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ABSTRACT

A systematic method for representing the general class of functions
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representation makes algebraic manipulations of these functions readily

amenable to computer applications.



I. INTRODUCTION

In many branches of science, one often encounters problems involving
algebraic manipulations of multivariate polynomials. The fields of
reliability analysis and kinetic theory and rheology of complex macro-
molecules abound with such problems. A closed-form solution is usually
desired; however, the algebraic manipulations are often quite tedious,
time-consuming or impossible to do by hand. Algebraic manipulation packages
are presently available on many computers. However, the required computing
times become prohibitive as the number of variables in the polynomials
increases to more than a few.

Here, we introduce a new method for representing the general class of func-

tions f(Xy, X5, ..., X,) defined by
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In equation 1, the coefficients Cj and exponents uji can, in general, be

complex numbers.

The information contained in the expanded expression of the function
f above can be stored in a matrix form. It is clear, however, that the
theories of matrix algebra will not apply for these quantities. Hence,
in order to avoid confusion, these quantities are hereafter
referred to as "polytrices". A function f of the above type can be

represented by an "equivalent polytrix". The basic definition of



the "equivalent polytrix," along with algorithms for the addition, sub-
traction, and multipliction of functions of the class defined in equa-
tion 1 are presented in this article. It should be kept in mind that

the main objective here is to introduce the idea of equivalent polytrices
rather than to work out and present specific algorithms for different

algebraic operations.

IT. THE EQUIVALENT POLYTRIX

A function f(X;, X5 ..., XN) of the class defined in equation 1
can be represented by a two-dimensional matrix-like quantity called the
"equivalent polytrix" F. The polytrix F will have M rows and N+1 col-
umns. Here, M is the number of terms in the function f, and N is the
number of variables in the set Xy, X;, ..., Xy- The elements Fij of the

po]ytrixﬁfﬁ are given by

F1.1 = Ci = numerical coefficient of the ith
term in the function f;
i=1,2, ..., M.
F1.J.+1 = oy = exponent of the variable Xj in the

ith term of the function f;
j=1,2, ..., N.

As an example, the equivalent polytrix of the function q(X;, X,, X3) in

equation 2 is given in equation 3:

- . 1+i.0.
a(X5Xa0Xs) = 3X3XZ2 + 5iX3 - 6%, X%, (2)
3 2 0 -2
g=1|5 o0 3 0 (3)



The first column in the polytrix is referred to as the column of coeffi-
cients, while the remaining columns are called the power columns. For
multivariate polynomials, the elements of the equivalent polytrices are

real integers.

IIT. COMPATIBLE POLYTRICES

Two polytrices, R and Q, are said to be compatible if they have the
same number of columns and the elements in their power columns represent
powers of the same set of variables. Obviously, the equivalent polytrices

of the functions q(X;, X, ..., Xv) and r(Xv , XN) can be made com-

410
patible by writing them as functions of the complete set (X;, Xy, ...,
X\), CRCRCE | XN).

As an example, the equivalent polytrices of the functions q(X;, X5,
X3) in equation 2 and r(X,, X5, Xg) in equation 4 are given in equations

5 and 6, respectively. These are written in their compatible forms.

r(Xq,Xs,XG) = XL2|_ - X5 + 4X63 (4)
3 2 0 -2
Q= |5 o0 3 0 (5)

This implies that one can add one or more zero columns to the right or
left of the power columns in the equivalent polytrix. The resultant

"expanded" polytrix will represent the same original function, provided,
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of course, that we associate each column with the proper variable. The
process of adding zero columns to a polytrix is equivalent to multiplying
each term in the original function by unity (or by a variable Xu raised
to the power zero).

In problems involving a Targe number of functions, the expanded
polytrices may contain many null power columns. This may be a limiting
factor with regard to computer storage capacity. However, this problem can be
easily solved by storing the non-zero power columns and assigning an
"identifier" to each column corresponding to a given variable in the com-

plete set (Xy, Xp, «..s Xy)-

IV. EXAMPLES
POLYTRIX ADDITION, SUBTRACTION, AND MULTIPLICATION

Consider the functions g, r, a, s, and p related by

a=q+r,
S=Q"Y‘,
p=q-=.r. (7}

If q and r are members of the class defined in equation 1, then a, s,
and p must also be members of the same class. This means that the func-
tions g, r, a, s, and p can all be represented by their equivalent poly-
trices Q, R, A, S, and P. In the following we show how the elements in
A, S, and P are related to those in Q and R.

Let M, M, M, M, and Mp be the number of terms in q, r, a, s,

g’ r’> a’ s
and p, respectively. Therefore,

=
"

Mq + MY"

=
1}

M+ M



M =M M. (8)

Similar terms may arise in any of the functions a, s, and p. These can
be combined so that the final number of terms in the functions a, s, and
p may be less than Ma’ Ms’ and Mp, respectively. The process of combin-
ing similar terms in a polytrix is explained later.

The elements in the po]ytriceslg, S, andﬂE are given by

Aij = Qij; (i = 1,2,...,Mq) ’ (9)
Akj = sz; (2 = 1’2""’Mr)’ and (k = Mq + %)
(3 = 1,2,...,N+1)
Sij = Qij; (i = 1,2,...,Mq), and (j = 1,2,...,N+1)
Sk = Ryjs (2= 1,2,...5M ), and (§ = 2,3,...,N+1) 7, (10)
Sk1 = 'Rzl; (k =M +2)
N
(m = (i—l)Mr + 1),
Pml = QilRll (i = 1,2,...,Mq),
(2‘= 1’2"-.,MY‘), > (11)
ij = Qij + sz (m= 1,2,...,Mqu),
(3 = 2,3,...,N+1).

4

A polytrix F can be reduced to its simplest form by collecting simi-

lar terms in the corresponding function f as follows:

If Fnj = ij, with (j = 2,3,...,N+1),
(1sns Mf),
S, (m#n). (12)
(1 2mzs Mf),
SetF._=F +F and F_ = 0.
ni

ni m1 mi v

One can then delete the mth row of the polytrix F.



CONCLUSIONS

A method for representing the general class of functions f = X~Cj ? x?ii
J

using matrix-like quantities has been introduced. These have been called
"polytrices" to avoid confusion since ordinary matrix algebra does not
apply for them. Representing the functions f above in terms of their
equivalent polytrices makes their algebraic manipulations readily amenable
to computer application. It is hoped that as more "laws" of polytrix algebra
are discovered, algebraic manipulations of the functions defined in

equation 1 will be greatly simplified.

ACKNOWLEDGEMENT

This work was supported by the SAK Foundation.





