

FIRE - A Computer Code to Simulate Cavity Gas Response to Inertial Confinement Target Explosions

G.A. Moses and R.R. Peterson

January 1980

UWFDM-336

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

FIRE - A Computer Code to Simulate Cavity Gas Response to Inertial Confinement Target Explosions

G.A. Moses and R.R. Peterson

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

January 1980

UWFDM-336

FIRE - A Computer Code to Simulate Cavity Gas Response to Inertial Confinement Target Explosions

Gregory A. Moses Robert R. Peterson

UWFDM-336

January 1980

Fusion Engineering Program Nuclear Engineering Department University of Wisconsin Madison, Wisconsin 53706

	Table of Contents	Page
I.	Introduction	1
II.	Units and Zoning Conventions	2
III.	Lagrangian Coordinates	3
IV.	Equation of Motion	4
٧.	Energy Transfer Equations	6
VI.	Coefficients for Energy Equations	11
VII.	Equations of State	13
VIII.	Energy Conservation Check	17
IX.	Time Step Control	20
Х.	Computer Code Description	21
XI.	Input Manual	38

I. Introduction

The FIRE code is a one dimensional, one fluid, two temperature lagrangian hydrodynamics code used to simulate the response of cavity gases in inertial confinement fusion reactors. It uses separate plasma and radiation temperatures to model the energy transfer in the cavity gas and uses real opacities and equations of state produced in tabular form by the MFP code. Given the initial temperature distribution produced in the gas by the target debris and X-rays, FIRE computes the heat flux and overpressure at the first wall as a result of the cavity gas response.

The simple two temperature model is more applicable to the cavity gas response than the standard one temperature model of codes such as CHART-D. It is also much less expensive to run than a full multifrequency group treatment of the radiative transfer.

II. Units and Zoning Conventions

The FIRE code uses the following units:

Length -- cm

Time -- second

Mass -- gram

Energy -- Joule

Temperature -- eV

Finite difference indexing is done as follows:

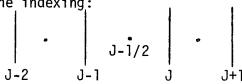
Time indexing: (n+1) A

(n + 1/2) B

(n) C

(n - 1/2) D

(n-1) E


(n - 3/2) F

(n-2) G

(n - 5/2) H

(n - 3) I.

Spatial zone indexing:

Zone boundary quantities have integer indices while zone centered quantities have half-integer indices. In the FORTRAN program each zone is indexed by the index of its outer boundary. Hence the center zone has index J=2.

III. Lagrangian Coordinates

The FIRE code uses lagrangian coordinates, meaning that the zone boundaries move with the fluid at its local velocity. The "lagrangian mass" defined as

$$dm_0 = \rho(r)r^{\delta-1} dr \qquad (III-1)$$

is used in place of dr in the difference schemes (δ =1 planar, δ =2 cylindrical, δ =3 spherical coordinates). The most accurate finite difference treatment is obtained when equal mass rather than equal Δ r zoning is used.

IV. Equation of Motion

The equation of motion is written in lagrangian coordinates as

$$\frac{\partial u}{\partial t} = -V \frac{\partial}{\partial r} (P+q)$$
 (IV-1)

$$\frac{\partial u}{\partial t} = -r^{\delta - 1} \frac{\partial}{\partial m_0} (P+q)$$
 (IV-2)

where V is the specific volume of the gas $(1/\rho)$, P is the total pressure $(P_p + P_R)$, and q is the von Neumann artificial viscosity.

The explicit finite difference equation used to solve (IV-2) is given as

$$\frac{u_{j}^{n+1/2} - u_{j}^{n-1/2}}{\Delta t^{n}} = - (r^{\delta-1})_{j}^{n} \left[\Delta P_{j}^{n} + \Delta q_{j}^{n-1/2} \right] / \Delta m_{o_{j}}$$
 (IV-3)

hence

$$u_{j}^{n+1/2} = u_{j}^{n-1/2} - (r^{\delta-1})_{j}^{n} [\Delta P_{j}^{n} + \Delta q_{j}^{n-1/2}] (\Delta t^{n}/\Delta m_{0,j})$$
 (IV-4)

where

$$\begin{split} \Delta P_{j}^{n} &= P_{j+1/2}^{n} - P_{j-1/2}^{n} \qquad \Delta q_{j}^{n-1/2} = q_{j+1/2}^{n-1/2} - q_{j-1/2}^{n-1/2} \\ \Delta m_{0j}^{n} &= (\Delta m_{0j+1/2}^{n} + \Delta m_{0j-1/2}^{n})/2 \\ \Delta t^{n} &= (\Delta t^{n+1/2} + \Delta t^{n-1/2})/2 \\ q_{j-1/2}^{n-1/2} &= 0 \quad \text{when} \quad \dot{V}_{j-1/2}^{n-1/2} > 0 \\ &= \frac{\sqrt{2} \; (u_{j}^{n-1/2} - u_{j-1}^{n-1/2})}{V_{j-1/2}^{n-1/2}} \quad \text{when} \quad \dot{V}_{j-1/2}^{n-1/2} < 0 \end{split}$$

New radii are then computed as

$$r_{j}^{n+1} = r_{j}^{n} + u_{j}^{n+1/2} \Delta t^{n+1/2}$$
 (IV-6)

From these, new specific volumes are computed.

Equations (IV-4) and (IV-6) and the new specific volumes are computed in HYDRO. The artificial viscosity is computed in QUE and new number densities corresponding to the new specific volumes are computed in NUMDEN.

V. Energy Transfer Equations

Energy transfer is represented by two coupled diffusion equations for the plasma temperature and the radiation specific energy. These are given as

$$C_{vp} = \frac{\partial T_{p}}{\partial t} = \frac{\partial}{\partial m_{0}} \left(r^{\delta - 1} K_{p} \frac{\partial T_{p}}{\partial r} \right) - \frac{\partial P_{p}}{\partial T_{p}} \frac{\partial V}{\partial t} T_{p} + J_{R} - J_{p}$$
 (Y-1)

$$\frac{\partial E_{R}}{\partial t} = \frac{\partial}{\partial m_{Q}} (r^{\delta - 1} K_{R} \frac{\partial E_{R}}{\partial r}) - P_{R} \frac{\partial}{\partial m_{Q}} r^{\delta - 1} u - J_{R} + J_{p}$$
 (V-2)

where

 ${\rm C}_{{\rm Vp}}$ -- plasma specific heat at constant volume

 $K_{\rm p}$ -- plasma conductivity

 ${\bf J}_{\sf R}$ -- radiant energy/gram absorbed by the plasma

 $\boldsymbol{J}_{\boldsymbol{p}}$ -- radiant energy/gram emitted by the plasma

 $\mathbf{E}_{\mathbf{R}}$ -- radiant specific energy

 K_{R} -- radiation conductivity.

The absorption and emission terms are defined as

Note that for J_R the Planck mean free path is evaluated as a function of different plasma and radiation temperature while for J_p , the Planck mean free path is evaluated for equal plasma and radiation temperatures.

Equations (V-1) and (V-2) are solved simultaneously using a fully implicit finite difference scheme. The finite difference equations are

$${^{C}_{\text{vp}_{j-1/2}}} \left[\frac{T_{\text{p}_{j-1/2}}^{n+1} - T_{\text{p}_{j-1/2}}^{n}}{\Delta t^{n+1/2}} \right] = \frac{1}{\Delta m_{\text{o}_{j-1/2}}} \left[\frac{2 r_{j}^{\delta-1}}{\Delta r_{j}^{+} + \Delta r_{j}^{-}} (T_{\text{p}_{j+1/2}}^{n+1} - T_{\text{p}_{j-1/2}}^{n+1}) \right]$$

$$-\frac{2r_{j-1}^{\delta-1}}{\frac{\Delta r_{j-1}^{+}}{K_{p_{j-1}}^{+}} + \frac{\Delta r_{j-1}^{-}}{K_{p_{j-1}}^{-}}} (T_{j-1/2}^{n+1} - T_{j-3/2}^{n+1}) - (P_p)_{T_{j-1/2}} \dot{V}_{j-1/2} T_{p_{j-1/2}}^{n+1} (V-3)$$

$$^{+ \omega}_{R_{j-1/2}} E_{R_{j-1/2}}^{n+1} - \omega_{p_{j-1/2}} T_{p_{j-1/2}}^{n+1}$$

$$\frac{E_{R_{j-1/2}}^{n+1} - E_{R_{j-1/2}}^{n}}{\Delta t^{n+1/2}} = \frac{1}{\Delta m_{o_{j-1/2}}} \left[\frac{2r_{j}^{\delta-1}}{\Delta r_{j}^{+} + \Delta r_{j}^{-} + 2\Delta E_{R_{j}}} (E_{R_{j+1/2}}^{n+1} - E_{R_{j-1/2}}^{n+1}) \right] - \frac{2r_{j-1}^{\delta-1}}{\Delta r_{j-1}^{+} + \Delta r_{j-1}^{-} + 2\Delta E_{R_{j-1/2}}} (E_{R_{j-1/2}}^{n+1} - E_{R_{j-3/2}}^{n+1}) \right] - \frac{2r_{j-1}^{\delta-1}}{K_{R_{j-1}}^{+} + \Delta r_{j-1}^{-} + 2\Delta E_{R_{j-1/2}}} (E_{R_{j-1/2}}^{n+1} - E_{R_{j-3/2}}^{n+1})$$

$$-\frac{(r_{\mathbf{j}}^{\delta-1} u_{\mathbf{j}} - r_{\mathbf{j}-1}^{\delta-1} U_{\mathbf{j}-1})}{3 V_{\mathbf{j}-1/2}} E_{\mathbf{k}-1/2}^{\mathbf{n}+1}$$

$$- \omega_{R_{j-1/2}} E_{R_{j-1/2}}^{n+1} + \omega_{p_{j-1/2}} T_{p_{j-1/2}}^{n+1}$$

where

$$\Delta r_{j}^{+} = r_{j+1} - r_{j} \qquad \Delta r_{j}^{-} = r_{j} - r_{j-1}$$

$$\omega_{R_{j-1/2}} = \frac{C}{\chi_{1}(T_{R}, T_{p})_{j-1/2}} \qquad \omega_{p_{j-1/2}} = \frac{4\sigma(T_{p_{j-1/2}}) V_{j-1/2}}{\chi_{1}(T_{R} = T_{p})_{j-1/2}} .$$

These difference equations can be rewritten in matrix form as

$$\frac{\alpha_{j-1/2}}{=j-1/2} \left(\frac{\theta^{n+1}}{j-1/2} - \frac{\theta^{n}}{j-1/2} \right) = \underbrace{a_{j}}_{=j} \left(\frac{\theta^{n+1}}{j+1/2} - \frac{\theta^{n+1}}{j-1/2} \right) - \frac{\theta^{n+1}}{j-1/2} \right) - \frac{\theta^{n+1}}{j-1/2} - \frac{\theta^{n+1}}{j-1/$$

where

$$\stackrel{\alpha}{=} j-1/2 = \begin{pmatrix} c_{vp_{j-1/2}} & 0 \\ 0 & 1 \end{pmatrix} \frac{\Delta m_{oj-1/2}}{\Delta t^{n+1/2}}$$
 (V-6)

$$\underline{\theta}_{j-1/2}^{n+1} \equiv \begin{pmatrix} T_{p_{j-1/2}}^{n+1} \\ E_{R_{j-1/2}}^{n+1} \end{pmatrix} \tag{V-7}$$

$$\frac{a_{j}}{a_{j}} = \sqrt{\frac{2r_{j}^{\delta-1}}{\frac{\Delta r_{j}^{+} + \Delta r_{j}^{-}}{K_{p_{j}}^{+} + K_{p_{j}}^{-}}}} \qquad 0$$

$$0 \qquad \frac{2r_{j}^{\delta-1}}{\frac{\Delta r_{j}^{+} + \Delta r_{j}^{-}}{K_{R_{j}}^{-} + K_{R_{j}}^{-}}} = \sqrt{\frac{2\Delta E_{R_{j}}}{F_{R_{j}}}}$$
(V-8)

$$\frac{Y_{j-1/2}}{2} = \left((P_p)_T \dot{V}_{j-1/2} \right) \qquad 0 \qquad 0 \qquad 0 \qquad (V-9)$$

$$\frac{(r_j^{\delta-1} u_j - r_{j-1}^{\delta-1} u_{j-1})}{3 V_{j-1/2}} \qquad 0 \qquad (V-9)$$

$$\omega_{\mathbf{j}-1/2} = \begin{pmatrix} \omega_{\mathbf{p}} - \omega_{\mathbf{R}} \\ -\omega_{\mathbf{p}} & \omega_{\mathbf{R}} \end{pmatrix} \Delta m_{\mathbf{0}\mathbf{j}-1/2}$$

$$(V-10)$$

where all quantities without a superscript are evaluated at (n+1/2).

This matrix equation (V-5) can be written as

$$-A_{j-1/2} \frac{\theta^{n+1}}{j+1/2} + B_{j-1/2} \frac{\theta^{n+1}}{j-1/2} - C_{j-1/2} \frac{\theta^{n+1}}{j-3/2} = D_{j-1/2}$$
 (V-11)

where

Equation (V-6) is solved by assuming a solution of the form

$$\frac{\theta^{n+1}}{j-1/2} = \frac{E}{j-1/2} \frac{\theta^{n+1}}{j+1/2} + \frac{F}{j-1/2}$$
 (V-13)

where

$$E_{j-1/2} = (B_{j-1/2} - C_{j-1/2} * E_{j-3/2})^{-1} * A_{j-1/2}$$
 (V-14)

$$\frac{F_{j-1/2} = (B_{j-1/2} - C_{j-1/2} * E_{j-3/2})^{-1} * (D_{j-1/2} + C_{j-1/2} * F_{j-3/2})}{(D_{j-1/2} + C_{j-1/2} * C_{j-3/2})}.$$

At the inner boundary

$$\underline{\underline{F}}_{1/2} = (\underline{B}_{1/2})^{-1} * \underline{A}_{1/2}$$

$$\underline{\underline{F}}_{1/2} = (\underline{B}_{1/2})^{-1} * \underline{\underline{D}}_{1/2} .$$

At the outer boundary

$$\frac{\theta^{n+1}}{JMAX} + \frac{\theta^{n+1}}{L^2} = \frac{\theta^{n+1}}{\theta^{n+1}}.$$
 (V-16)

The final solution of the equations (V-13) is done in ENERGY. The matrices and vectors \underline{A} , \underline{B} , \underline{C} , \underline{D} , \underline{E} , and \underline{F} are computed in ABCDEF. The coefficient matrices \underline{a} , $\underline{\alpha}$, $\underline{\gamma}$, and $\underline{\omega}$ are computed in MATRIX. The boundary condition is determined in TEMPBC. The physical coefficients used to compute, \underline{a} , $\underline{\gamma}$, and $\underline{\omega}$ are discussed in the next section.

VI. Coefficients for Energy Equations

Numerous coefficients, often dependent on temperature, are used by the FIRE code in the solution of the energy flow equations.

Plasma Conductivity

$$K_{p_{j}}^{+} = CON(1) T_{p_{j}}^{2} T_{p_{j+1/2}}^{1/2} / (4 + Z_{j+1/2}) \ell_{n} \Lambda_{j+1/2}$$

$$K_{p_{j}}^{-} = CON(1) T_{p_{j}}^{2} T_{p_{j-1/2}}^{1/2} / (4 + Z_{j-1/2}) \ell_{n} \Lambda_{j-1/2}$$

Radiation Conductivity

$$K_{R_{j}}^{+} = \frac{C}{3} \frac{k}{V} = CON(2) k_{j+1/2}/V_{j+1/2}$$

$$K_{R_{j}}^{-} = CON(2)^{\ell}_{j-1/2}/V_{j-1/2}$$

where $\ell(n_p, T_p, T_R)$ is the Rosseland radiation mean free path.

Radiation Flux Limit

$$F_{R_j} = \sigma T^4 = CON(3)T_{R_j}^4$$

Plasma Absorption

$$\omega_{R_{j-1/2}} = \frac{C}{k_1(T_R, T_p)} = CON(8)/k_1(T_R, T_p)_{j-1/2}$$

Plasma Emission

$$\omega_{p_{j-1/2}} = \frac{4\sigma}{k_1(T_R = T_p)} = CON(7) V_{j-1/2}/k_1(T_R = T_p)_{j-1/2}$$

The plasma and radiation conductivities are computed in KAPPA. The radiation flux limit is also computed in KAPPA. The plasma emission and absorption coefficients are computed in OMEGA. The $\protect\ n\Lambda$ term is computed in

LLAM. The charge state, Z, and the radiation mean free paths, $^{\chi}$, $^{\chi}_{1}$ (T_{p},T_{R}) and $^{\chi}_{1}(T_{p}=T_{R})$ are computed along with the plasma specific heat and other equations of state quantitites in EOS. This is discussed in the next section.

VII. Equations of State

A total of 8 equation of state quantities are computed in FIRE. These are

P_R -- radiation pressure

 T_{R} -- radiation temperature

 $E_{\rm p}$ -- plasma specific internal energy

C_{vp} -- plasma specific heat

P_p -- plasma pressure

 $(P_p)_T$ -- temperature derivative of plasma pressure

Z -- average charge state

 ℓ -- Rosseland mean free path

 ℓ_1 -- Planck mean free path

The radiation pressure is

$$P_{R} = \frac{1}{3} \frac{E_{R}}{\rho} = \frac{4\sigma}{3c} T_{R}^{4}$$

$$P_{R_{j-1/2}} = CON(10) * T_{R_{j-1/2}}^{4}$$

The radiation temperature is computed from the specific energy using

$$T_{R_{j-1/2}} = (E_{R_{j-1/2}}/CON(16) / V_{j-1/2})^{1/4}$$

The plasma pressure is given as

$$P_{p_{j-1/2}} = CON(9)(1 + Z_{j-1/2}) * n_{j-1/2} * T_{p_{j-1/2}}$$

The temperature derivative of the plasma pressure is

$$(P_p)_{T_{j-1/2}} = CON(12) * n_{j-1/2} *$$

$$(1 + Z_{j-1/2} + (\frac{\partial Z}{\partial T_p}) * T_{p_{j-1/2}})$$

There are 4 equation of state tables used by the FIRE code. These tables provide

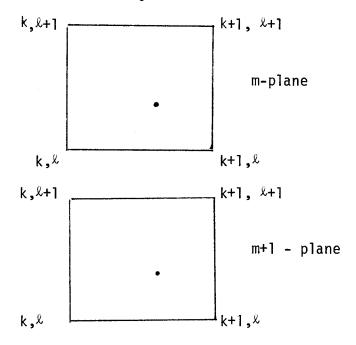
$$Z = Z(n, T_p)$$
 Charge
 $E_p = E_p(n, T_p)$ Specific Internal Energy
 $\ell = \ell(n, T_p, T_R)$ Rosseland mfp
 $\ell_1 = \ell_1(n, T_p, T_R)$ Planck mfp

and are generated by the MFP code. The tables for Z and E are two dimensional while the tables for k and ℓ_1 are three dimensional. To interpolate in these tables we use logrithmic interpolation. That is, all of the quantities are interpolated using linear interpolation of these logarithms. Hence the tables give

$$\log Z(\log n, \log T_p)$$
 etc.

This method works reasonably well for smooth data. So, in general we have 2 dimensions x, m+1, m+1

$$k - T_R$$
 $\ell,m*$
 $\ell+1, m**$
 $\ell-T_p$
 $\ell+1, m-n_p$


$$A(\ell,m^*) = A(\ell,m) + \frac{A(\ell,m+1) - A(\ell,m)}{n_p(m+1) - n_p(m)} (n_p - n_p(m))$$

$$A(^{\ell},m^{**}) = A(^{\ell+1},m) + \frac{A(^{\ell+1},m+1) - A(^{\ell+1},m)}{n_p(m+1) - n_p(m)} (n_p-n_p(m))$$

$$A = A(\mathcal{L}, m^*) + A_T (T_p - T_p(\mathcal{L}))$$

$$A_T = \frac{A(\mathcal{L}+1, m^{**}) - A(\mathcal{L}, m^*)}{T_p(\mathcal{L}+1) - T_p(\mathcal{L})}$$

In 3 dimensions this becomes the following

$$A(k, x*) = A(k, x) + \frac{(A(k, x+1) - A(k, x))}{(T_{p}(x+1) - T_{p}(x))} (T_{p} - T_{p}(x))$$

$$A(k, x**) = A(k+1, x) + \frac{(A(k+1, x+1) - A(k+1, x))}{(T_{p}(x+1) - T_{p}(x))} (T_{p} - T_{p}(x))$$

$$A = A(k, x*) + A_{T} (T_{R} - T_{R}(k))$$

$$A_{T} = \frac{A(k+1, x**) - A(k, x*)}{(T_{p}(k+1) - T_{p}(k))}.$$

In three dimensions we do this twice, for m and m+1. This gives us ${\bf A}_{\rm m}$ and ${\bf A}_{\rm m+1}$ so the final result is

$$A = A_{m} + \frac{A_{m+1} - A_{m}}{n_{p}(m+1) - n_{p}(m)} (n_{p} - n_{p}(m)) .$$

Note that we also want to find $\frac{\partial E}{\partial T_p} = C_{v_p}$. If we go back to our 2-D general interpolation and recall that we are actually computing

$$log A(log n_p, log T_p)$$

then

$$\frac{\partial E}{\partial T_{p}} = \frac{\partial \log E}{\partial \log T_{p}} \quad \frac{\partial E}{\partial \log E} \quad \frac{\partial \log T}{\partial T}$$

$$\frac{\partial E}{\partial T_{p}} = \frac{\partial \log E}{\partial \log T_{p}} \quad \frac{E}{T_{p}} \quad .$$

All of these quantities except \mathbf{T}_{R} are computed in EOS. The radiation temperature \mathbf{T}_{R} is computed in ENERGY after solving for the radiation specific internal energy.

VIII. Energy Conservation Check

At the end of each time step a check is made to insure that the difference equations are conserving energy. This is done by integrating the energy equations (the first law of thermodynamics) for the plasma and radiation.

These are given by

$$\dot{E}_{p} + P_{p}\dot{V} = S_{p} + \dot{Q}_{PR} + \dot{Q}_{DP}$$
 (VIII-1)

$$\dot{E}_{R} + P_{R}\dot{V} = S_{R} - \dot{Q}_{PR} + \dot{Q}_{DR} - \dot{Q}_{RL} \qquad (VIII-2)$$

where

$$\dot{Q}_{PR} = \omega_R E_R - \omega_p T_p$$

$$\dot{Q}_{px} = \frac{\partial}{\partial m_0} r^{\delta-1} K_x \frac{\partial (T_p, E_r)}{\partial r}$$

After integration over space and time these equations take the form

$$e_p^{n+1} + T_p^{n+1} = e_p^0 + T_p^0 + H_p^{n+1} + E_{RP}^{n+1} - E_p^{n+1} - W_p^{n+1} - G_R^{n+1}$$
 (VIII-3)

$$e_{R}^{n+1} = e_{R}^{0} + H_{R}^{n+1} - E_{RP}^{n+1} - F_{R}^{n+1} - W_{R}^{n+1} + G_{R}^{n+1} - E_{RL}^{n+1}$$
 (VIII-4)

$$e^{n+1} + T^{n+1} = e^{0} + T^{0} + H^{n+1} - F^{n+1} - W^{n+1} - E_{RI}^{n+1}$$
 (VIII-5)

Each of these terms are given as follows

$$e_{X}^{n+1} = \sum_{j=1}^{JMAX} (E_{X}) \Delta m_{O}$$
 (VIII-6)

$$T^{n+1} = \frac{1}{4} \Delta m_{O_{jMAX}-1/2} \left(U_{jMAX}^{n+1/2} \right)^2 + \frac{1}{2} \frac{J_{MAX}}{J_{=1}^{\Sigma}} \Delta m_{O_{j}} \left(u_{j}^{n+1/2} \right)^2$$
 (VIII-7)

$$H_{x}^{n+1} = H_{x}^{n} + \Delta t^{n+1/2} \sum_{j=1}^{JMAX} (S_{x})_{j-1/2}^{n+1/2}$$
 (VIII-8)

$$E_{RP}^{n+1} = E_{RP}^{n} + \Delta t^{n+1/2} \sum_{j=1}^{JMAX} (Q_{RP})_{j-1/2}^{n+1/2} \Delta m_{o_{j-1/2}}$$
 (VIII-9)

$$G_{R}^{n+1} = G_{R}^{n} + \Delta t^{n+1/2} \sum_{j=1}^{JMAX-1} u_{j}^{n+1/2} (r^{\delta-1})^{n+1/2} (*)$$
 (VIII-10)

where x = p or R

$$E_{RL}^{n+1} = E_{r}^{n} + \Delta t^{n+1/2} \sum_{j=1}^{JMAX} (\dot{Q}_{RL})_{j-1/2}^{n+1/2} \Delta m_{0,j-1/2}$$
 (VIII-11)

$$W_{X}^{n+1} = W_{X}^{n} + \Delta t^{n+1/2} (u_{JMAX}^{n+1/2} (r^{\delta-1})_{JMAX}^{n+1/2} P_{XJMAX}^{n+1/2})$$
 (VIII-12)

$$F_X^{n+1} = F_X^n + \Delta t^{n+1/2} a_{XJMAX}^{n+1/2} (T_{XJMAX+1/2}^{n+1/2} - T_{XJMAX-1/2}^{n+1/2})$$
 (VIII-13)

The physical definitions of each term are

 $\mathbf{e}_{\mathbf{p}}$, $\mathbf{e}_{\mathbf{R}}$ -- total internal energy of the plasma and radiation at (n+1)

T -- total kinetic energy of the plasma at (n+1)

 H_p, H_R -- total source of energy to the plasma and radiation up to (n+1). These are zero in the FIRE code at this time.

 E_{RP} -- total energy exchanged from the plasma to the radiation up to time (n+1).

E_{RL} -- total radiant energy lost from the plasma through some pure loss mechanism. Not used in FIRE at this time.

- W_p, W_R -- total work done on the outer boundary of the plasma by the plasma and radiation up to time (n+1). These are zero in the FIRE code because the outer edge of the plasma is contained by the first wall.
- F_p, F_R -- total energy conducted to the first wall from the plasma and radiation up to time (n+1).
- ${}^{G}_{R}$ -- work done by the plasma on the radiation to maintain the one fluid-two temperature approximation.

These integrations are done in ECHECK.

IX. Time Step Control

After each time step the next time step is determined so that a set of stability and accuracy constraints are maintained. This is determined by

$$\Delta t^{n+3/2} = Max[\Delta t_{min}, Min(\Delta t_{max}, K_1/R_1^{n+1}, K_2\Delta t^{n+1/2}/R_2^{n+1}, (IX-1)]$$

$$K_3 \triangle t^{n+1/2} / R_3^{n+1}, K_4 \triangle t^{n+1/2} / R_4^{n+1})$$

where

$$R_{j}^{n+1} = \max_{j} \left[\left(V_{j-1/2}^{n+1} P_{j-1/2}^{n+1} \right)^{1/2} \Delta r_{j-1/2}^{n+1/2} \right]$$
 (IX-2)

$$R_2^{n+1} = \max_{j} \left[(V_{j-1/2}^{n+1} - V_{j-1/2}^{n}) / V_{j-1/2}^{n+1} \right]$$
 (IX-3)

$$R_{3}^{n+1} = \max_{j} \left[\left(T_{R_{j-1/2}}^{n+1} - T_{R_{j-1/2}}^{n} \right) / T_{R_{j-1/2}}^{n+1/2} \right]$$
(IX-4)

$$R_4^{n+1} = \max_{j} \left[\left(T_{p_{j-1/2}}^{n+1} - T_{p_{j-1/2}}^{n} \right) / T_{p_{j-1/2}}^{n+1/2} \right]$$
 (IX-5)

and the input parameters K_1 , K_2 , K_3 , and K_4 determine the severity of the constraint. The default value for these is 0.05. The time step determination is done in TIMING.

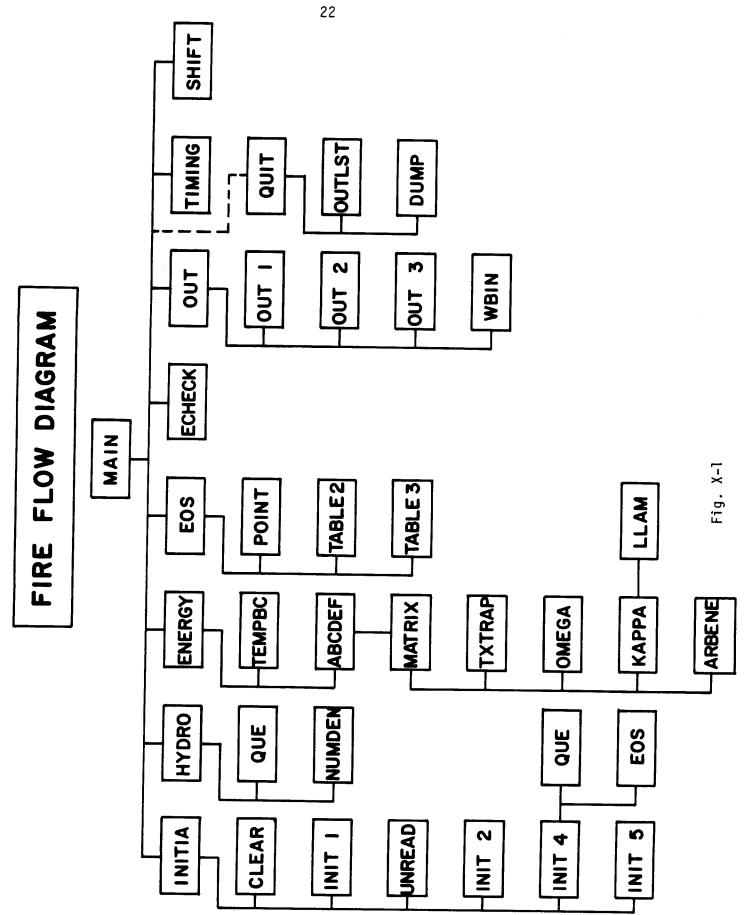
X. Computer Code Description

The FIRE code is written in FORTRAN to be run on any mainframe computer. It is written in a top-down modular programming style as shown in Fig. X-1. Variables

All real variables are implicit double precision giving about 14 decimal places of accuracy on an IBM or UNIVAC computer. It is important to note that all real constants—are specified with the "D" scientific notation (i.e. $1. \rightarrow 1.D0$). This is necessary to insure that all calculations are performed in double precision since the IBM FORTRAN G and H compilers will not define constants as double precision unless the "D" notation is used. This seriously affects calculations that are expected to be in double precision.

Variable names are designed to correspond to this documentation with the following conventions used to identify their meanings.

i) The last two letters indicate whether the variable is zone centered or on a zone boundary and also indicate the time level.


1 -- zone boundary 2 -- zone center A -- t^{n+1} B -- $t^{n+1/2}$ C -- t^n D -- $t^{n-1/2}$

 $E -- t^{n-1}$ F -- $t^{n-3/2}$

 $G -- t^{n-2}$

 $H -- t^{n-5/2}$

 $I -- t^{n-3}$

ii) The first 4 or less letters indicate the physical quantity being represented.

Thus TR2B(J) is the radiation temperature in the center of the J^{th} zone at time $t^{n+1/2}$, and UID(J) is the fluid velocity on the J^{th} zone boundary at time $t^{n-1/2}$. All variables necessary to the computation are contained in named common blocks. The variables are grouped such that a subroutine will find most of the variables that it needs in fewer than all of the common's. We list all of the variables (by common block) along with their meaning and units. All vectors have dimensions of 53 which allows for 50 spatial zones.

Common Blocks

COMMON/TIME/

- 1) TA t^{n+1}
- 2) TB $t^{n+1/2}$
- 3) TC tⁿ
- 4) TD $t^{n-1/2}$
- 5) DTB** $\Delta t^{n+1/2}$
- 6) DTC $\Delta t^n = (\Delta t^{n+1/2} + \Delta t^{n-1/2})/2$ (sec)
- 7) DTD $\Delta t^{n-1/2}$
- 8) DTE $\Delta t^{n-1} = (\Delta t^{n-1/2} + \Delta t^{n-3/2})/2$
- 9) DTF $\Delta t^{n-3/2}$
- 10) DTG $\Delta t^{n-2} (\Delta t^{n3/2} + \Delta t^{n-5/2})/2$
- 11) DTH $\Delta t^{n-5/2}$

- 12) DT $\Delta t^{n+3/2}$, the new time step
- 13) TMAX* Max problem time for the simulation
- 14) DTMIN** Min allowed time step
- 15) DTMAX** Max allowed time step

COMMON/TEMPER/

1) TN2A
$$(T_p)_{j-1/2}^{n+1}$$

2) TN2B
$$(T_p)_{j-1/2}^{n+1/2}$$

3) TN2C*
$$(T_p)_{j-1/2}^n$$

4) TN2E
$$(T_p)_{j-1/2}^{n-1}$$
 Plasma temperatures (eV)

5) TN2G
$$(T_p)_{j-1/2}^{n-2}$$

6) TN2I
$$(T_p)_{j-1/2}^{n-3}$$

7) TN1B
$$(T_p)_{j}^{n+1/2}$$

8) TNSQ2B
$$\sqrt{(T_p)_{j-1/2}^{n+1/2}}$$
 (eV)^{1/2}

9) TR2A
$$(T_R)_{j-1/2}^{n+1}$$

10) TR2B
$$(T_R)_{j-1/2}^{n+1/2}$$

11) TR2C*
$$(T_R)_{i=1/2}^n$$
 Radiation temperatures (eV)

11) TR2C*
$$(T_R)^n$$

12) TR2E $(T_R)^{n-1}_{j-1/2}$

13) TR2G
$$(T_R)_{j-1/2}^{n-2}$$

14) TR2I
$$(T_R)_{j-1/2}^{n-3}$$

15) TRIB
$$(T_R)_{j}^{n+1/2}$$

16) TRSQ2B
$$\sqrt{(T_R)_{j-1/2}^{n+1/2}}$$
 (eV)^{1/2}

17) TBC** temperature boundary condition (eV)

COMMON/CNTROL/

- 1) CON** real constants used in FIRE
- 2) TGRØW** max percentage that Δt can increase in one cycle
- 3) TEDIT** time at which output freq. switches from IO(1) to IO(11) (s)
- 4) GEOFAC a geometry factor; 1, 2π , 4π
- 5) TSCC** Courant condition time step control
- 6) TSCV** $\Delta V/V$ time step control
- 7) TSCTR** $\Delta T_R/T_R$ time step control
- 8) R1 worst case for Courant condition
- 9) R2 worst case for $\Delta V/V$
- 10) R3R worst case for $\Delta T_R/T_R$
- 11) R3N worst case for $\Delta T_p/T_p$
- 12) TI
- temporary vectors to be used for any purpose within a subroutine
- 15) T4
- 16) IDELTA**- 1 = cartesian, 2 = cylindrical, 3 = spherical
- 17) IDELM1 0 = cartesian, 1 = cylindrical, 2 = spherical
- 18) NCYCLE time cycle index
- 19) NMAX* max number of time steps
- 20) JMAX*- max number of spatial zones

- 21) JMAXM1 JMAX-1
- 22) JMAXP1 JMAX+1 | used for indexing

- 23) JMAXP2 JMAX+2
- 24) ISW** control switches
- 25) ILUNIT output units for flux quantities
- 26) JCOUR zone # of Courant condition worst case
- 27) JSPVOL zone # of ΔV/V worst case
- ²⁸⁾ JRTEMP zone # of $\Delta T_R/T_R$ worst case
- 29) JNTEMP zone # of $\Delta T_p/T_p$ worst case
- 30) INDEX a vector used for output indexing
- 31) IZONE zone # of worst case of Courant, $\Delta V/V$, $\Delta T/T$
- 32) ITYPE 1 Courant, 2 = $\Delta V/V$, 3 = $\Delta T_R/T_R$, 4 = $\Delta T_p/T_p$ worst restriction
- 33) IITYPE 0 = physical, -1 = min Δ t, 1 = max Δ t
- 34) IEDIT** output cycle frequencies
- 35) IIZONE zone # of worst case if the Δ t is Δ t $_{ exttt{max}}$ or Δ t $_{ exttt{min}}$
- 36) ICOND primary time step constraint
- 37) ICOND2 secondary time step constraint if primary is Δt_{\min} or Δt_{\max}
- 38) NVMAX time step of maximum compression
- 39) IUNIT cm², radian-cm, sterradian for δ = 1, 2, 3
- 40) JVMAX zone # of maximum compression
- 41) $TSCTN^{**} \Delta T_p/T_p$ time step control
- 42) IO* output frequency vector
- 43) IOBIN**- output freq. of binary output

COMMON/HYDROD/

1) UID
$$u_j^{n-1/2}$$
 fluid velocity (cm/s)

4) DR2B
$$\Delta r_{j-1/2}^{n+1/2}$$
 zone widths (cm)

5) DR2A
$$\Delta r_{j-1/2}^{n+1}$$
 zone widths (cm)

6) R1C
$$r_{j}^{n}$$

7) R1B
$$r_j^{n+1/2}$$
 radius (cm)

8) RIA
$$r_{j}^{n+1}$$

9) RS1C
$$(r_{j}^{n})^{\delta-1}$$

10) RS1B
$$(r_j^{n+1/2})^{\delta-1}$$

11) RS1A
$$(r_{j}^{n+1})^{\delta-1}$$

12) PR2C
$$(P_R)_{j-1/2}^n$$

13) PR2B
$$(P_R)_{j-1/2}^{n+1/2}$$
 radiation pressure (J/cm³)

14) PR2A
$$(P_R)_{j-1/2}^{n+1}$$

15) PN2C
$$(P_p)_{j-1/2}^n$$

16) PN2B
$$(P_p)_{j-1/2}^{n+1/2}$$
 plasma pressure (J/cm³)

17) PN2A
$$(P_p)_{j-1/2}^{n+1}$$

18) P2C
$$P_{i-1/2}^{n}$$
 total pressure (J/cm³)

19) P2A
$$P_{j-1/2}^{n+1}$$

23) V2C
$$V_{j-1/2}^{n}$$

24) V2B
$$V_{j-1/2}^{n+1/2}$$

25) V2A
$$V_{j-1/2}^{n+1}$$

27) COMPR VO/V compression

28) VDOT2B
$$v_{j-1/2}^{n+1/2}$$
 time derivative of sp. volume (cm³/g-s)

29) DMASS2
$$\Delta m$$
 Lagrangian mass 0 j-1/2

30) DMASS1
$$\Delta m_{0j} = (\Delta m_{0j-1/2} + \Delta m_{0j+1/2})/2$$

32) Q2B
$$q_{j-1/2}^{n+1/2}$$

35) VOL2B zone volume
$$n+1/2 (cm^3)$$

36) VOL2A zone volume
$$n+1 \atop i-1/2$$
 (cm³)

COMMON/ESCOM/

1) ER2C
$$E_{R}^{n}$$
 radiation specific energy (J/g)

2) ENT2B
$$(C_{V})^{n+1/2}$$
 plasma specific heat (J/eV-g) p j-1/2

3) ER2B
$$E_{R_{i-1/2}}^{n+1/2}$$
 (J/g)

4) PNT2B
$$(P_p)_{T,j-1/2}^{n+1/2}$$
 temperature derivative of plasma pressure (J/cm³-eV)

5) ER2A
$$(E_R)_{j-1/2}^{n+1}$$
 radiation specific internal energy (J/g)

```
6) EN2A (E_p)_{j-1/2}^{n+1} plasma specific internal energy (J/g)
```

7) DE2A
$$(n_e)_{j-1/2}^{n+1}$$
 electron number density (1/cm³)

8) DN2A
$$(n_i)_{j-1/2}^{n+1}$$
 ion number density

9) DE2B**
$$(n_e)_{j-1/2}^{n+1/2}$$
 electron number density

10) DN2B*
$$(n_i)_{j-1/2}^{n+1/2}$$
 ion number density

11) ATW2B*
$$A_{j-1/2}^{n+1/2}$$
 average ion atomic weight (amu)

13) Z2B**
$$Z_{j-1/2}^{n+1/2}$$
 average charge (esu)

14) ZSQ2B
$$(Z_{i-1/2}^{n+1/2})^2$$
 average squared charge $(esu)^2$

15) VBC** specific volume boundary condition
$$(cm^3/g)$$

21) TN2AL log
$$(T_{p_{j-1}/2}^{n+1})$$

22) TR2AL log $(T_{R_{j-1}/2}^{n+1})$

22) TR2AL log
$$(T_{R,i-1/2}^{n+1})$$

23) DN2AL log
$$(n_{ij-1/2}^{n+1})$$

COMMON/ESCOM1/

- 1) ZTAB $Z(T_p, n_p)$ Plasma charge state
- 2) ENTAB- $E_p(T_p,n_p)$ Plasma sp. int. energy (J/g)
- 3) RMFTAB- $^{k}_{l}(T_{p},T_{R},n_{p})$ Planck mfp (cm)
- 4) ROSTAB- $\&(T_p,T_R,n_p)$ Rosseland mfp (cm)

COMMON/COEFF/

- 1) ROSS2B $(1/2)^{n+1/2}_{j-1/2}$ Rosseland mean free path (cm)
- 2) KANM1B $(K_p^-)_j^{n+1/2}$ Plasma thermal conductivity (J/cm-eV-s)
- 3) KANPIB $(K_p^+)_j^{n+1/2}$
- 4) KARMIB $(K_R^-)_{j}^{n+1/2}$ Radiation thermal conductivity (J/cm-eV-s)
- 5) KARPIB $(K_R^+)_{i}^{n+1/2}$
- 6) OMP2B $(\omega_p)_{j-1/2}^{n+1/2}$ Plasma emission coefficient
- 7) OMR2B $(\omega_r)_{j-1/2}^{n+1/2}$ Plasma absorption coefficient
- 8) RMFP2B $(\frac{1}{1})_{j-1/2}^{n+1/2}$ Planck mean free path (cm)
- 9) RMFT2B $(\frac{k_1}{j-1/2})^{n+1/2}_{j-1/2}$ Planck mean free path for $T_p = T_R$ (cm)
- 21) LAMN2B $(\ln \Lambda_{ei})_{j-1/2}^{n+1/2}$ Spitzer log Λ
- 22) FLIM1B radiation flux limit σT^4 $(J/cm^2 \cdot s)$
- 23) RFLU1B diffusion flux $(J/cm^2 \cdot s)$

COMMON/COEFF1/

1) BET12B - $(\beta_{|j|})^{n+1/2}_{j-1/2}$

Beta Vector

- 2) BET22B $(\beta_2)^{n+1/2}_{j-1/2}$
- 3) AL112B $(\alpha_{11})_{j-1/2}^{n+1/2}$
- 4) A1222B $(\alpha_{22})_{j-1/2}^{n+1/2}$

Diagonal Elements of Alpha Matrix

5) OM112B - $(\omega_{11})^{n+1/2}_{j-1/2}$

6) OM222B - $(\omega_{22})_{j-1/2}^{n+1/2}$ Diagonal Elements of Omega Matrix

7) GM112B - $(\gamma_{11})_{j-1/2}^{n+1/2}$

n+1/2 Diagonal Elements of Gamma Matrix

8) GM222B - $(\gamma_{22})_{j-1/2}^{n+1/2}$

9) AA111B - $(a_{11})_{j}^{n+1/2}$

Diagonal Elements of "A" Matrix

- 10) AA221B $(a_{22})_{j}^{n+1/2}$
- 11) $OM122B (\omega_{12})_{j-1/2}^{n+1/2}$

12) $0M212B - (\omega_{21})_{j-1/2}^{n+1/2}$ OFF Diagonal Elements of Omega Matrix

COMMON/COEFF2/

- 1) E11 (E₁₁)
- All Elements of the "E" Matrix
- 2) E12 (E₁₂)
- 3) $E21 (E_{21})$
- 4) $E22 (E_{22})$
- 5) F1 (F₁) Both Components of the "F" Vector
- 6) F2 (F₂)
- 7) B11 (B_{11}) A11 Elements of the "B" Matrix
- 8) $B12 (B_{12})$
- 9) B21 (B₂₁)
- 10) $B22 (B_{22})$
- 11) D1 (D₁) Both Elements of the "D" Vector
- 12) D2 (D₂)

COMMON/ECKCOM/

- 1) T1A $(T)_{i}^{n+1}$ kinetic energy of fluid (J/\Box)
- 2) GGGE2A $(G_e)_{j-1/2}^{n+1}$ radiation-plasma work to maintain one fluid (J/\Box)
- 3) HHHR2B $(H_R)_{.i-1/2}^{n+1/2}$ radiation source (J/\square)
- 4) HHHN2B $(H_p)_{j-1/2}^{n+1/2}$ plasma source (J/\Box)
- 5) EEEC2A $(E_c)_{i=1/2}^{n+1}$ radiation-plasma energy exchange (J/\Box)
- 6) EEER2A $(E_r)_{i-1/2}^{n+1}$ energy lost purely to radiation (J/\Box)
- 7) EEEERO E_{R_a} total initial radiation internal energy (J/ \Box)
- 8) EEEENO E_{p_0} total initial plasma internal energy (J/ \Box)
 9) EEEEER $(E_R)^{n+1}$ total radiation internal energy (J/ \Box)
- 10) EEEEEN $(E_p)^{n+1}$ total plasma internal energy (J/\Box)
- 11) TTTTTTT $(T)^{n+1}$ total fluid kinetic energy (J/\Box)
- 12) HHHHHR $(H_R)^{n+1}$ total radiation source (J/\Box)
- 13) HHHHHN $(H_D)^{n+1}$ total plasma source (J/\Box)
- 14) EEEEEC $(E_c)^{n+1}$ total radiation plasma exchanged (J/\Box)
- 15) GGGGGE $(G_e)^{n+1}$ total work done to maintain one fluid (J/\Box)
- 17) WWWWWR $(W_R)^{n+1}$ total work done on radiation (J/\Box)
- 18) WWWWWN $(W_n)^{n+1}$ total work done on plasma (J/\Box)
- 19) FFFFFR $(F_R)^{n+1}$ total radiation heat lost across outer boundary (J/\Box)
- 20) FFFFFN $(F_p)^{n+1}$ total plasma heat lost across outer boundary (J/ \Box)
- 22) WWWWR $(w_R)^{n+1}$ total work done on radiation on last cycle (J/ \Box)
- 23) WWWWN $(w_p)^{n+1}$ total work done on plasma on last cycle (J/\Box)
- 24) FFFFR $(f_R)^{n+1}$ total radiation lost at outer bd. on last cycle (J/\Box)

```
25) FFFFN - (f_p)^{n+1} total plasma energy lost at outer bd. on last cycle (J/\Box)
26) HHHHR - (h_p)^{n+1} total radiation source on last cycle (J/\Box)
27) HHHHN - (h_p)^{n+1} total plasma source on last cycle (J/\Box)
28) EEEEC - (e_c)^{n+1} total radiation plasma heat exchange on last cycle (J/\Box)
29) GGGGE - (g_p)^{n+1} total work to maintain one fluid on last cycle (J/i\Box)
30) EHLHS - left side of plasma energy balance equation (J/\Box)
31) ETLHS - left side of total energy balance equation (J/\Box)
32) ERRHS - right side of radiation energy balance equation (J/ )
33) ENRHS - right side of plasma energy balance equation (J/ 🏻 )
34) ETRHS - right side of total energy balance equation (J/\Box)
35) PMAX - Maximum pressure at the wall (J/cm^3)
36) TPMAX - Time of maximum pressure (s)
37) FMAX - Maximum radiation heat flux at the wall (J/cm^2-s)
38) TFMAX - Time of maximum heat flux (s)
39) FSAVE - Heat fluxes at first wall (J/cm^2-s)
40) PSAVE - Pressures at first wall (J/cm<sup>3</sup>)
41) TSAVE - Times of heat fluxes and pressures (s)
42) NPMAX - Time step of max. pressure
43) NSAVE - Index into FSAVE, PSAVE, and TSAVE
44) NFMAX - Time step of max. heat flux
45) NDUMMY - Rounds out the common block to an even number of words
where \Box is \delta
                  \,{\rm cm}^2
        \Gamma = 3
        \delta = 2
                  cm-radian
        \delta = 3
                  steradian
```

where * means mandatory input variable
 ** means input variable with a default value

Subroutines

The subroutines in FIRE each perform a specific function that usually closely relates to this documentation. Each subroutine is listed with a brief description of its purposes.

<u>ABCDEF</u> - computes the \underline{A} , \underline{B} , \underline{C} , \underline{D} , \underline{E} , and \underline{F} matrices and vectors used to solve for the energy transfer.

<u>ARBENE</u> - computes an arbitrary energy input to the plasma or radiation. Currently not used.

CLEAR - sets all common blocks to zero before the start of a calculation.

DUMP - writes all common blocks to unit 2 at the end of a calculation.

<u>ECHECK</u> - computes the integral quantities used to evaluate the degree to which energy is conserved in the calculation.

 $\underline{\mathsf{ENERGY}}$ - computes T_p and E_R and then T_R .

EOS - computes the equation of state quantities.

 $\underline{\text{HYDRO}}$ - solves the equation of motion for the fluid velocity, and then computes new radii, Δr 's, zone volumes and specific volumes.

INITIA - Reads NAMELIST input and calls other initialization routines.

INIT1 - sets variable default values before reading input.

 $\underline{INIT2,4,5}$ - computes initial conditions and writes a summary of the initial conditions to unit 6.

<u>KAPPA</u> - computes plasma and radiation thermal conductivity and the radiation flux limit.

LLAM - computes Spitzer's log lambda.

MAIN - calls other routines to form the loop for one time step.

MATRIX - computes $\underline{\underline{a}}$, $\underline{\underline{\alpha}}$, $\underline{\underline{\gamma}}$ and $\underline{\underline{\omega}}$ matrices for use in the energy transfer calculation.

NUMDEN - computes number densities from the specific volume.

OMEGA - computes the plasma emission and absorption coefficients.

OUT, OUT1 - writes output to unit 6 at the end of specified time cycles.

POINT - finds pointers into the equation of state tables.

QUE - computes the artificial viscosity.

QUIT - wraps up the calculation at the end.

 \underline{SHIFT} - shifts values of variables at (n+1) to variables at (n) at the end of a time step.

TABLE2 - interpolates in the equation of state tables using pointers.

<u>TEMPBC</u> - computes the plasma temperature and radiation specific energy boundary conditions.

 $\overline{\text{IIMING}}$ - computes new time step and determines whether the calculation is over.

 $\overline{\text{TXTRAP}}$ - extrapolates temperatures to (n+1/2) for coefficient evaluation.

<u>UNREAD</u> - reads in the common blocks from unit 4 at the beginning of a restarted calculation.

 $\underline{\text{WBIN}}$ - writes binary output to unit 8 for postprocessing.

Input/Output Units

The FIRE code uses 6 different I/ \emptyset units. These units are listed along with their specific function.

Unit #	<u>Function</u>
2	FIRE writes all COMMON blocks to this unit at the end of a calculation to allow a restart.
3	FIRE reads the equation of state tables from this unit.
4	FIRE reads the COMMON blocks from this unit at the beginning of a restart calculation.

<u>Unit #</u>	<u>Function</u>
5	FIRE reads the NAMELIST input from this unit.
6	FIRE writes lineprinter output to this unit.
8	FIRE writes binary output to this unit for postprocessing into plots.

Storage Requirements and Execution Time

FIRE requires about 40 K words of core storage on a UNIVAC 1110 computer and executes at a rate of approximately 3-5 msec/zone·cycle.

Adding a Variable to FIRE

When adding a variable to a COMMON block, the COMMON block length (set in INIT1) must be changed so that DUMP and UNREAD will write and read the correct number of words for a restart. Notice that the lengths are measured in double words. Hence this must be changed if a CDC machine is used in single precision.

XI. Input Manual

The FIRE code reads NAMELIST input (&INPUT) from I/O unit 5. The variables that must be inputted are given in Table XI-1. The variables with default values are given in Table XI-2. They need only be inputted if another value is desired. Table XI-3 contains definitions of the integer switches used to control the code. Table XI-4 lists the real constants used by the code that can be changed by input. Table XI-5 gives the intermediate output vector that allows all internally computed quantities to be outputted for debugging. Table XI-6 lists the I/O units used by the FIRE code. Below is an example of the input for a typical calculation.

Example 1:

```
JMAX=50.
&INPUT
  NMAX=10000.
  TMAX=2.D-2,
  DR2B=10.D0,9.83D0,4.6D0,3.32D0,2.67D0,2.28D0,
  1.99D0.1.79D0.1.63D0.1.5D0.1.53D0.1.56D0.1.59D0.
  1.63D0.1.67D0,1.86D0,2.06D0,2.27D0,2.5D0,2.73D0,
  3.21D0,3.73D0,4.3D0,4.9D0,5.55D0,
  6.23D0,6.96D0,7.74D0,8.58D0,9.46D0,10.32D0,
  11.46D0.12.57D0.13.77D0.15.08D0.16.51D0.
  18.04D0.19.73D0.21.55D0.24.54D0.16.38D0.14.76D0.
  13.49D0,12.46D0,11.61D0,10.88D0,10.27D0,9.73D0,
  9.25D0•8.83D0•
  ATW2B=50+39.9D0.
  TBC=5.D-2.
  TN2C=11 +8.3D0+39 +6.5D-2+
  TR2C=11+8.3D0,39+6.5D-2,
  DN2B=1.134D19.49*1.67D18.
  ID=3+500.
  IOBIN=50.
  ISW(5) = 50.
%END
```

The next example is the input for a restart of this calculation to allow it to run to 40 msec instead of 20 msec.

Example 2:

```
&IMPUT IRS=1, &EMD
&IMPUT TMAX=4.D-2,
&EMD
```

At the end of the first calculation the COMMON blocks were written to unit 2. This file or tape must be attached to unit 4 for the restarted calculation to read the COMMON blocks. When done, the restarted calculation will write its COMMON blocks to unit 2 again.

The last example is a simple calculation to allow a test of the code.

Example 3:

```
%INPUT JMAX=10,
MMAX=200,
TMAX=2.D-2,
DR2B=10+10.D0,
ATW2B=10+40.D0,
TN2C=10+50.D0,
TR2C=10+50.D0,
DN2B=10+1.67D18,
IO=3+50,10,
%END
```

The output from this calculation is given next.

```
200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       USER: 3745022495 TIME: 99999 SECS PAGES;
                                                                                                                                                                                                                                                                                                                                                                                                                                                            PP0J: 12902
                                                                                                                                                                                                                                                                                                                                                                                   ## PRIDEITY: ## PASSIA FIRE. #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    THAX=2.0-2,

DR2B=10:10.00,

AVES=10:40.00,

AVEC=10:50.00,

TR2C=10:50.00,

DN2B=10:1.67018,

10=3:50.10,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          END ELT.
BXQT FIRE.FIRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         000010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  600000
                                                                                                                                                     Ų
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         U
```

																		7777
																		1,000
																		7777
																		(29)
																		7777
	•																	(8) (2 8) (3 8)
* }-	50N		ш	ם מ	□ →	o ~	7 7	n →	-			-						7777
OF CAVITY	PETERSON	•	ABSOLUTE	600+0001•	.000+0000	200-001	.10000-011	.2000-003 .1500+001		5000-001	41	2000+00	5000-005					(17)
	œ •		ARE	•						• •	•	•	2.5				LEDIT	7777
E THE RESPONSE DEBRIS 2/19/79	ROB		ENERGY QUANTITIES		TIME(S).,,		5)				::::	CHANGE	:				•	(16) (26) (36)
UTE THE T DEBRIS	MOSES		Y GUAN	::			;) S 3 T 3		RS		:	:	:				FREQUENCIES	7777
CODE TO COMPUTE FUSION PELLET DE	GREGOGY A. MOSES &		FNERG				ים כל		ARAMETE	F	TN CHANGE	GE	:	ENCIES	50 50 10	ī		(15) (25) (35)
: US I O		•		CMD	5)	CLESO	FIRST	(S)	ROL P	OHAMO.	MAHO	CHAN	C.(Ev)	FREGU	• • • • • • • • • • • • • • • • • • •	:	VARIABLE	7777
4 5	TTEM B	•	AL GEOMETRY	OF ZONES	G TIME C	NO. OF TIME CYCLES	EP FOR I	S CAR	EP CONT	······································	CENT TN	RCENT TR	(ئ) لغا	PRIMARY OUTPUT FREGUENCIE	HYDRODYNAMICS ENERGY NUMBER DENSITIES SHORT EDIT	outPut	INTERMEDIATE V	(14)
F 1 R E		•	SPHERICAL		STARTING 1	. O. x	ME ST		TIME ST) A	. 6.	· •	TERPERATUR	MARY	RODYN RGY	BINARY	7ER 11 E	7777
••••	• • •		S.	N O	STS	2 1	- 1	ΣÞ	Ē				1 E	189	H B B B B B B B B B B B B B B B B B B B	N 1 60	2	(3) (13) (23) (33)
																		7777
																		(23) (22) (32)
																		322

.

_ _ _

.

.

. . . .

(650) (70) (80) (80)	CHARGE (ESU)	1,1058+001 1,1058+001 1,1058+001 1,1058+001 1,1058+001 1,1058+001 1,1058+001 1,1058+001		
749) 749) 749) 749) 749)	ATOMIC NI (AMU)	1		010 006 001 010 019 019 019 000 0001
(46)	ION TEMP (EV)	5.0000+001 5.0000+001 5.0000+001 5.0000+001 5.0000+001 5.0000+001 5.0000+001 5.0000+001 5.0000+001		1.00000- 1.00000- 1.00000- 1.00000- 1.00000- 1.00000- 0.00000- 0.0000-
47) -1 (56) -1 (66) -1	Y R TEMP (EV)	5.000000000000000000000000000000000000		THERMAL COND
(46) -1 (66) -	10N DENSITY (1/CM3)	1.6700+016 1.6700+018 1.6700+018 1.6700+018 1.6700+018 1.6700+018 1.6700+018 1.6700+018		HERMAL COND. X LIMIT EPSI SMA ABSORP. RESS(11.645). SP HEAT(1.65). SP ENERGY SP HEAT(1.65).
45) -1 (56) -1 (65) -1 (68) -1	E DENSITY	8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019 1.8467+019	0.0000-001 0.0000-001 0.0000-001 0.0000-001 0.0000-001 0.0000-001 0.0000-001 0.0000-001 0.0000-001	FIRE - CON FLUT FLUT FRUT FRUT FRUT FRUT FRUT FRUT FRUT FR
(254) (444) (444)	*ASS	4,6457-001 3,8250+000 1,7189+001 2,8339+001 5,9201+001 5,9201+001 1,2381+002 1,2581+002 1,2581+002 1,6457+002	10N INT E (J) 1 1 2 2 3 2 9 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 USED IN 1,2175+002 1,0200+003 0,0000+003 1,6020+003 1,6020+001 0,0000+001 2,4030+01 0,0000+001 1,4140+000 0,0000+001 1,4140+000 0,0000+001
43) -1 (5 63) -1 (6 73) -1 (6 73) -1 (6 93) -1 (6	MASS DENS	00000000000000000000000000000000000000	1 INT ENE (J/) 3.5954+005 2.5168+006 6.812+006 1.3303+007 2.1932+007 3.2718+007 4.562+007 4.562+007 7.8020+007 7.8020+007 9.7435+007	COEFICIE (1) (1) (1) (11) (13) (17) (17) (17) (17) (18)
42) -1 (4 62) -1 (5 72) -1 (6 72) -1 (7 882) -1 (7	ZONE WIDTH	00000000000000000000000000000000000000	10N PRESS (J/CM3) 1.6129+002 1.6129+002 1.6129+002 1.6129+002 1.6129+002 1.6129+002 1.6129+002 1.6129+002 1.6129+002	MAL CO 1M17 56 LAPB FRISS. 55(1.6A ENERGY
(61)	# RADIUS	0 0.0000-001 2 2.0000+001 3 4.0000+001 4 4.0000+001 5 5.0000+001 6 6.0000+001 8 8.0000+001 8 8.0000+001 8 9.0000+001	10 2.8544+001 2.8544+001 2.2.8544+001 3.2.8544+001 3.2.8544+001 5.2.8544+001 6.2.8544+001 7.2.8544+001 9.2.8544+001	10N THER CONST LO CONST LO PLASTA 10N PRES 10N INT ARTIFIC

UP-SIREAM AVE FACTOR(28) 1.00000+000 (30) C.0000-001	*S. I.	NO. OF CONST TIME STEPS(2) 10 (4) (4) 0 HYDRODYNAMIC HOTION(6) 0 FREQ. OF DIR CALCULATION.(10) 1 EOS OPTION(12) 0 ARBITRARY RADIATION MFP(12) 0 (16) 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(27) 0,000-001 UP-9 TEMP LINIT MFP DEFAULT(29) 1,5000+000 MAX LOW TEMP MFP(31) 1,0060+000	CALCULATION OPTIONS USED IN FIRE - ISW	FREQ OF WALL DUTPUT (3) 0 FREQ OF WALL DUTPUT (3) 0 ARBITRARY ENERGY INPUT (7) 0 (1) 0 (1) 0 (13) 0 KEEP LOA TEMP MFP LOW (19) 0	EQUATION OF STATE TABLE INDICES	DENSITY SLOPE

CPITERION(EGG9) IN ZONE (D) OTHER*ISE (6%84) IN ZONE (D)				
ZONE (D)			T 1->R EX	-2.4+003
NI (6663)			T SOURCE++	0.0-001 -2.4+003
CPITERION	1.0+005 1.0+0004 1.0+002 4.0+010	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDFLUX +	1.0+005
DELTA T(S) 1.0000-012	SHORT EDIT TOTAL EMERGY RADIATED TO THE WALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(J/CH3)	1.0+c01 3.0+001 5.0+c01 7.0+c01 9.0+001 1-0+002 5.3+016 1.4+014 2.8+c13 5.0+012 6.7+011 0.0+001 5.0+c01 5.0+c01 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 15.0+001 5.0+001 15.0+001 1.5+001 1.5+001 1.5+001 1.5+001 1.5+001 1.5+001 1.1+003 1.1+003 1.1+003 1.1+003	INT EME O-T BOFLUX +T SOURCE++T I->R EX	3 • 6 + C C 8 3 • 3 + C O 9
	E WALL(J) ON THIS	5 0+001 7+0 0+0013 5+0 0+001 5+0 0+001 1+0	* V) I)	3.3+009
TIME(S) 1.0000-911	ATED TO TH O THE WALL ALL(J/CH3) WALL(J/CH2	3.0+001 5. 1.4+014 2. 5.0+001 5. 5.0+001 5. 1.5+001 1.	CONSEQUATION INT ENE + KIN ENE * RHS *	2.7-019
CYCLE	CERGY RADI PADIATED TO X AT THE W	1.0+001 5.3=016 5.0+001 5.0+001 1.5+001	ENERGY CONSERVATION INTERE + KI	3.6+008
6	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A HEAT FLUX	KADUCK LECOLIC TEMP TEMP AND	ENERGY C	0° ⊷ +

20	1.8000-010	0	5.7665-011		לא זו ביי היי היי היי היי היי היי היי היי היי	לאינדראוסטעניין נא אסייף ווסט סימההאושה ניאלון נא אסייף נוסט	7 70.7	5	7 F X 1 U	- X	21	1	=
SHORT EDIT TOTAL ENERGY RADIATED TO THE WALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE MALL(J/CM3)	ADIATED TO TO TO TO THE WALLUNCHIA	THE WALL ON TH 33			1.8+006 5.8+006 1.9+002 4.0+010								
RADIUS 1.0+001 3.0+001 5.0+001 7.0+001 9.0+001 1.0+002 VEI.0CTTY 7.7+011 3.4+010 7.6+010 1.5+0.09 3.0+009 1.0+0.001 1.5+0.001 1.5+0.001 1.5+0.001 1.5+0.001 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 5.0+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01 1.5+0.01	1.9+001 3.0+001 5.0+001 7.0+001 9.0+001 1.0+002 7.7-011 3.4-010 7.6+001 1.5-009 3.0+009 0.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 5.0+001 1.5+001 1.5+001 1.5+001 1.5+001 1.5+001 1.5+003 1.1+003 1.1+003 1.1+003 1.1+003	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55	9,0+001 3,0+001 5,0+001 5,0+001 1,5+001	10 C + 0 0 2 C + 0 0 0 1 S + 0 + 0 0 1 S + 0 + 0 0 1 1 + 5 + 0 0 1 1 + 1 + 0 0 3								
ENERGY CONSERVATION	171011						•						
INT ENE	INT ENE + KIN ENE = RHS =	RHS *	2	ENE 0-7	BDFLUX .	INT ENE O-T BOFLUX +T SOURCE+-T 1->R EX	-1 1->R	×					
8 3.6+008 I 3.3+009	8.5-016	3.6+908		8 + C 0 8	1.8+006	3.3+0.09 1.3+0.00 0.0-0.01 5.7+0.05	-5.7+0	505					

CRITERION(TR/T) IN ZONE (10) OTHERMISE (TH/T) IN ZONE (10)			I>R E.X	0.0-001 -8.4+007
1N 20			RCE++1	- 100
118/11			100S 14	0.0
RITERION	9.8+007 3.2+007 1.9+002 3.9+010	100+002 0+0+001 4+9+001 1+9+001 1+5+001 1+1+003	BDFLUX .	4.8.007
3+3253-009	SHORT EDIT TOTAL ENERGY RADIATED TO THE MALL(J)	KADIUS 1.04-001 3.0+001 5.0+001 7.0+001 9.0+001 1.04-002 VELOCITY 3.9+008 1.5-007 2.7-007 4.0-007 5.6-007 0.0-001 1 TEMP 5.0+001 5.0+001 4.9+001 4.9+001 4.9+001 4.9+001 P MFP 1.5+001 1.5+003 1.1+003	INT ENE O-T BDFLUX +T SOURCE+*T 1.>R EX	3.6+008
3+32	ALL(J)	01 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.44.008
600-	THE WILL ON (3) • • • (H2-S)	8 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	# RHS	'n
TIME(5) 9.9829-009	ATED TO O THE WA ALLIJ/CH WALLIJ/C	3.0+001 1.5-007 5.0+001 5.0+001 1.5+001 1.5+001	ON KIN ENE	
CYCLE 30	OIT NERGY RADI RADIATED T RADIATED T S AT THE W	7 3.00 3.00 5.00 5.00 1.500 1.500 1.000	ENERGY CONSERVATION INT ENE # RHS #	3.44008
ΰ	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A HEAT FLUX	VELOO VELOO 1 TECTO 1 TECTO 1 TECTO 1 MAPP	6 kg 4 G Y	Œ

CRITERION(TR/T) IN ZONE (10) OTHERMISE (TR/T) IN ZONE (10)

(01)				
20NE				
(TK/T) 11				
CRITERION(TR/T) IN ZOME (10) OTHERNISE (TK/T) IN ZONE (10)				
E (10)			- > R E X	-1.4+009
N 20 N	,		1 L-+	÷ =
N(TR/T) I			+T SOURCE	0.0-001 -1.4+009
CR17ER10	1.7.009 4.8.007 8.5.001 1.6.010	10 10 10 10 10 10 10 10 10 10 10 10 10 1	BDFLUX	1.7+009
DELTA T(S) 1.2104-008		RADIUS 1.0+C01 3.0+001 5.0+001 7.0+001 9.0+001 1-0+002 VELOCITY 8.6=C05 4.8=C06 6.3=C05=1.9=C05=6.1=C04 0.0=01 1 TEMP 3.5+C01 3.9+C01 4.5+C01 4.8+C01 4.5+C01 3.9+C01	INT EME 0-T GOFLUX +T SOURCE+-T 1->R EX	3.3+5009 1.7+009 3.3+509 1.4+003
	#ALL(J)	+ 001 7 00 1 1 00 1 1 00 1 1 00 1 1 00 1 1 1 1 00 1	N N	1.3+008
TIME(S) 2.7079-507	SHORT EDIT TOTAL EMERGY RADIATED TO THE MALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE MALL(JCH3)	3.0+001.5.0 4.8-006.6.3 3.99+001.4.5 3.99+001.3.9 1.99+001.3.9	CONSERVATION INT ENE + KIN ENE = RHS *	2.2-005
כאכר <i>נ</i> 40	EDIT ENERGY KAD: RADIATED: RE AT THE Y	74 8.6-005 74 8.6-005 75 8.6-005 76 8.6-005 77 8.6	ENERGY CONSERVATION INT ENE + KI	1.3+008 2.3+009 2.4+009
	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A	RADIUS VELOCITY I TEMP R TEMP R MFP	ENERGY	œ - -

	נאכרנ נאכרנ	71ME(5) 2-7526-007	DELTA T(5)		CRITERION(TR/T)	IN 20NE (1)) OTHERWISE (TR/T) IN	(TR/T) IN ZONE	NE (1)	
11	RADIUS (CM)	ZONE WIDTH	MASS DENS	CCMPRESSION (VO/V)	· VELDCITY (CM/S)	R TEMP (EV)	10N TEMP (EV)	K PRESS	ION PRESS	ART VISC
C		1.0000+0					4.4112+001	1.6374+001	1,3004+000	100-0000-0
~ ~	3.0000+001		1.1091-004	1.0000+000	6.8685-006				1.2396+002	1.8977-012
1		1.0000+0		000+000+1	-5.9268-006	4.3488+001			1.2417+002	0.0000-001
ហ		1.0000+0		1 * 6000 + 000	-7.1927-005			1.6481+001	1.2485+002	8 94444013
•	6.0000+501	1.0000+1		1,0000+000	2,8306-005		4.4081+001		200-1-201	+10-16-6*C
r 0		1 - 0000+1	1-1091-004	1.0000+000	4.8176-005		4,4063+001		1.2992+002	0.0000000000000000000000000000000000000
C 0.	7.0000+001	1.0000+000	1.0011001	1,0000+000	2,2969-005		4.4021+001		1,2961+002	1.4090-013
<u> </u>		0+0000*I	1.1091-004	1.000+0000	0.0000-001	4.4320+001 4.5012+001 2.5000-002	4.4076+001 4.5720+001 2.5000-002	1.7621+001	1,2988+002	2,4915-011
a	R ENERGY	ION ENERGY	KIN ENERGY	R SOURCE	10N SOURCE	ION-VE	FLUX	HEAT FLUX		
c	Ĵ	()()	(()()	()()			(J/CM2-S)	(J/CM2-5)		
				0.0000-001	0.0000-000		1 57.4.011			
~ ′					0.0000-001	-4.6768+005		1,057,24011		
J 7.	7.6809+006	4.3218+007 8.4809+007	1.1620-010		0.0000-001		3.5783+011	-1.3712+01		
5					0.00000000	-2.4539+006		-2.5797+011		
4 0 1					0.0000-001	1.7167+005		-8.6923+010		
~ 60					0.0000-001	-1-2114+006		-6.9803+010		
o					0.0000000000000000000000000000000000000	-5.4184+006	3.9248+011	-1.3824+011		
0			0.0000-001	100-0000	0.0000.0	2.7791+007	2.7472+010	2.7458+010		
			ENERGY CONS	CONSERVATION CHECK	CK UNITS	ARE (J/)				
	INT ENE	⊣ KE	INT ENE(0)	T BDFLUX	T 1.>R EX	T SOURCE	BDFLUX	I+>R EX	SOURCE	
œ	2.2332+008 2.4721+009	5.7899-306	3,5954+008 3,2914+009	1,7002+009	1,5640+009	0.0000-001	6.7862+006 5.8927+000	5.8726+006	0.0000-001	
			RADIATION 10n 10tal	2,2332+008 2,4721+009 2,6954+009	8 2.2332+008 9 1.7274+069 9 1.9507+069	600+ 600+				
4.	E DENSITY (1/CH3)	10N DENSITY (1/CM3)	CHARGE (ESU)	KESS MFP (CM)	RAD MFP (CM)	EGM T MFP (CM)				
- 2 E	1.6985+019 1.6204+019 1.6222+019	1.6700+318 1.6700+318 1.6700+018	1.0021+001 9.8026+000 9.8104+000	8.0276+002 7.6n23+002 7.6170+002	1.7972+001 1.5835+001 1.5649+001	1.6698+001 1.6961+001 1.6953+001				

1.6925+0U1 1.6793+001 1.6705+001 1.6705+001 1.6719+001 1.6706+001			+-T 1+>R EX -1.6+009 1.6+009
1.5884.001 1.6299.001 1.6629.001 1.6509.001 1.6303.001 1.6218.001	6	22.1.1.1.2	+1 SOURCE 0.0-001 0.0-001
7,6636.002 1 7,8833.002 1 8,0263.002 1 6,0279.002 1 8,0279.002 1 8,0277.002 1	57EP. 6.8+009	9.0001 10.0002 3.1=004 00-001 4.4=001 4.6+001 4.4=001 4.6+001 4.4=001 1.8+001 1.6+001 1.8+001 8.0+002 6.7+002	int Ere O-t BDFLUx +t SOURCE+-T I.>R EX 3.64C08 1.74C09 0.0-001 -1.64C09 3.34C09 1.54C03 0.0-001 1.64C09
9.8348+000 9.9458+000 1.0016+001 1.0016+001 1.0005+001 1.0015+001	SHORT EDIT TOTAL ENERGY FADIATED TO THE WALL(U) TOTAL ENERGY FADIATED TO THE WALL C4 THIS THE STEP- PRESSURE AT THE WALL(U/CM3)	7.0+001 4.8-005- 4.4+(01 4.4+(01 1.7+001 8.0+002	# + + + + + + + + + + + + + + + + + + +
1.6700+018 1.6700+018 1.6700+018 1.6700+018 1.6700+018	OJATED TO THE TO THE WALL WALL(J/CM3).	3.0+001 5.0+001 4.2-006-7.2-005 4.3+001 4.4+001 4.3+001 1.6+001 1.6+001 1.6+001	N ENE * R
1 1 6 2 6 7 5 1 9 6 5 3 8 6 1 9 6 5 3 8 6 1 9 6 7 3 9 6 1 9 6 7 9 9 9 1 8 6 2 8 6 1 9 9 9 1 8 6 2 8 6 1 9 9 9 1 7 4 2 3 4 6 1 9 9 9 1 7 4 2 3 4 6 1 9 9 9 1 8 6 2 8 6 9 9 9 1 8 6 2 8 6 9 9 9 9 1 8 6 2 8 6 9 9 9 9 1 8 6 2 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SHORT EDIT TOTAL ENERGY FAR ENERGY RADIATEC PRESSURE AT THE HEAT FLUX AT THE	FADIUS 1.0+001 VELOCITY 9.9-005 I TERP 4.4+001 R TEMP 4.4+001 P MFP 1.8-001 R MFP 8.0+002	ENERGY CONSERVATION INT ENE + KI. R
400000	SH EVE PRE HEA	× γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	# # # # ₩ ₩

CAITERION(TR/I) IN ZONE (1) OTHEHMISE (TR/I) IN ZONE (1)				
NE (1) OTHERAI			I. >R EX	-2.0+009
104(TR/T) IN 20	6 4 6 U	00 2 0 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	INT ELE O-T BOFLUX +T SOURCE+-T I=>R EX	100-0-0
	37EP 2.24006 37EP 2.24006 34002 1.34002	9.0.001 1.0.0 3.2.004 0.0.0 4.1.001 4.11.0 1.4.001 1.7.0 1.4.001 1.7.0	ENE D-T BDFLU	3.5+208 Z.1+009 3.3+c09 1.8+003
0ELTA T(S) 4.6571-010	AALL(J)	5 7 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.7+008 3.6. 1.3+009 3.3. 1.5+009
71ME(S) 3.5758-007	1ATED TO THE TO THE MALL 0 MALL(J/CM3)	1.0+001 3.0+001 5.0+001 7.0+001 9.0+001 1.0+002 7.0+004-1.1-007-7.5-005 3.9-005-3.2-004 0.0-001 7.0+001 1.3+001 4.2+00	CONSERVATION INT ENE + KIN ENE = RHS =	900-4-9
CYCLE 69	SHERT EDIT TOTAL ENERGY SADIATED TO THE SALL(J)	HEDIUS 1.0.001 VELOCITY 4.0.004 I TEMP 7.4.001 P HFP 4.2.001 P HFP 2.1.0002 R HFP 1.1.003	ENERGY CONSERVATION INT ENE + KI	R 1.7+008 I 2.1+009 T 2.3+009
	N F M C I	g m → α σ α	m Z	

Ď	CYCLE 70	TIME(5) 3.6632-007	DELTA T(S) 1.0971-009	CRITERION(TR/T) IN ZONE (1) OTHERAISE (T	IN ZONE		0	THERA I SE	5
SHOPT EDIT TOTAL ENER ENTRENT RAD PRESSURE A HEAT FLUX	IT ERGY RADI ADIATED T AT THE M	ATED TO THE '4 O THE WALL 0'4 IALL(J/C'3)	SHORT EDIT TOTAL ENERGY RADIATED TO THE "ALL(J) ENERGY RADIATED TO THE WALL OW THIS TIME STEP. PRESSURE AT THE WALL(J/CH2-S)	2.2.009 5.1.006 1.3.002 1.8.01C					
RADDIUS VELOCITY I TEMP R TEMP P MEP R MPP	1.0+001 1.1=003 4.6+001 4.4+001 2.1+001 8.9+002	3.0+001 5.0+00 3.1+006-7.3+00 4.1+001 4.1+00 4.1+001 14.1+00 7.1+002 7.1+00	RADIUS 1.04001 3.04001 5.04011 7.04001 9.04001 104002 VELOCITY 1.1=03 3.1=006-7.3=005 4.6=005-3.2=004 0.0=051 1 TEMP 4.6+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 4.1+001 R MFP 2.1+001 1.7+001 17.7+001 1.	10 10 10 10 10 10 10 10 10 11 10 10 10 1					

INT ENE OFT BOFLUX +T SOURCE+-T I+>R EX 3.6+C08 2.2+009 0.0-001 -2.0+009 3.3+009 1.9+003 0.0-001 2.0+009 1.6+008 2.1+009 2.2+009 2.2+009 1.5+009 INT ENE + KIN ENE # RHS #

ENERGY CONSERVATION

CRITERIOM(TR/T) IN ZONE (1) OTHEKWISE (TR/T) IN ZONE (1)			X ii	5- 0 -
ONE (1				-2.3+009
(TR/T) IN Z			+T SOURCE+-	0.0-001 -2.3+009 0.0-001 2.3+009
a I T E R 10 W	2.5.009 3.3.007 1.1.002 1.5.010	10 6.0-001 3.9+001 1.8+001 6.6+002	BDFLUX	2.5.009
0ELTA T(S) CF 9.1046-009		RADIUS 1.04.01 3.04.001 5.04.001 7.04.001 9.04.001 1.04.002 VELOCITY 1.24.003 5.14.006-7.04.005 5.04.005-3.24.004 6.04.001 1 TEMP 3.44.001 3.94.001 3.94.001 3.94.001 3.94.001 R TEMP 3.94.001 3.94.001 3.94.001 3.94.001 3.94.001 P MFP 9.14.000 1.84.001 1.84.001 1.84.001 1.84.001 R MFP 3.94.002 6.64.002 6.64.002 6.64.002 6.64.002	INT E 4E D-T BDFLUX +T SOURCE+-T I+>R EX	
	*ALL(J) *	5 001 7.0 005 5.0 001 3.9 001 1.8	u v	1 • 3 + 0 0 8 1 • 0 + 0 0 9 1 • 2 + 0 0 9
TIME(5) 4.4245-007	SHORT EDIT TOTAL ENERGY PADIATED TO THE FALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP- PRESSURE AT THE WALL(J/CA3)	3,0+001 5.0 5.1-006-7.0 3,9+001 3.9 3.9+001 3.9 1.8+001 1.8	CONSERVATION	7.4-006
CYCLE	IT ERGY PADI ADIAȚEO T AT THE W X AT THE	1.0+001 1.2+001 3.4+001 9.1+000 3.9+001	ENERGY CONSERVATION	1.3+008 1.8+009 1.9+009
) <i>k</i> 0	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A	KADIUS VELOCITY A TEMP P HEPP RAFP	ENFRGY	α -

J	CYCLE 90	TIME(S) 4.7033-007		DELTA T(S) 8.8691~069	CRITERION	CRITERION(TR/T) IN ZOME (1) OTHERMISE (TR/T) IN ZONE (1)	ZONE (11 014	ER×1SE	(TR/T	<u>2</u>	ZONE	=
SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A	IDIT RENGY RADI RADIATED T RE AT THE N.	SACRT EDIT TOTAL ENERGY RADIATED TO THE WALL(U) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(U/CM2)	ON THIS !		2.6+009 3.0+007 1.1+002 1.4+010								
A CELOCIUS TENDO T	1.0+091 1Y 1.2=09 1Y 3.8+091 13.8+091 13.8+091 13.8+091 13.8+091	RADIUS 1.04-011 3.04-011 5.23-001 7.04-011 9.04-001 11-04-002 ELOCITY 1.22-003 6.22-001 5.24-001 7.04-001 11-04-001 1 TEMP 3.84-001 3.84-0	5 +001 7.0 -005 5.2 +001 3.8 +001 1.7 +002 6.5	7 401 9.0+00 -005-3.2-00 +001 3.8+00 +001 1.7+00 +001 1.7+00	10 4 0.0-001 1 3.8+001 1 3.8+001 1 1.7+001 2 6.5+002								
ENERGY	ENERGY CONSERVATION INT ENE + KI	CONSERVATION INT ENE + KIN ENE = RHS =	# SH2	INT ENE G-	INT ENE O-T BOFLUX +T SOURCE+-T I+>R EX	T SOURCE+	¥ 1	× w					
or ⊷ ⊢	1.2+008 1.7+009 1.8+009	7.4-006	1.2+008	3 • 6 + ± 0 8 3 • 3 + ± 0 0 9	2.3.003	0.0-001 -2.4+009	2.4+6	900					

CACLE TIME(S) DELTA TIS, CKHIERIOLITR/TI IN ZONE (1 2) OTHERATISE (1 2) CKHIERIOLITR/TI IN ZONE (1 2) OTHERATISE (1 2) CKHIERIOLITR/TI IN ZONE (1
CYCLE 114E(S)
CYCLE
##################################
##################################
E RADIUS
##############################
0-0m4m4n4n40 # 0-0m4m4n4n40 #0m

11 1.5357+001 11.5036+001 11.4974+001 11.4972+001 11.4986+001 11.4977+001			BDFLUX +T SOURCE+-T 1.>R EX	001 -2-8+009
1.5253+001 1.4882+001 1.4682+001 1.4964+001 1.5019+001 1.5096+001 1.5096+001	05 0 0 1	002 001 001	005 1+ xC	100-0-0 60
2,3771,4002 2,3771,4002 1,3561,4002 2,3561,4002 2,3561,4002 2,3561,4002 2,3576,002 2,3576,002 2,3576,002	4004	001 1-0+002 004 0-0=001 001 3-1+001 001 3-1+001 001 1-5+001	0-1 80ft	3.14009
0000 2.37 0000 2.37 0000 2.38 0000 2.38 0000 2.38	TIME STEP	7.04001 9.04001 6.2-005-3.0-004 3.1+001 3.1+001 1.5+001 1.5+001 2.4+002 2.4+002	INT ENE	3.6+008
8.3168-000 8.3144-000 8.3144-000 8.3143-000 8.3143-000	S THIN		R H S	5.5+007
# 1.3908*C19 1.6709*C18 8.3308*000 2.516 5 1.3884*C19 1.6709*C18 8.3168*000 2.337 6 1.3883*C19 1.6700*C18 8.3144*C00 2.352 7 1.3883*C19 1.6700*C18 8.3144*C00 2.352 9 1.3884*C19 1.6700*C18 8.3145*C00 2.358 1.3884*C19 1.6700*C18 8.3145*C00 2.357 1.3884*C19 1.6700*C18 8.3145*C00 2.357 SHORT EDIT	PRESSURE AT THE WALL(J/CM3)	3.0+001 1.0-005- 3.2+001 3.2+001 1.6+001 3.0+002	# BI RI RI	7.0-006
1.35614019 1.35614019 1.36814019 1.368134019 1.36814019 1.36814019 1.36814019 1.36814019	E AT THE	7 1.2 003 4.2 003 3.8 003 2.9 001 7.4 002	CONSERVATION INT ENE + KIN ENE	5.5+007
5 1.350 6 1.358 7 1.388 8 1.388 9 1.388 10 1.388 10 1.388	PRESSUR HEAT FL	VELOCITY 1 TEMP R TEMP R AFP R AFP	ENERGY	0 ⊷

```
CRITERION(TR/T) IN ZONE ( 2) OTHERNISE (TR/T) IN ZONE ( 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            INT ENE O-T BDFLUX +T SOURCE+-T 1-2R EX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.0-001 -2.8+009
0.0-001 2.8+009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADIUS 1.00-001 3.00-001 5.00-001 7.00-001 9.00-001 1.00-002 VELOCITY 1.20-003 3.7005-5.80005 6.40-005-3.00-004 0.00-001 1 TEMP 3.20-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3.10-001 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3,1,009
                                                                                                                                                                                                                                                                                                                   3.6+008
                                    TIME(S) DELTA T(S)
7.0867-007 3.9155-009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.2+007
4.6+008
5.1+008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INT ENE + KIN ENE = RHS =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     7.7-006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ENERGY CONSERVATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5.2+007
1.3+009
1.3+009
                                                                        CYCLE
110
```

Ü

CRITERION(TR/T) IN ZONE (I) OTHERMISE (TR/T) IN 20NE (I)					
IE (1) OTH				I +>R EX	600+6•
TR/T) IN ZON				INT ELE OFT BDFLUX +T SOURCE++T I+>R EX	0.0-001 -2.9+009 0.0-001 2.9+009
CRITERIONE	3.2.009 2.0.006 7.6.001 4.8.009	10.000 10.000 10.000 12.900 12.900 11.300 11.300 11.600		T BDFLUX +1	3,2,003
DELTA T(S) 1.6966-009	SHORT EDIT TOTAL ENERGY RADIATED TO THE AALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP- PRESSURE AT THE WALL(J/C ^M 3)	RADIUS 1.0.001 3.0+001 5.0+001 7.0+001 9.0+001 1.05+002 ELCCITY 1.2-003 4.1-005-5.5-005 6.8-005-3.0-004 0.0-001 1 TEMP 2.9+001 3.0+001 3.0+001 2.9+001 2.9+001 R TEMP 3.0+001 3.0+001 3.0+001 2.9+001 2.9+001 P MFP 1.2+001 1.3+001 1.3+001 1.3+001 1.3+001 1.3+002 1.7+002 1.7+002 1.7+002 1.6+002		INT EVE O-	3 • 5 + 0 0 8 3 • 3 + 0 0 9
	4E AALL(J). L ON THIS 1	.0 + 001 7 .0		RHS .	7004 4.04 4.00 4.00 4.00 4.00 4.00
TIME(S) 7.5843-007	SHORT EDIT TOTAL ENERGY RADIATED TO THE MALL(J)ENERGY RADIATED TO THE WALL ON THIS TIME STEPPESSURE AT THE MALL(J/CM3)	3.0+001 5 4.1-005.5 3.0+001 3 3.0+001 3 1.3+001 1	701	INT ENE + KIN ENE * RHS *	7.6-006
CYCLE 120	DIT NERGY RAD RADIATED E AT THE UX AT THE	1.0+001 1.0+001 1.2+003 3.0+001 3.0+001 1.6+002	ENERGY CONSERVATION	INT ENE +	4.3+007 1.2+009 1.3+009
U	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A	AADIUS VELOCITY 1 TEMP R TEMP AFP	ENERGY		tic ↔ ← .

CRITERIOU(TR/T) IN ZONE (1) OTHERMISE (TR/T) IN ZONE (1)				
N ZONE (1) OT			+-T 142R EX	0.0-001 -3.0+009 0.0-001 3.0+009
ITERION(TR/T) I	3.3.009 9.3.005 7.0.001 3.8.009	0 -0-00 -0-00 -8+001 -7+000	INT ENE OFF BOFLUX +T SOURCE+=T 1+2H EX	3.3.009 0.0-001 3.1.003 0.0-001
DELTA T(S) CR 9.8148-010		1,0,001 3,0,001 5,0+001 7,0+001 9,0+001 1,0+002 1,2-003 4,5-005-4,9-005 7,6-005-2,8-004 0.0-001 2,7+001 2,8+00	INT ENE D-T B	3+9+008 3+3+009
TIME(5) DEL 8.3435-337 9.8	7 THE MALLIUM WALLIUM WALL ON THIS	3 5 0 0 0 1 7 0 0 0 0 1 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 1 0 0 0 0	ENE # RHS	3.4+007 7.4-006 3.3+008 3.6+008
CYCLE T1	SHORT EDIT TOTAL ENERGY RADIATED TO THE MALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE MALL(J/CM2)	AADIUS 1.0+001 3.0+001 5.0+001 7.0+001 9.0+001 1*0+002 VELCCITY 1.2+003 4.5+005-4.9+005 7.6+005-2.8+004 0.0+001 I TEMP 2.7+001 2.8+001	ENEFGY CONSERVATION 1NT ENE + KIN ENE = RHS =	3.4+007
	2 2 3 3 4 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3	х Э – х g - х 4 – 1 5 0 – 1	EN EN	4

~ ^ ^

CRITERION(IR/T) IN ZONE (10) OTHERWISE (TR/T) IN ZONE ,10)				
) OTHERWIS				
N ZONE (10				1 1 1 EX -3 -0 +0 0 9 3 -0 +0 0 9
CRITERION(IR/T) 1	3.4.009 2.8.007 6.4.001 3.2.4.009	10 1.0+002 0-0-001 2-6+001 5-1+000 *-2+001		INT ENE D-T BDFLUX +T SOURCE+-T 1.>R EX 3.64008 3.44009 0.0-001 -3.04009 3.34609 3.34003 0.0-001 3.04009
NELTA T(S) 3.7874-008	SHORT EDIT TOTAL ENERGY RADIATED TO THE WALL(J)	RADIUS 1.3+001 3.0+001 5.0+001 7.0+001 9.0+001 1.0+002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-002 1/0-001 1/0-002 1/0-001 1/0-002 1/0-001 1/0-002 1/0-001 1/0-002		
766	O THE WALL (MALL ON THI	5.0+001 7. 2.6+001 2. 2.6+001 2. 2.6+001 2. 6.6+000 6.		= RHS = 2.7+007 2.5+008 2.7+008
71ME(S) 9.4601=	DIATED T TO THE WALLIJA	3 4.9-0001 3 4.9-005 2.6+001 2,6+001 5,5+001 7.7+001	101	KIN ENE 7.0-006
CYCLE 140	EDIT ENERGY RA RADIATED RE AT THE LUX AT THI	7.6+001	VERGY CONSERVATION	1NT ENE + KIN ENE = RHS = 2.7+001 1.1+009 7.0-006 2.5+0 1.1+009 2.7+0 2.7+
	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A' HEAT FLUX	RADIUS I TEHP R TEHP P MFP	VERGY	œ - -

	CYCLE	TIME(S)	DELTA T(5) 6 9.5858-010	U	RITERION(TR/T)	14 ZONE (1)	OTHER#15E	(TR/T) IN ZONE	-	
n	RADIUS (CM)	ZONE WIDTH	MASS DEVS	COMPRESSION (VO/V)	VELOCITY (CM/S)	R TEMP (EV)	ION TEMP (EV)	R PRESS	JON PRESS	ART VISC
C	0.0000-000				0.0000-001					
	1.00000001	1.00000.1	1.1291-004	1.0000+000	1.1834-003	2,2890+001	2.2864+001	1.2537+000	5,4363+001	100.0000.0
7	2.0000+001	1.00000+001	1.1091-004	1.0000+000	6.5554-004	2.2989+001	2,2771+001	1.2/5/+000	100+7494.5	100_00000
m :	3.0000+001	1.0000+001	1.1091-004	1,0000+000	8.86/7-005	2,3167+001	2,3162+001	1.33834000	5.5144+001	7 5591-012
T L	5.0000+001	100000001	1.1091-004		-1.4453-005	2,3227+001	2,3233+001	1 • 3 2 9 2 + 0 0 0	5,5330+001	4,0945-015
1 40	6.0000+001	1.0000+001	1.1091-004		9.9266-005	2.3157+001	2.3163+001	1.3133+000	5,5145+001	0.0000-001
, ,	7.0000+0001	1.0000+001	1.1091-004	1.0000+000	1.2740-004	2.3072+001	2,3077+001	1.2941+000	5.4920+001	0.0000-001
CC;	8.0000+001	1.0000+001	1.1091-004		1.0883-004	2.2965+001	2,2969+001	1.2703+000	5,4637+001	100-0000-0
۰	9,0000+001 1,0000+002	1.00000+0001	1.1091-004	000+0000*1	-2.1623-004 0.0000-001	2.2726+001	2.2727+001	1.2435.000	5,4312+001	2.3430-011
•		3		3		2.5000-002	2.5000-002			
=	>9 2 2 2 3	TOW FREESTY	KIN FNFR6Y	S O DR P	ION SOURCE	10%-VB EX	FLUX LIM	HEAT FLUX		
•	3		()()	() ()			(J/CH2-S)	(J/CM2-S)		
0			0.0000-001		•					
- (9.7634+005	1.3015-006	0.0000-001	100-0000-0	-3.5952+003	2.7888+010	-2,3663+009		
v m	•	1.8678+	5.1145-008	0.0000000	0.0000-001	-9.7303+003	3.0051+010			
. 3	-	3.6466	4.0017-009	00-0000 0	0.0000-001	6.0043+008	3.0290+010	1.1062+009		
ru.		6.0063	3.68/9=009	0.0000-001	0.0000-001	400+6456.4	2.9740+010			
۰ ۳		1.2460+008	5.5799-007	0,0000-001	0.0000.001	7.4677+004	2.9035+010	2.0628+009		
· cc		1,6540	5.3094-007	0.0000-001	0.0000-001	8.5435+009	2.8429+010			
o- (2.1177+008	2.6500-006	0.0000-001	0.0000-001	5.7285+004	2.7799+010	2.1596+009		
<u>-</u>	0 1 • • • • • • • • • • • • • • • • • •									
			ENERGY CONS	CONSERVATION CHECK	UNITS	ARE (3/)				
	INT ENE	+ KE	INT ENEID)	T BDFLUX	T 1->R EX	T SOURCE	BDFLUX	1->R EX	SOURCE	
æ	1.5925+007 9.7801+908	6.6464-006	3,2914+008	3,4896+009 3,4463+003	3,1460+009	0.0000-001	4.1225+005 7.2024-001	3.7429+005	0.0000-001	
			RADIATION ION TOTAL	1.5925+0n7 9.7801+008 9.9394+008	7 1.5925+007 R 1.4547+008 B 1.6139+008	+007 +008 +008				
	E DENSITY (1/CH3)	10 ¹² DE451TY (1/CM3)	CHARGE (ESU)	ROSS RFP (CM)	RAD MFP (CM)	EGM T MFP (CM)				
- 05	1.3161+019	1.6700+018 1.6700+018	7.8872+000 7.8914+000 7.8990+000	5.8940+001 5.9002+001	3.8027+000 3.8612+000 3.9702+000	3.8116+000 3.8678+000 3.9717+000				
•			1 1							

4.0338+000 4.0110+000 3.9718+000 3.8667+000 3.8667+000 3.7407+000			+-T I+>R EX	-3·1+006
4.0134+000 4.0132+000 3.9737+000 3.9264-000 3.8680+000 3.8620+000		××	INT EME OF BOFLUX +T SOURCE+-T I=>R	0.0-001
	3,5,009 4,1,005 5,5,001 1,7,009	10 0.0-001 2.3+001 2.3+001 3.7+000 5.9+001	BOFLUX	3.5+009 3.4+003
5,9181,001 5,9184,001 5,971,001 5,9011,001 5,894,2001 5,887,6001		7.0+001 9.0+001 1.3+004-2.2+004 2.3+001 2.3+001 2.3+001 2.3+001 3.9+000 3.8+000 5.9+001 5.9+001	ENE 0+1	3 · 6 + C C 8 3 3 · 3 + C C 9 3
7.90334000 7.90174000 7.8990*300 7.8956*000 7.89134000 7.88644000	SHORT EDIT TOTAL ENERGY RADIATED TO THE WALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(J/CM3)		FNI	1.6+007 3. 1.5+008 3. 1.6+008
	THE WALL ON 133	5.0+001 1.4-005 2.3+001 2.3+001 4.0+000 5.9+001	# RHS #	
1.6700+018 1.6700+013 1.6700+013 1.6700+016 1.6700+018 1.6700+018 1.6700+018	ATED TO THE WA MALL (J/CM	3.0+001 5.0+001 6.9-005-1.4-005 2.3+001 2.3+001 7.3+001 2.3+001 4.0+000 4.0+000 5.9+001 5.9+001	ON KIN ENE	900-9-9
1,3203+019 1,3198+019 1,3187+019 1,3187+019 1,3180+019 1,3161+019 1,3163+019	T REY RADI LOIATED T AT THE W	1.2 -001 1.2 -001 2.3 -001 2.3 -001 3.8 -000 5.9 -001	CONSERVATION Int ene + Kin	1 • 6 + 007 9 • 8 + 008 9 • 9 + 008
± N 4 V 8 4 D	SHORT ED! TOTAL ENE ENERGY RA PRESSURE HEAT FLUX	KRADIUS VELOCITY I TEMP R TEMP P PFP R MFP	ENERGY CONSERVATION INT ENE + KI	α -
		-	_	

CAITERIOH(TR/T) IN ZONE (6) OTHERMISE (TK/T) IN ZONE (6)			ις. Σ	600.
ZONE			<u> </u>	3.2
(TR/T) IN			T SOURCE+	0.0-001 -3.2+009
CRITERION	3.5+009 1.7+007 4.9+001 1.4+009	10 0.0-001 2.0+001 2.1+001 2.7+001 5.7+001	BDFLUX +	3.5+009 3.6+003
DELTA 1(5) 5.5276-508	SHORT EDIT TOTAL ENERGY RADIATED TO THE WALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(J/CM3)	1.0+001 3.0+001 5.0+001 7.0+001 9.0+001 1+0+002 1.2-003 1.1-004 1.5-005 1.5-004-1,9-004 0.0-001 2.1+001 2.0+001 2.0+001 2.1+00	INT ENE D-T BDFLUX +T SOURCE+-T 1.>A EX	3 • 6 + 0 0 8 3 • 3 + 0 0 9
0ELT/ 5+527	ALL(J)	501 7+0 005 1+5 001 2+1 001 2+1 000 2+9	N vo	1.1.007 9.3.007 1.0.008
T1ME(S) 1.3088-006	THE %	2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	in the second	36 1
11ME(S)	ATED TO FD THE W MALL (J/C	3.0+001 1.1-004 2.0+001 2.1+001 2.4+000 5.7+001	NOT	900-5-9
CYCLE 160	DIT NERGY RADI RADIATED T E AT THE W	1.0+001 1.2=003 2.1+001 2.1+001 2.8+000 5.8+000	ENERGY CONSERVATION	1 • 1 + 0 0 7 9 • 3 + 0 0 8 9 • 4 + 0 0 8
Ü	SHORT EDIT TOTAL ENER ENERGY RAD PRESSURE A	KADJUS VELOCITY I TEMP R TEMP R MFP	ENERGY	ac ⊷ ⊢

-	170	TIME(S) 1.3627-006		DELTA T(S; 7.0669-011	CRITERION	STR/T) IN	ZONE (2) OTHERWI	CKITERION(TR/T) IN ZONE (2) OTHERMISE (TK/T) IN ZONE (2)
SHORT EDIT TOTAL ENER ENERGY HAD PRESSURE A HEAT FLUX	EDIT ERERGY RADI FADIATED 1 RE AT THE LUX AT THE	SHORT EDIT TOTAL EMERGY RADIATED TO THE WALL(J)EMERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(J/CM2)	MALL(J) ON THIS	11 ME S 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.6+009 1.5+004 4.7+001 9.9+008			
RADIUS VELOCITY I TEMP R TEMP R MFP	S 1.0+001 TY 1.1+003 F 2.2+001 F 2.2+001 P 3.0+000 P 5.8+001	RADIUS 1.0.4001 3.0.4001 5.0.4001 7.0.4001 9.0.4001 1.0.4002 VELOCITY 1.1.4003 6.9-005-3.0.4005 1.6-004-1,7-004 0.0-001 1 TEMP 2.2.4001 1.5-001 1.7-401 2.1-4001 2.0-401 2.0-401 R TEMP 2.2.4001 1.6-601 1.7-401 2.1-4001 2.0-4001 2.0-4001 P MFP 3.0-4000 1.1-4000 1.9-4000 2.9-4000 2.6-4000 R MFP 5.8-4001 4.6-4001 5.6-4001 5.8-4001 5.7-4001 5.7-4001	+ 5001 7 • 0 - 005 1 • 6 + 001 2 • 1 + 001 2 • 1 + 000 2 • 9 + 001 5 • 8	+001 9,0+00 -004-1,7-00 +001 2,0+00 +001 2,0+00 +001 2,6+00 +001 5,7+00	10 1 1 • C + O D Z 4 0 • 0 - 0 D 1 1 2 • D + O D 1 2 • D + O D 1 2 • C + O D 1 2 • C + O D 1 5 5 5 + O D 1 5 5 5 5 0 D 1			
ENERGY	ENERGY CONSERVATION	20						
	+ 22 5 1	INT ENE + KIN ENE # RHS #	# SH	INT ERE O-T BDFLUX +T SOURCE++T I+>R EX	T BDFLUX +	T SOURCE+-	T IPSR EX	
œ ↔ Þ	9.1.006	900-6*9	9.1+906	3 • 6 • 008 3 • 3 • 009	3.6+009	0.0-001 -3.2+009 0.0-001 3.2+009	-3.2+009	

SHORT EDIT TOTAL ENERGY RADIATED TO THE WALL(J)	CYCLE 180	TIME(S) 1.3746-006		DELTA 1(5) 3.9869-009	CRITERION	(TR/T) 11	ZONE	- 2	CRÎTERION(TR/T) IN ZONE (2) OTHERMISE (TK/T) IN ZONE (2)	(TR/T)	Z	ZONE	5
3 5 7 9 10 2.0-005-7.5-005 1.7-004-1.7-004 0.0-001 1.7-001 1.9+001 2.0+001 2.0+001 1.7-001 1.9+001 2.0+001 2.0+001 1.7-001 1.9+001 2.0+001 2.0+001 1.7-001 1.9+001 2.0+001 2.0+001 1.7-001 1.9+001 2.0+001 2.0+001 1.7-001 1.9+001 2.0+001 2.0+001 1.8-001 2.5+001 2.0+001 2.0+001 1.8-001 2.5+001 5.7+001 5.7+001 5.7+001 1.8-001 2.7+001 5.7+001 5.7+001 5.7+001 1.8-001 3.7+001 3.3+009 3.6+009 0.0-001 3.2+009 1.8-001 3.2+007 3.3+009 3.6+003 0.0-001 3.2+009 1.8-001 3.2+007		ATED TO THE O THE ALL CALL (J/CM3)	WALL(J)	NE COLOR	3.6+009 9.8+005 4.7+001 9.8+008								
N ENE = RHS = 6.8+006 -8-006 7.8+007	4	3.0+001 5.0+ 2.0-005-7.5- 1.7+001 1.9+ 1.7+001 1.9+ 1.7+001 2.5+	5 -001 7.04 -005 1.7 -001 2.04 -001 2.64	001 9 0+00 -004-1.7-00 -001 2.0+00 -001 2.0+00 -000 2.6+00	10 10 10 10 10 10 10 10 10 10								
+006		ENERGY CONSERVATION											
8.8+006 3.6+008 3.6+009 7.8+007 3.3+009 3.6+003 8.7+007	-	CIN ENE = RH	<u> </u>	INT ERE O-1	. BDFLUX +1	T SOURCE+	•1 I.	.×.					
			.8+004 .8+007 .7+007	3.6+008 3.3+009	3.6+009 3.6+003	0+0-001	3.2	400+					

~				
7				
ZONE				
2				
CRITERION(TR/T) IN ZONE (2) OTHEHNISE (TR/T) IN ZONE (2)				
1 S E				
0 T HEK.				
2			×	o- o-
- ω			ζ.	-3.2+009
N 0 Z			-	
ž			, F	100
TR/T1			INT E'S O-T BDFLUX +T SOURCE+-T 147R EX	0.0-001 -3.2+009 0.0-001 3.2+009
1011	P 10 = 10	1001115	+	
RITER	3.6+009 1.3+005 4.6+001 8.9+008	RADIUS 1.04-001 3.04-001 5.04-001 7.04-001 9.04-002 10-04002 ELOCITY 1.1-003-8.2-005-8.8-005 1.7-004-,6-004 0-0001 1 TEMP 2.04-001 1.94-00	3DFLU)	3.6+508 3.6+009 3.3+309 3.6+003
Ü		000000	+	4 4
	. H	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	e W	00 8 00 9
DELTA T(S) 5.9842-010		0000	u ⊨ z	3.3.
.TA 3842		7 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	=	
5 E	71.	1 2 2 2 2 5 1 5 5 1 5 5 1 5 5 6 1 5 5 6 1 5 6 6 1 5 6 6 1 5 6 6 6 6		8 1 1 0 0 6
90	7 × A	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z H	7.0
TIME(5) 1.4121-006	7 TH	n & - N N n	n	40
TIME(5)	7 HE 7 Y	1000+	Σ.	8.2-506
	1 A T E 7 D T 8 A L L	B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NOI NOI	.
	RAD TEO THE	000000	CONSERVATION INT EME + KIN ENE = RHS =	900
190	RGY DIA AT A	2.0.2.0.2.0.2.0.2.0.2.0.2.0.2.0.2.0.2.0	N SER	8 1 +006
CYCLE	ED1 ENE Y RA URE FLUX	- C M M H H M C M M M M M M M M M M M M M	0 <u>2</u>	00 ap 9
	SHORT EDIT TOTAL ENERGY RADIATED TO THE MALL(J) ENERGY RADIATED TO THE WALL ON THIS TIME STEP. PRESSURE AT THE WALL(J/CM3)	VERDOICS VELOCITY 1 TEMP R TEMP R MPP	ENERGY CONSERVATION INT EME + KI	0r +-

	CYCLE 200	11ME(S) 1.4648-00	DELTA 1(5) 06 5.2440-009		CRIȚERION(TR/T)	IN ZONE (2) OTHERNISE (TR/T) IN	(TR/T) Ih 20NE	(E (2)	
h	RADIUS (CM)	ZONE WIDTH	MASS DENS	CCMPRESSION VELOCITY (VO/V) (CM/S)	VELOCITY (CM/S)	R TEMP	ION TEMP (EV)	R PRESS	ION PRESS	ART VISC (J/CH3)
ω 	1.0000-001			000-0000-1	0.0000-001		2,27,8+001	5.8128-001	5.3979+001	1000000
~				1,000,000	1.0114-003		1.6551+001		3,7713+001	0.0000.0
ტ შ			1.10911004	1,0000+000	-1.0027-004 A 090-1006	1.8241+001	2.1072+001		4.9665+001	Z.7406-010
. ru				000+0000*1	-7,7191-005		1.8619+001		4.3352+001	4.2342=012
9	•			1,0000+000	1.4719-004		1.9375+001		4,5296+001	0.0000-001
7				1,000+000	1.7734-004		1.9037+001	5.9485-001	4.4426+001	0.0000.0
ac o	6.0000+001	1.00000+0001		1.0000+000	1.5840=004	1.8583+001	1,8920+001	5.9307-001	4,4125+001	100-0000-0
	-	1.0000+000	1.1091-004	1.0000+000	0.0000-001	1.8826+001	1.8834+001 2.5000-002	5.7365-001	100+5046.4	0.0000-001
**	RENERG	ENE	KIN ENEFGY	R SOURCE	10N SOURCE	ION->R EX	FLUX LIM	MEAT FLUX		
	()()	· \?;	()()	ر ر	- 3	- >>>	(3/CH2-5)	(J/CH2-5)		
o -			1.0926-006	0.00001001	0.000-001	-1.2451+005	1.3998+010	930400		
2				0.0000000	0.0000-001	7.6414+005	1.3955+010	-2,7568+009		
e :				0.0000.001	0.0000-001	-1+5390+006	1.4322+010	1.4530+009		
7 1				00-0000-00	0.000000	5,6936+005	1.4053+010	6.6646+008		
u -c	6.8281+005	5.34234007		0.0000-001	0.0000.00	1.2880+006	1.3936+010	-1.7775+008		
, ,				0.0000-001	0.0000.0	3.3459+004	1.3740+010	5.5784+008		
w				0.0000-001	0.0000-0	5+3036+005	1.3556+010	6.5649+008		
٥				0.0000-001	0.0000-001	1 - 1967 + 005	1.3356+010	7,7018+008		
0		2,3879+008	0.0000-001	100-0000-0	0.0000-001	2.4183+005	8.2748+008	8.2067+008		
			ENERGY CONS	CONSERVATION CHECK	UNITS	ARE (J/)				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r KE	INT ENE(0)	T BRELIX	1 1 × E	T SOURCE	BDFLLX	× 4 2 4 - 1	a jar	
	1		•					•	1	
œ 	7.4110+006 8.8398+008	6.4624-506	3,5954+008	3,5840+009 3,6265+003	3,2319+009	0.0000-001	1.0625+006	9.2043+005	0.0000-001	
			PADIATION Ion Total	7.4110+0r6 8.8398+008 8.9139+008	5 7.4110+006 8 5.9526+007 8 6.6937+007	700+ 700+				
	E DENSITY	10N DENSITY (1/CM3)	CHARGE (ESU)	ROSS MFP	RAD HFP	EGM T MFP (CM)				
- 26	1.2799+019	1.6700+018	7.8814+000 7.5172+000 7.8135+000	6.0915+001 5.2335+001	5.5451+000 9.7731-001	3.7361+000				
,					000-1057-1	000111005				

```
1.9615+09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.3746-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.6289+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.4290+09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.3088-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.8171+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5.8176+09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      9.4601-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.1802.01
2.3264+600
2.3032+000
2.3995+000
2.3716+000
2.3716+000
2.3716+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  +T SOURCE+-T I->R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  9.5992+09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7.5843-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             7.2522+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CYCLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0-001
  2,1891+000
2,0892+000
2,4161+000
2,4132+000
2,3501+000
2,378)+000
2,3546+000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ŝ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1,0000-012 (5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1,2004+10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7,7562+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.9056-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.0000-012
                                                                                                                                                                                                                                                                                                                                                         RADIUS 1.5-55; 3.0+001 5.0+001 7.0+001 9.0+001 1.0+002 VELOCITY 1.5-53-1.0-004-7.7-505 1.8-004-1.5-504 0.0-501 I TEMP 2.3-55; 2.1+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.9+001 1.8+001 1.8+001 1.9+001 1.9+001 1.8+001 1.8+001 1.8+001 1.8+001 1.9+001 1.9+001 1.9+001 1.9+001 8.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 2.1+000 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.6+009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0-T BDFLUX
                                                                                                                                                                                                                                               1.1.006
4.4.001
8.2.008
        5,6497,001
5,6291,001
5,7311,001
5,6817,001
5,685,001
5,685,001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.0453+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2.9163+10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.4245-07
                                                                                                                                                                                                                3.6+008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  11 NE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 11HE#
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WALL
        1,6700+018 7,7080+000 i
1,6700+018 7,7031+000 i
1,6700+018 7,7384+000 i
1,6700+018 7,7228+000 i
1,6700+018 7,7173+000 i
1,6700+018 7,7174+000 i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                OVER-PPESSURE* 1.6129+002 (J/CH3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8.0588+010 (J/CM2.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.7298+10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7.4+006
6.0+007
6.7+007
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.5758-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.1439.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FIRST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PROJECT: 12902
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   N
E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8.5-006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HEAT FLUX(J/CH24S)
R-0219+10 3.1694+10
0-0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRESSURE(J/CH3)
1.6126+02 7.3378+01
0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     + KIN ENE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.7079-67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HEAT FLUX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONSEC.ATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FUNID: X04326
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7.4.7.4.8
8.8.4.1.1.6
8.1.1.4.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MAX NEAT FLUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WI HA
                                                                                                                                                        1.2884+2. =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          T1ME(S)
1.8000"10
0.0000
                       1.2921+C
1.2932+:
1.2890+C
1.2898+C
1.2898+C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRESSURE
                                  1 50 4 C 8 C C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      زيه
```

•

,

1

ø

```
07
07
07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                123456789012 Z9 PAGES COST 81,30 PROJ BALANCE $69.66 X04326 901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    THE ABOVE DOLLAR AMOUNTS ARE APPROXIMATE AND ARE BASED ON RATES FOR STANDARD HUNSPROJ RALANCE
                                                                                                                                                                                                      7,1980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7,1980
                                                                                                                                                                                                 30:00:08.742
276
157322
0-170
                                                                                                   AMOUNT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                13:31:05 JAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         13:31:27 JAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            13:31:21 JAN
X04326 FIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TERMINATION TIME:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INITIATION TIME:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PREVIOUS RUN TIME:
                                                                                                                                                                                           CPU TIME
FILE I/O REQUESTS
FILE I/O WORDS
MEMORY USAGE
CARDS IN
PAGES PRINTED
SOFTWARE SUPPORT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   JOB CHARGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TOTAL COST
     13:31:27
                                                                                        ITEN
```

Table XI-1

Input Variables

<u>Variable</u>	Туре	Default <u>Value</u>	Description
JMAX	(I)		Number of spatial zones $3 \le JMAX \le 50$
NMAX	(I)		Maximum number of time steps
TMAX	(R)		Maximum problem time (s)
10	(IV)		Output frequencies IO(1) hydrodynamics IO(2) energy IO(3) mfp's and # densities IO(4) short edit IO(11) same as IO(1)-(4) except IO(12) after time TEDIT IO(13) (see TEDIT description) IO(14)
DR2B	(RV)		∆r of each zone (cm)
DN2B	(RV)		Ion number density (cm^{-3})
TN2C	(RV)		Plasma temperature (eV)
TR2C	(RV)		Radiation temperature (eV)
ATW2B	(RV)		Atomic weight (amu)

Table XI-2

Optional Input Variables

<u>Variable</u>	<u>Type</u>	Default <u>Value</u>	Description
IDELTA	I	3	Geometry = 1 planar = 2 cylindrical = 3 spherical
DTB	R	10-12	Initial time step (s)
DTMIN	R	10 ⁻¹ *DTB	Minimum time step (s)
DTMAX	R	10 ⁻² *TMAX	Maximum time step (s)
TSCC TSCV TSCTR TSCTN	R R R R	5 x 10 ⁻²	Time Step Controls - Courant $\Delta V/V$ $\Delta T_R/T_R$ $\Delta T_p/T_p$
TEDIT	R	0	If TEDIT ≠ 0 then before time TEDIT IO(1) - (4) are used and after IEDIT IO(11) - (14) are used as output frequencies.
IOBIN	I	-1	Binary output frequency written to unit 8 for postprocessing.
TGROW	(R)	1.5	Time step is allowed to increase no more than TGROW * DTB on each successive cycle.
TBC	(R)	2.5×10^{-2}	Temperature boundary condition (eV).
VBC	(R)	0.1	Specific volume boundary condition (cm^3/g) .
U1B	(RV)	0	Initial velocity (cm/s).
IRS	(1)	0	Restart calculation flag = 0 Normal calculation = 1 Restarted calculation.

Table XI-2 (cont.)

<u>Variable</u>	<u>Type</u>	Default <u>Value</u>	Description
ISW	(IV)		See Table XI-3 for definitions of these switches.
CON	(IV)		See Table XI-4 for the definitions of these numerical coefficients.
IEDIT	(IV)	-1	See Table XI-5 for the definitions of these intermediate output frequencies.
ROSS2B	(RV)	 -	Rosseland mean free path must be inputted if ISW(12)=1 or ISW(15)=1.
RMFP2B	(RV)		Planck mean free path must be inputted if ISW(12)=1 or ISW(14)=1.
RMFT2B	(RV)		Planck mean free path for $T_R = T_p$ must be inputted if ISW(12)=1 or ISW(14)=1.

Table XI-3

Control Switches

ISW	<u>Description</u>
1	 Nonlinear coefficients are evaluated using a temperature extrapolation to Tn+1/2 1* Nonlinear coefficients are evaluated using Tⁿ
2	= 10* Number of constant time steps used at the beginning of a calculation
3	Not used
4	Not used
5	= 20* Frequency of tabulation of overpressure and heat flux at the first wall
6	= 0* Hydrodynamic motion is computed= 1 No hydro motion - allows a pure temperature diffusion problem
7	= 0* No energy input
	= 1 Energy is added to the system using subroutine ARBENE
8	Not used
9	Not used
10	= l* Frequency of time step calculation
11	Not used
12	 = 0* Equation of state tables are read from unit 3 = 1 Ideal gas equation of state is used RMFP2B, RMFT2B, and ROSS2B must be inputted via NAMELIST
13	Not used

Table XI-3 (cont.)

ISW	Description
14	= 0* Planck mean free path is computed from tables= 1 Planck mean free path is computed as a constant
15	0* Rosseland mean free path is computed from tables1 Rosseland mean free path is inputted as a constant
16	Not used
17	Not used
18	Not used
19	<pre>= 0* Normal calculation = 1 If TR < CON(29) then ROSS2B and RMFT2B cannot be less than CON(31)</pre>

^{*}Denotes the default value.

Table XI-4

Real Constants Used in FIRE

CON	<u>Default</u>	Description
1	1.2175 x 10 ²	Plasma thermal conductivity
2	1 x 10 ¹⁰	Radiation thermal conductivity
3	1.03 x 10 ⁵	Radiation flux limit
4	1 x 10 ⁻⁶	Small term to avoid zero divide in flux limited radiation conduction term AA221B
5	0	If non-zero then it is used as a constant value of log Λ . Normally log Λ is computed.
6		Not used
7	4.12×10^5	Plasma emission term (radiation)
8	3×10^{10}	Plasma absorption term (radiation)
9	1.602 x 10 ⁻¹⁹	Plasma pressure
10	4.567×10^{-6}	Radiation pressure
11		Not used
12	1.602 x 10 ⁻¹⁹	Plasma pressure derivative
13		Not used
14	2.403×10^{-19}	Plasma specific heat
15	2.403×10^{-19}	Plasma specific internal energy
16	4.5778×10^{-6}	Radiation specific internal energy
17		Not used
18	1.0	Ion shock heating term
19		Not used
20		Not used

Table XI-4 (cont.)

CON	<u>Default</u>	<u>Description</u>
21	1.414	Artificial viscosity
22		Not used
23		Not used
24		Not used
25		Not used
26		Not used
27		Not used
28	1.0	If the ratio of radiation energy entering a zone by diffusion to the energy initially in the zone is greater than CON(28) then the radiation temperature of the zone from whence the radiation comes is used to compute the mean free paths in this zone (up-stream averaging).
29	1.5	If $ISW(19) = 1$ then the radiation mean free paths in zones with $TR < CON(29)$ can be no greater than $CON(31)$.
30		Not used
31	1.0	See CON(29)

Table XI-5

Description of the Intermediate Output Switches in IEDIT

IEDIT	Subroutine	<u>Variables</u>
1	ABCDEF	All, A22, Bll, Bl2, B21, B22, Cl1, C22, D1, D2, Ell, El2, E21, E22, F1, F2
2	MATRIX	AL112B, AL222B
3	MATRIX	OM112B, OM122B, OM212B, OM222B
4	MATRIX	GM112B, GM222B
5	MATRIX	AA111B, AA221B
6	MATRIX	BET12B, BET22B
7		Not used
8	TXTRAP	TR2B, TN2B
9		Not used
10	OMEGA	OMR2B, OMP2B
11	КАРРА	KARMIB, KARPIB, KANMIB, KANPIB, LAMN2B, FLIMIB
12		Not used
13		Not used
14	HYDRO	U1B, R1A, R1B, DR2A, DR2B, RS1A, RS1B, V2A, V2B, VDOT2B
15	QUE	Q2B
16	TEMPBC	T(1) → T1(9), TR2A (JMAXP1), TN2A (JMAXP1)
17		
18		
19	NUMDEN	DN2B, DE2B, DN2A, DE2A
20		
21		

Table XI-6

Input-Output Units

<u>Unit #</u>	<u>Function</u>
2	FIRE write all COMMON blocks to this unit at the end of a calculation to allow a restart
3	FIRE reads equation of state tables from this unit
4	FIRE reads the COMMON blocks from this unit at the beginning of a restarted calculation
5	FIRE reads NAMELIST input from this unit
6	FIRE write lineprinter output to this unit
8	FIRE writes binary output to this unit for postprocessing into plots.

<u>icknowledgement</u>

Partial support for this work was provided by Sandia Laboratories, U.S. Department of Energy.