20; tan?25,. (35)

The resonance overlap condition is D = 0, or

sind 20; = %%? cos? 201, (36)

itself a cubic in sin 2@;! The discriminant of (36) vanishes when
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A = n/J3, for which the only real values of ©; are 30° and 60°. Thus,
(36) merely gives a simple particular solution of (35); the resonances
at ©; = 30° and 60° averlap when A > n/ 3. When any two resonances
just overlap, the total orbital angle over which ¢ is'slowly changing
‘increases by 50% to 3A8. For X\ greater than the critical value, the
total width is 2(A& + 1) for ©; < 45° and 2(A6 + 90° - ©;) when
6; 2 45°. From (31) we now see that f"'z 0 when 8; = 45°, the "midway
point” where t; is given by (18). |

To assay the changing resonance width as ©; varies from 0 to 90°,
we must devise a scheme to choose from among the six roots of (34).
Examination of Fig. 2 shows that the relevant root to track is the
upper one (o = + 1) to the right of ©; when 8; < 45° and to the left
of 8, for 87 > 45°. This root was then used to initialize an iterative
solution of the exact equation (16), which agrees within 5° of the cubic
for x > 3, but greatly exceeds it for smaller A. The resulting half-
widths are plotted in Fig. 3 as functions of X for various 8;. Note that
by symmetry, the curves for 6; = 15° and 75° and for 6; = 30° and 60°
coincide. The most striking feature of these curves is the large gap
between the 8; = 90° and 75° curves; the particles must turn very close

1
-3
to the resconance layer in order to follow the 2 law. It would seem

that initially most particles follow the A—Vz law.

Typical values of A are 1.5 for slow wave heating, 3 for the
fast wave and A = 16 for ECRH. Reading from Fig. 3 we find half-
widths of 59°, 42° and 9° for a ©; = 45° particle. If particles

"stick" at a turning point after heating has progressed the widths

would be 66° , 53° and 12°. The complications arising from a small

k“ will be treated in the next section.
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B. Fast Wave Midplane Heating
As a second example of enhanced resonance width due to over-

lapping resonances, we consider fast wave midplane heating in a parabolic

well. Here the presence of a small but non-negligible Doppler shift
has two related effects on particlé heating. In the absence of a
Doppler shift there are two midplane resonances, at & = 0° and 180°,
each of which may be regarded as a merged pair of slightly off-
midplane resonances. If now a small kz is "turned on'" in the negative
z-direction, the resonances at 6 = 0 will be moved slightly off-mid-
plane to a higher value of B. More importantly, the @ = 180° pair
will be shifted below Bmin’ i.e. they become virtual. We now derive
a criterion which simultaneously measures the degree of overlap of
the® = 0° resonances and the strength (te) of the virtual resonances
near 180°,

In practice B(z) is parabolic near the midplane and the analysis
of equation (23) et seq. applies. Typical Phaedrus parameters are
A =3 and 8 = 0.15. Even though kv /o = 0.025 might seem negligible,
the geometric factor L/vz)z = 6.25 in (30) amplifies its effect,
especially as v, increases. When 8 = 0, (33) gives a half-width

6, = 52.9° (56.4° exactly), already a very broad resonance. If we now

n

let 8 = 0.15, the resonances are shifted to * é JB = 21.9°, as depicted

66.6°, a rather

in Fig.4 . Solving (16) numerically we find ei
modest increase of 18%. What happens as B is increased further?

From Fig. 4 we see that the resonances will be resolved when

IF(6) - F(-8)] 5 I (37)
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which by symmetry becomes

lf(é)] 57:1)‘-. (38)

/

~ - 3/2
For B<<l we may use 8 = Jg in (29) with 6, = O to obtain f(§) =-48 /3,

so that (38)simplifies to

-3
AB S S T%:. (39)
Thus, with B = 0.15 we would need at least A = 10 to resolve the

resonances. It is more meaningful to fix A = 3 and increase B (by

0.338, for which

]

increasing kll) until (39) is satisfied. This gives B
§ = 32.31° and ei = 7l°, an increase of 26% over the 8 = 0 value. It is
interesting that in a real heating situation with k) fixed, the resolution
parameter XBMZ is independent of v,; the resonances do not split as v,
increases. However, the phase slip A decreases rapidly with increasing
v,, so that ei rapidly approaches 180°. The conseguences of this
broadening will be discussed in the next section.

An interesting connection exists between the parameter ¢ = Ag3/2
and the strength of the virtual resonances. If one calculates the
G-integral through the pair of virtual resonances in the complex .
t-plane and assumes that § is large enough for them to be resolved,
one finds t_ - exp(-48/3) for B<<1l. (The analogous result for the
real resonances is t_ -~ exp(448/3)). Since the real pair was well
merged in the above case, we conclude that the virtual pair may not
be ignored. The magnitude of their contribution will be discussed in

detail elsewhere.
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4. DISCUSSION

We have compared the concepts of effective and interaction time
under very general conditions and found them to beinterchangablewu.
for nonrelativistic ECRH but significantly different for ICRH. A simple
resonance overlap condition was derived by requiring that the discriminant
of a cubic equation vanish. The cubic was then solved numerically for a
parabolic well, showing that most particles initially follow the off-
midplane scaling law. Resonance widths were found to be much larger in
typical ICRH experiments than for ECRH, and to broaden as heating takes
place. This extreme broadening has profound consequences for ICRH
calculations. For example, the customary impulse model of ECRH does
not apply to ion heating when A < 1, since energy is then absorbed
throughout the orbit. Mathematically this is reflected in the break-

down of all asymptotic formulas for te as A >~ 0, Since x ~ v, 73

L0, an

initial value of X = 3 can easily be reduced to A < 1 by doubling V.
Physically we have the important corollary that heating becomes insensi-
tive to the spatial location of the resonance, which may lie outside
the orbit! This mode of off-resonance heating differs from that
discussed by GRAWE (1969), which depended on the relativistic mass
increase. Impulsemodels of superadiabaticity also fail for fast wave
heating for the same reasons. However, in this case the resonance
overlap method of SMITH et al. (1980) may still be applicable.

Finally, we examined the effect of a small Doppler shift on a
typical fast wave midplane heating experiment, and derived a relevant

overlap condition. We found that while a small k; did not greatly increase
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the interaction time, the negative Doppler shift of one resonance pair
to imaginary values of 6 could significantly decrease particle heating,
and that this decrease was directly related to the separation of the

real resonances.
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FIGURE CAPTIONS

Fig. 1 - Schematic picture of cyclotron resonances in a magnetic trap.
The resonance locations (shown as crosses) -are Doppler shifted
from +z,, where the zero order resonance condition w = Q1 is met.
When z; = O we speak of midplane resonance while z; = Z defines
turning point resonance.

Fig. 2 - Phase function f(8) for k;; = 0 resonances in a parabolic well
with resonances at (a) midplane, (b)cnbi = 30° (where resonances merge),
(c)‘DbE = 45° (the midway point where 4 = 0), (d) 0%% = 60° (merging

resonances), (e) turning point. A8 ei - 6 is the resonance half-

width, corresponding to A(f - F) = % .

Fig. 3 - Resonance halfwidth A8 for ky = 0 wave in a parabolic well,
plotted versus phase slip A for variocus resonance positions. Note
that the midplane (8; = 0) and turning point (8; = 90°) resonance
curves are identical. Data for 8; = 15° (75°) are plotted as points.

Fig. 4 - Phase function with and without Doppler shift for fast wave
midplane heating in a parabolic well. In this casek; is too small to
resolve the resonance pair. The nonzero ky; slightly increases the

already substantial resonance width.
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