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Abstract

The segregation of impurities and alloying elements to voids is
considered to play an important role in radiation-induced swelling in
structural materials. Following an earlier proposal, it is shown that
when segregation causes a small change in the elastic properties of the
material around the void, called the shell, the mechanical interaction
between point defects and the void is significantly affected. The
entire mechanical interaction contains several contributions: the change
in the relaxation energy of the point defect, the modification of its
image interaction, the long-ranged stress-induced interaction, and an
interaction due to coherency strains when segregation aiso Prbducesr
changes in the lattice parameter. A detailed discussion of all these
contributions is given.

An activation barrier for point defect diffusion is created in the
shell when its shear modulus is somewhat larger than in the matrix, or
when coherency strains are present. In the absence of the latter the
activation barrier is mainly produced by the difference of the relaxation
energies between shell and matrix, whereas the image interaction mainly
effectuates a smooth transition for the otherwise discontinuous change in
the relaxation energy. If the shear modulus of the shell is smaller than
in the matrix, a barrier is only produced by coherency strains.

It is argued that the sum of the relaxation and the image interaction
energies of a crystal defect must change in a continuous way through a
coherent interface. By virtue of this requirement, divergences and

ambiguities in the image interaction can be removed.



The exact expressions for the image interaction involve slowly
converging sums. In order to facilitate their use, simple and suffi-
ciently accurate approximations are developed for them. It enables
us to derive concise expressions for the energy barrier of the shell
and the capture efficiency of voids. Specific numerical examples are
given for this capture efficiency of voids with surface coatings or
impurity shells. It is found that the capture efficiency for inter-
stitials is more strongly affected than for vacancies. Voids with
shells become biased against interstitials. The importance of these

results to void nucleation and swelling is discussed.



I. Introduction

Current experimental reSgarch has shown that impurity and alloying
element content have a strong influence upon the swelling behavior of
metals [1,2]. This fact has'great significance for the development of low
swelling alloys to be used in structural components of future fission and
fusion reactors. To make su&h development systematic it is necessary to
understand the basis of impurity aétion. In T1ight of our current understand-
ing of swelling [3], impurities may act in two ways. First, by altering the
free migration of point defects in the material through trapping reactions
and, second, by changing the relative capture efficiencies of point defects
at sinks, such as voids, dislocations and precipitates. The former effect
has often been invoked in speculative explanations of differences in swell-
ing behavior, but has received more detailed attention recently [4]. How-
ever, we believe it is important to investigate physical mechanisms for
the latter possibility also since swelling depends so delicately on small
differences in the point defect capture efficiencies of the sinks in the
swelling material [3].

Solute segregation to void surfaces in stainless steels [5] and alumi-
num [6] has been observed. Furthermore, segregation to void surfaces is
expected to occur widely in light of observations of segregation on
virtually all free surfaces. This is thought to be due to the usual Towering
of the thermodynamic free energy of the system as well as to impurity
coupling to radiation-induced point defect fluxes of vacancies and inter-
stitials. It is important to answer the question as to what effects such
segregation may have on the efficiency with which a void absorbs point

defects and ultimately on swelling. By altering the diffusion coefficients
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of point defects near the void, a segregated layer may affect swelling.

This has been explored by Brailsford [7]. As first proposed by Wolfer [8],
a further mechanism by which a segregated layer may affect swelling behavjor
is through alteration of the point defect-void image interaction. The
purpose of this paper is to describe the results of a continued study of
this effect which was previously reported in Refs [9,10].

In the present paper we restrict ourselves to the detailed discussion
of the interaction energy of point defects with coated voids and to a compu-
tation of the void capture efficiency. This is carried out in Sections II
and III, respectively.The numerical evaluation of the void capture effi-
ciencies for interstitials and for vacancies follows in Section IV. The
results and their significance to void formation are discussed briefly
in Section V.

II. The Interaction Energy of Point Defects with Coated Voids

Segregation of solute elements, now recognized as a common phenomenon
occurring'under irradiation, produces a non-uniform composition. Since the
elastic properties depend on composition, the elastic moduli exhibit a spatial
variation also. In turn, the elastic properties affect the local formation
energy of the point defect, and in the case of a void, they also affect the
Tong-range mechanical interaction between the point defect and the void
surface. The latter interaction has been derfved previously by Wolfer and
Mansur [11] and applied to void nucleation and growth [9,10]. However,
the former effect, namely the change in the formation energy of the point
defect was not included in our previous investigations nor in
investigations by other authors dealing with problems of the image inter-

‘actionin general. It will be shown in this section that the change in



formation energy is of greater importance to the quantitative evaluation
of the void capture efficiency than the image interaction. Furthermore,
the physical basis for a surface barrier to point defect absorption at
voids is to be found in the change of the formation energy rather than the
image interaction. In spite of these differences, however, our former
conclusions [9,10] based on the image interaction alone remain qualitatively
correct.

When considering the diffusion of point defects with local concen-

trations C(f) in an elastically deformed lattice, the diffusion flux

j = -9(DC) - DC - v US (1)

contains a drift term, the second term in Eq. (1). It depends on the
spatial variation of the saddle-point energy, Us(r) of the point defect,
as indicated schematically in Fig. 1. Here, the dashed line represents
the potential energy of a point defect as it migrates in an ideal lattice,
whereas the solid 1ine shows the potential energy in a deformed lattice.
Potential energy changes between the deformed and the ideal lattice are
henceforth designated by U with a superscript S or F for the saddle-point
or the stable configuration. The particular form of the drift term in

Eq. (1) arises because of the assumption that the diffusion coefficient
for migration, D, depends on the local lattice deformation according to

the equation

p(r) = 0° expl-UM(r)/kTI (2)

where Do is the value of the diffusion coefficient in an unstrained lattice.



The change of the activation energy for migration is given by
M S F
Ui(r) = U7(r) - U (r) (3)

where UF(r) is the change of the formation energy of the point defect in
its stable configuration. The energies US and UF can be derived from the
same expressions for the interaction energy of the point defect with the
void, provided we know the relaxation volume, v, and the elastic polariz-
abilities, o, of the point defect in both its saddle-point and its stable
configuration. In reality, we must assume that these parameters are the
same for both configurations, since only those for the stable configuration

are presently known.

There are three contributions to the interaction energy, and hénce ,
to US. The first is due to the long-range mechanical interaction of the
point defect with an interface or a free surface, and it is referred to as
the image interaction UI(r). The second long-range contribution, Uo(r),
arises from the interaction of the point defect with the stress field
generated by the void itself with or without an externally applied
load. Both contributions, UI and UG, being of mechanical origin, can
be evaluated with the help of elasticity theory and with models for
point defects treating them as centers of dilation and inhomogeneous
inclusions.

The third contribution arises from the local lattice properties such
as density, composition, and e]astfc moduli. This contribution will be
referred to as the relaxation energy, UR(E), of the point defect.

In the following, we will consider these three contributions for the

case of a spherical void of radius r_ coated with a shell of thickness

S



h = Pm = ¥s whose elastic properties are different from those of the
matrix material. In the previous evaluation of the image interaction,

UE it was found [11] that the difference in the Poisson ratios for the
shell, Vg and the matrix, Vi? had 1ittle effect on UI. Hence, we assume

that Ve =V, TV, and that only the shear moduli Mg and Mo differ.

To express the image interaction UI in an exact form requires an infinite
series whichconverges stowly. Although the exact form was used earlier [9,10]
it was shown previously [11] that sufficiently accuratevapproximations can
be found which are more convenient to use.

For example, if the point defect is within a distance of a few shell
thicknesses from the interface, the image interaction of the point defect
in the matrix at a radial distance r > n from the void center can be

approximated by

ul(r) = T —1-9) 16g(1-v)° 1 3 . (4)

m'~’ "~ 4(1-v)-1+g (r-r )3 "~ 4g(1-v)-T+g (r_rs)3

m
On the other hand, inside the shell where rg Sr<res the image inter-

action can be approximated by

2r /r
I, .\ . 1 (1-g) "y m
Uo(r) & -T_1{ + - 1} . (5)
S'~ 3 3 4g(1-v)+1-g 13 3
(r-rs) (rm r) (rm rs)
In these two equations
g = u/ug (6)

and

2
- 2 1+v
-ty 7

where v and u assume the values i and My OF Vo and Mg respectively,

according to the subscript on T.



In Eq. (4), the second term represents the image interaction with the
void surface, but modified because it is transmitted through the shell,
whereas the first term is the image interaction with the interface. Simi-
larly, the first term in Eq. (5) approximates the image interaction of the
point defect with the void surface, whereas the second and third term
represent the image interaction with the interface. Eq. (5) is sufficiently
accurate for a thin shell, i.e., when (rm-rs) < org.

At both the free surface and the interface these expressions for
UI diverge, as do the exact ones. This mathematical artifact arises because
the point defect is treated as a mathematical point. In reality, of course,
its extent is of the order of the atomic radius, and the above expressions
for UI are valid only up to a distance of closest approach. This distance
of closest approach could not be determined precisely in our previous
work [9,10], and it was chosen as the atomic radius or one-half of the
Burgers vector.

By including the relaxation energy into the analysis, it is now
possible, as shown below, to determine the distance of closest approach
from the requirement that the strain energy of the point defect change
continuously and monotonically when crossing an interface.

The strain energy associated with a point defect far away from external
surfaces or interfaces is determined by the relaxation of the surrounding

atoms upon creation of the defect. According to Eshelby [13], this so-called

relaxation energy or self-energy can be written as

+vw v _ 81 T , (8)

where Q@ is the atomic volume.



The total strain energy of the point defect is now the sum of UR and
UI. It is now argued that this total strain energy (UR+UI) must be a
continuous function even in a heterogeneous medium. We can rationalize
this by considering first a heterogeneous material with no sharp inter-
faces, such as a spinoidally decomposed alloy. Although the strain energy
associated with a defect varies with location, it does so in a continuous
and smooth manner. Next, we suppose that the spinoidal decomposition
leads finally to a formation of a new phase in the form of coherent pre-
cipitates. As the new phase emerges gradually from the spinoidal concen-
tration variations, the strain energy remains always a continuous and
smooth function.

R4 UI) change ~

Based on this reasoning, it is required that (U
continuously across any coherent interface, and in the extreme, even
across a free surface. It will become evident shortly that this requirement
also ensures the monotonic change of (UR + UI). Furthermore, it will enable
us to determine in a consistent and clearly defined way the distances of
closest approach, up to which the expressions for UI are applicable. Let
us first apply these ideas to the free void surface. As the point defect

reaches this surface its total strain energy disappears, and it is dissipated
as thermal vibrations of the surrounding atoms. We may imagine that
the defect energy is zero inside the void.

The distance of closest approach, do’ to the void surface is then

defined by the condition

R I _
Us + Us(rS + do) =0 . (9)



Using Egqs. (8) and (5), we obtain

Q » 8m (1-g) Q
g? R ) 4g(1 -v)+1-g h (10)
0
where
h = rm - rs amn

is the shell thickness. To obtain the Eq. (10), it was assumed that
o~ Vs - d0 g crg s h and that (rS + do)/rm Z 1. When the shell
thickness is greater than a few atomic distances, then Q/h3<<1, and the
last term in Eq. (10) can be neglected. One obtains then the distance

of closest approach to a flat surface on a homogeneous material, namely

[13]

Next, we determine the distance of closest approach, d, to the inter-

face in a similar fashion. Accordingly, we require that

R I _ R I,
Um + Um (rm+d) = US + Us(rm d) , (13)

where Ug and UE are the relaxation energies in the matrix and shell,

respectively. Upon using the expressions in Eqs. (4), (5), and (8), and
solving Eq. (13) for d, a rather lengthy formula is obtained. We may
simplify it by neglecting terms of the order of Q/h3 and of order d/h.

The result can then be written in the form

= ]+\) ]'g S ]/3
4% @ g | r T | lagr=yr=s * o)l (14)



A note of caution is in order here. The equation cannot be used for the
pathological case where Fs'= Fm and g # 1, because the terms of order
Q/h3 can no longer be neglected. However, for the case with g = 1 (or

e = um), Eq. (14) does predict the correct result, namely d = 0.

The significance of the results obtained is demonstrated in Fig. 2
for a case, not believed to be typical of coated voids, but chosen for
a clear illustration of the concept of a surface barrier. The shear
modulus of the shell is taken as Mg = 2um, and the relaxation
volumes are selected to be equal, Vg = Vs SO that FS = Fm/g. The solid
line in Fig. 2 represents the total strain energy (UR + UI) of the point
defect. The dotted lines are the total strain energies (Ug + Ué) and

(UE + Ué), representing the two cases of uncoated voids in materials with

shear moduli Mo and Ho» respectively. Here, Ué

is the image interaction
for a bare void. The plateau in the vicinity of the interface is a result
of the self-consistent procedure to find the distance of closest approach.
It is an artifact which arises because the interface is treated as a
mathematical surface and the point defect as a mathematical point. The
conjectured physical behavior of (UR + UI) is indicated by the dashed line.
The presence of this plateau has no effect on the void capture efficiency,
however, as will become evident in the next section.

As this example in Fig. 2 shows, the image interaction alone does not by
itself produce the surface barrier. Rather, it is the difference in the

5 - Uﬁ, which is the primary cause for the surface

relaxation energies, U
barrier. The image interaction close to the interface merely produces

a gradual transition for the otherwise discontinuous jump in the relaxation
energy UR. Furthermore, the image interaction Ué with the bare void

smooths out the jump from UE to zero at the void surface.
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It is now obvious from this discussion that a soft shell, with
R R

Mg < W and Us < Um’ produces no surface barrier, in contrast to previous
results based on the image interaction alone [9,10,11].

The illustrative example of Fig. 2 suggests further approximations
which will be convenient for the subsequent evaluation of the void capture
gefficiency. The total strain energy (UR + UI) can be divided into a Tong-
range part upon which is superimposed a short-range "shell barrier" which
we approximate by a constant value AU°.,

The long-range part is nearly identical with the image interaction
of a bare void, Ué. Its exact expression is again given in the form of
an infinite series. For convenience, however, we develop a simple approx-
imate expression in the following way. At large distances r from the

6

void center, Ué hasan - r = leading term. Atdistances close to the void

surface, Ué is proportional to (r—rs)'3. We combine these two extremes

in the following form

T
I ~ m r 3,75 ,r -1
Uo(r) = - _§'{(F;" 1)° + _35_'(F;" 1)6} . (15)
S

The comparison between this approximate form and the exact one for Ué in

Fig. 3 demonstrates the good agreement.

For the short-ranged part we replace the spatial variation of the

shell barrier energy

R

_ R
AU(r) = US

- UR +Ui(r) - Ul (r) (16)

by a constant value AlC. Since AU/kT appears later on in an exponential

whgn computing the capture efficiency, we choose the maximum value of
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AU(r) as the effective barrier height al®. If we further assume that

h<<rs, Eg. (5) can be written as

Ur) = -r_{ - £ 17
s S rr )’ " Ag(T-v)+T=g [(rm‘”)3 31 (17)

and Eq. (15) as

IR

Up(r) = -1 /(rr )3 (18)

By solving the equation dAU/dr = 0 we find that the maximum of AU

is located at re + p, where

o = hy/(1481/%) (19)
and
g (-9 Ts
4g(1-v)+1-g T .-T (20)

The maximum value of AU is given by

(r

-T ) 4
AP = AU(rgtp) = —S {fﬁL - i%-[(1+31/4) - 28] . N

The first term represents the difference in the relaxation energies UE

and Ug, while the second one is due to the difference in the image inter-

actions ug and ué within the shell.

In the following, we assume that the difference in the relaxation
energies is only due to the differences in the shear moduli. Then,
l"m/l“S = g, and

r

4
W= - g - ﬁ%-[(1+s‘/4) - 281} - (22)
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with
= 1/[4g(1-v)+1-g] . (23)

Using the parameters listed in Table 1 and Eq.(7),(ﬂ/vJ2AU° can be com-
puted according to Eq. (22). The results are shown in Fig. 4as a function
of (1-g) and for different values of (h3/ﬂ). For a modulus difference
of only 2% and for the relaxation volumes given in Table 1, we find that
the shell barrier is about 0.2 eV for the interstitial, and 0.004 eV for
the vacancy.

Also shown in Fig. 4 is the image interaction Ué atr=r_+p,

S
which is given by

3
Ub(rto) = -1 /0% = - 1 (18T (24)

It is seen that Ug is small in comparison with AU® when h3>>ﬂ. Never-

theless, because of the long-range action of the image interaction Ui,

it is found to play an important role in the void capture efficiency.
There can be two more contributions to the barrier inside the shell.

The first one arises from coherency strains if a lattice parameter mis-

match existsbetween the shell and matrix materials. If the lattice

parameter in the shell 1is greater by Aa, the point defect changes its

energy in the shell by the .additional amount

AuC = 2ug J*Q; v.§ for ro<r<r . and (25)

where § = Aa/a. This expression, as shown earlier [11], is exact.
The second contribution stems from externally applied loads and loads

generated by the gas pressure p inside the void and by the surface tension
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Table 1. Parameters Used for the Void Capture Efficiency
Parameter Symbol Value
Shear Modulus Mo 10° MPa
Surface Stress o 0orl J/m2
Burgers Vector b 2.5 x 1071%
Atomic Volume Q b3
Poisson's Ratio v 0.3
Relaxation Volume
for interstitials Vi 1.4 Q@
for vacancies Vy -0.2 @
Shear Polarizability
for interstitials o 2.4 x 107V g
for vacancies “S 2.4 x 10718
Temperature T 300, 450, 600°C
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ZGS/rS, where O is the surface stress. This contribution may be inter-
preted as being due to the stress-induced coherency strains. For the
case wherethe external loads produce a purely hydrostatic stress Ohys this

contribution can be written as [11]

30,(1-)+(1-9) (149} (p=25 /1 ) (r /1)
39(1-v)+(1-9) (1) (1-r3/r)

o = -

. (26)

Further simplification of this expression is possible when h<.<rS and

Vi = vS = v. Then

20
oz (1L v s |
AT B (l—g)v{cH + T— ( . p)l . (27)
The total shell barrier is now given by
A=A AUt e a® (28)

and it constitutes a suitable approximation to the change of the total
interaction energy of a point defect with a void as caused by the presence
of a coating with different shear modulus.

Finally, there remains to be added to the long-range image interaction
Ug(r) a stress-induced interaction U°(r). This long-range contribution was
derived previously [14] for an arbitrary triaxial stress as generated by
external loads. The general results obtained indicated, however, that
the effect of the deviatoric stresses on the void capture efficiency is
small in comparison with the effect of the hydrostatic stress. Hence,
it suffices to use the expression derived for hydrostatic loading only,

and it can be written as
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G 6 20
C(r) = Ly (2) (o + b +uy, 6 - 757 (29)
8, s

where uG is the shear polarizability of the point defect.

We summarize this section by stating that the total interaction
energy of the point defect as it enters the drift term in Eq. (1) is
given by

S

(30)

*
AU+ Ué(r) + U9(r) forr_<r < r
Ui(r) = { }

I o
Uo(r) + U (r) for r >r.

This form of Us(r) is employed in the subsequent development of the void

capture efficiency.

III. The Void Capture Efficiency

The void capture efficiency can be obtained by solving the steady-
state diffusion equation ¥V + j = 0. It was shown earlier [8] that for a
spherically symmetric interaction US(r), the capture efficiency (or bias

factor) for a void is defined as

2° = {f]d(r /r) expLUS(r)/kT]}"]
J dlrg pLUS(r)/kTI}™" (31)

The integration can be split into two parts, one over the region of
the shell, and one over the matrix region. Accordingly, we write for the

integral in Eq. (31)

* ! I o]
exp(AU /kT) | d(rs/r) exp[(U0 + U”)/kT]
1/n
1/n

+ ] d(rg/r) expl(Ug + U7)/kTD
0
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where

“1/n = 1/(1+h/rs) 21 - h/rS . (32)
We may further write this as

V(e /v exoL(u] + 1)/kT]
£ r./r) expl(U;

. 1
+ [exp(aUT/KT) - 11 f d(r/r) exp[(Ué + U%)/kT]
1/n

The integrals contain only the long-range portions of the interaction.
Therefore, the first integral is simply equal to 1/Zb, where Zb is the
capture efficiency or bias factor of a bare void without a shell. Accord-

ing to previous work [8,14], Zb is given by

G 20
b - '|/3 3 a
z 1+() 3 (o +p+u6———) . (33)
kT " 56 usz H rs

The short-range or shell contribution to the bias is given by the second

integral. It can be written as

f d(r./r) exp[(Ué + U9)/kT] 2 %l-exp[UYKT] , (34)
1/n S

where U is an appropriate average of Ug + U over the shell thickness.

Since (Ug + Uo) is a monotonically decreasing function as the void

surface is approached, its average U coincides with the exact value

at a certain location with the shell. In the context of the above

approximations, we may select for U the value of the interaction at

r = rs + p. Hence,
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=1
U= Uglrg +0) + U(rg + o)
r G 20
i Rt AL R ok (35)
P 8um S

where terms of order (p/rs) in U° can be neglected because h<<rs.

We arrive then finally at a simple expression for the void capture

efficiency:

2% = (Lo D aun(T/kT) [exp(at™/kT) - 1737 (36)

Zb rs

Similar forms have been proposed earlier [8,10].
The equation (36) incorporates both cases for diffusion-limited as
well as for surface-limited reaction rates. The former is obtained in

%*
the absence of a surface barrier, i.e., for AU = 0. In this case,

2° = 7P,

The surface-limited reaction rate is obtained when (1/Zb) is
negligible compared to the second term in Eq. (36). In this case, z°

becomes proportional to r_, and since the defect current into the void

s
is proportional to Z°4ﬂrs, the current is indeed dependent on 4wr§, the
total surface area of the void.

IV. Results

For the numerical evaluation of Eq. (36), the parameters listed in
Table 1 were used. They are considered to be applicable to nickel and
to austenipic stainless steels. The chosen temperature range, from 300
to 600°C, covers the range where swelling occurs in a fast neutron flux.

In the following figures we show the ratio of the void capture

efficiencies for interstitials and vacancies, i.e., Z?/Ze, as this is the
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appropriate quantity for both void nucleation and void growth theories.
This capture ratio depends on the void radius, rS/b, the shell thickness,
h/b, and the fractional difference in shear moduli, 1-g.

For a shell which is two atomic layers thick, i.e., for h = 2b,
Fig. 5 shows the void capture ratio as a function of the void radius and
for different values of (1-g). The band labelled with 1-g = 0 represents
this ratio for the bare void in the temperature range from 300° to 600°C.
Furthermore, it was assumed that the surface stress Ogs the gas pressure.
p, the external hydrostatic stress Oh» and the lattice mismatch § are
all zero. In this case U is independent of the void radius and relatively
small. Therefore, when rS/h is small, the surface barrier effect is
dominant, and the void capture ratio is much smaller than one for (1-g)

> 0.04. However, as r_ increases the barrier effect diminishes, and the

S
void capture ratio approaches unity. In general, we see from Fig. 5
that the effect of the barrier increases dramatically with only modest
increases in the shear modulus of the shell. In fact, the increase in
shear modulus relative to the matrix need be no more than a few percent.
The shell thickness (h/b) causes a similar reduction in the void bias
ratio, as seen in Fig. 6. Here, as in the example of Fig. 5, the parameters
Ogs P> Oys and § are all zero, and 1-g = 0.01.
If we now assume that a surface stress exists of value oy = 1J/m2,
the stress-induced interaction counteracts the surface barrier when
the voids are small. This is shown in both Fig. 7 and Fig. 8. In the
case of Fig. 7, h = 2b, and (1-g) is varied, whereas for the case of
Fig. 8, (1-g) = 0.01 and h/b is changed. In contrast to the corres-

ponding results of Figs. 5 and 6, we see that for very small vacancy



19

clusters the long-range stress-induced interaction dominates the void
capture ratio. The reason for this can be found in the energy U. According
to Eq. (34), U becomes increasingly negative with decreasing re when
o # 0 because a? is negative. As a result, the second term in the
bracket of Eq. (36) becomes small, and the void capture efficiency:
approaches the expression Zb for a bare void.

| Since impurity segregation to surfaces and to sinks is the likely
cause for the formation of a void shell it is reasonable to assume that
during nucleation the void shell increases its thickness in proportion

to the void radius rs. In order to model this, we assume that
h=b+fr (37)

where f is a fractional number smaller than one. For f =0, or h = b, one
obtains essentially the same capture efficiency as for the bare void.

The first term in Eq. (37) was only added to avoid numerical difficulties
when f approaches zero.

For a void shell with a thickness increasing with the void radius, the

void capture ratio is shown in Fig. 9 for the case of T = 450°C and (1-g)
= 0.05. Initially, this ratio follows the onekfor the barg voids when the
void radius or the shell thickness is small. However, when the shell
_thickness has grown to two atomic layers the void capture ratio decreases
rapidly with increasing radius. This transition from diffusion to
surface-reaction controlled growth is shifted somewhat when (1-g) is
varied, as shown in Fig. 9. Here, the fraction f was assumed to be

0.1 (and T = 450°C).
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V. Discussion

Segregation of impurities or alloying elements to a vacancy cluster
or embryonic void has been shown to have a profound effect on the capture
efficiencies for interstitials and vacancies. When the segregation leads
to a shell with a shear modulus only slightly higher than in the surround-
ing matrix, the void becomes a highly preferential sink for vacancies. It
not only loses its preferential capture efficiency for interstitials,
but it becomes biased against interstitials.

This reversal of the "void bias" has important implications for void
nucleation as mentioned previously [9,10,15]. In the absence of a void
shell, the image interaction Ué causes the void to preferentially capture
interstitials. Void nucleation without the assistance of insoluble gases
is suppressed. Nevertheless, there exists a subcritical population of
void embryos during irradiation. Only those embryos which acquire a shell
will grow to supercritical size. Therefore, void nucleation is deter-
mined by the rate of segregation to the subcritical void embryos. Of
course, the segregation must produce a shell with slightly higher shear
modulus. If the shell had a lower shear modulus, the void embryo would
eventually disappear again as a result of the preferential interstitial
capture.

One of the important conclusibns which transcends the particular
theme of this paper is that one must add the relaxation energy UR of
the crystal defect to its mechanical interaction energy in order to
obtain the total mechanical energy. In a stress free crystal, this
energy can be written as the sum of two parts, UR + UI. The image inter-

action UI is in effect nothing else but the change in the relaxation energy



21

when the defect is Tocated close to a free surface or an interface, so
that (UR + UI) is the Tocal relaxation energy. The recognition of this
fact has three important implications which we believe are also valid

for other crystal defects, e.g., dislocations.

First, the total energy changes continuously and monotonically when
the defect traverses a coherent interface between two media with different
elastic properties. No discontinuity or oscillatory variation accurs
at the interface.

The second implication is that the singularity in UI

at the interface,
being a mathematicalartifact, can be removed by introducing a cut-off
distance‘measured from the interface or the free surface, beyond which the
image interaction UI is valid. By virtue of the requirement for monotonic
change of (UR + UI), this cut-off distance can be uniquely defined.

The third implication pertains to the question of how distinct a
coherent interface must be in order to give rise to an image interaction

ul.

As we have shown, the image interaction simply creates a gradual
transition of the total relaxation energy (UR + UI) for a sharp inter-
face. On the other hand, if interdiffusion produces a gradual transition
from one medium to the other, the relaxation energy UR would by itself
change gradually. Hence, we can conclude that regardless of the sharp-

ness of the interface, the total relaxation energy (UR + UI

) always

changes gradually, either because of UI or because of a continuous change

in alloy composition. As a consequence, the derived results for the capture
efficiencies of coated voids remain essentially valid even if the void shell
region does not clearly distinguish itself from the matrix material by a

sharp interface but rather by a gradual concentration gradient of segregated

impurities.
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We have mentioned in Section II that the activation energy for defect
migration, UM, may also be a function of position. In fact, we have
included this effect in our analysis through Eq. (2), but only derived
changes in UM of mechanical origin. There may be other factors which
contribute to a change in UM. For example, there may exist a binding
energy between vacancies and impurity atoms segregated to the voids, and

M

U" may be enhanced by AUM within the void shell region. By virtue of

Eq. (3), we may include this effect by enhancing U and thereby increase

M. Therefore, our Eq. (36) also encompasées the alteration of

AU* by AU
the diffusion coefficients near the void.

Segregation of impurities is not only restricted to voids, but takes
place at all sinks. The dramatic effect this segregation has on the void
capture efficiency leads us to suspect a similar effect on the dislocations
and dislocation loops. The present analysis should be helpful in guiding

future attempts to solve the more difficult problem of the capture effi-

ciency of dislocations decorated by impurity clouds or precipitates.
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POTENTIAL ENERGY
) OF A POINT DEFECT

SADDLE - POINT
CONFIGURATIONS
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Fig. 1. Potential energy variation of a migrating point defect in an
ideal (dashed curve) and an elastically deformed (solid line)
lattice.
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