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The Effect of Nonlinear Elasticity on the

Capture Efficiency of Dislocation Loops

W. G. WOLFER and A. SI-AHMED
Nuclear Engineering Department
University of Wisconsin
Madison, Wisc. 53706 U.S.A.

Nonlinear elasticity is shown to produce a difference in the
capture efficiencies of interstitial and vacancy type loops. Such
a difference is a necessary, though not sufficient, prerequisite for
the simultaneous formation of both types of loops during irradiation.

During irradiation of metals with energetic particles interstitials
and vacancies are produced in equal numbers. They also recombine in
equal numbers, and if it were not for the preferred capture of inter-
stitials at dislocations an equal number of vacancies and interstitials
would also be absorbed on the average at each of the sinks. If this were
the case, such phenomena as void swelling and irradiation creep would
hardly occur. However, due to the stronger interaction of the interstitial
versus the vacancy with the stress field, the current of interstitials
to a dislocation is somewhat larger than the current of vacancies, provided
the vacancy excess not captured by the dislocation is absorbed at another
sink with Tess or no preferred capture efficiency for interstitials. Hence,
a net segregation of interstitials and vacancies requires the presence of
at Teast two types of sinks with different capture efficiencies.

If well-annealed metals are irradiated at temperatures above the
vacancy migration stage, dislocation loops are formed rapidly and abundantly.

By virtue of their preferred capture for interstitials, the Toops are



commonly believed to be of the interstitial type. Although this has been
confirmed experimentally [1], the simultaneous presence of both inter-
stitial- and vacancy-types has also been reported [2-7]. Whereas the
formation of vacancy-type loops appears to be restricted to temperatures
close to the onset of vacancy migration and to Tow doses for most metals,
exceptions are Ti [8], Zr [9] and its alloys [9,10]. Here, the formation
of vacancy-type loops is profilic, but void formation is virtually absent.

The simultaneous growth of both loop types represents so far a paradox.
If Toops have a sufficiently large diameter, they may be viewed as curved
edge dislocations, and therefore, the capture efficiencies of interstitial-
and vacancy-type loops must be the same. Calculations by Wolfer and
Ashkin [11] for infinitesimal loops have again revealed no difference in
capture efficiencies. Up to now only the stress fields according to Tinear
elasticity have been used in deriving capture efficiencies. In the present
paper it is shown that a difference in the capture efficiencies between
interstitial- andvacancy-type Toops arises for small and medium Toop sizes
when second-order elasticity corrections are taken into account.

A rigorous demonstration of this fact would require the execution
of three laborious tasks. First, the strain field of a dislocation Toop
would have to be computed according to non-linear elasticity theory.
Second, with these finite strains one would have to derive the interaction
energy with a point defect. Finally, the gradient of this interaction
energy would enter as a drift term into the diffusion equation, which
one would need to solve to obtain the point defect current to the
dislocation loop. At the expense of mathematical rigor, we prefer a

heuristic, but simple approach based on the following physical arguments.



The strain field of a prismatic dislocation Toop as computed from
linear elaticity is substantially in error close to the dislocation core.
This means that a large discrepancy exists between the local Burgers
vector (defined in the real lattice) and the ideal Burgers vector
(defined in the perfect lattice) when the loop radius is small. Since
the Tinear elastic strain field of the dislocation loop is proportional
to the Burgers vector, we can simply account in an approximate manner for
non-linear effects if we use some measure of the local Burgers vector in
the strain field expressions obtained from linear elasticity. Such a
measure, henceforth called the apparent Burgers vector, can be obtained
in the following manner.

It is well known that second-order elasticity effects are the cause
of density changes of crystals containing dislocations [12]. Seeger and
Haasen [13] have shown that the volume expansion 6Vd produced by edge
disTocations is given by
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where v is the Poisson's ratio, K and G the bulk and shear moduli, dK/dp
and dG/dp their pressure derivatives, and Ed the strain energy associated
with the edge dislocation as calculated from linear elasticity theory.
Based on the arguments presented by Holder and Granato [14], Eq. (1) may
also be used to compute the, volume expansion avl of a prismatic loop if

we replace Ed by the strain energy of the 1loop,
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Here, b0 is the Burgers vector, " the core radius, and R the loop radius.
By the insertion or by the extraction of a circular platelet of atoms, the
interstitial- or vacancy-type loop can be created, and the associated total

volume change, called loop volume, is simply

v, =+ wRZbO FoV, =t R%b(R) . (3)

The plus (minus) sign holds for the interstitial- (vacancy-) type loop.
Linear elasticity gives a loop volume equal to inzbo. With second-order
elasticity effects included, we may ascribe an apparent Burgers vector
tb(R) to the loop so as to reproduce the correct loop volume VQ with the
same expression. Since GV2 is approximately proportional to R, the
apparent Burgers vector b(R) approaches bo for Targe R. Equation (3)
together with the Zener formula (1) predicts loop volumes in good agree-
ment with computer simulation results reported by Dederichs et al. [15]
for small interstitial-type loops in fcc metals.

The apparent Burgers vector b(R) can now be used instead of b0 in
previous expressions for the capture efficiency of loops [11,16]. These
expressions as well as those for the capture efficiency of edge disloca-
tions [17] have revealed that the capture efficiency (or bias factor)
depends on the relaxation volume of the point defect and the Burgers
vector b0 of the dislocation or loop. Instead of using these previous
expressions we employ here a simple interpolation formula for the capture
efficiency which reproduces both results for the infinitesimal loop and

the straight edge dislocation.



This formula is based on a recent result by Seeger and Goesele [18]
for the point defect current to a circular loop,

4ﬂ2R

J = m D(C-Co) . (4)

Here, a is the dislocation pipe radius or the minor radius of the toroidal
sink surface, D the diffusion coefficient, and ¢® the concentration of point
defects in local thermal equilibrium with the sink. Eq. (4) does not con-
tain the effect of the long-range mechanical interaction on the current.
However this effect can be modeled by replacing the pipe radius a by a
capture radius ¢ > a. Alternatively, we can define a capture efficiency

or bias factor [16] by
Z = 4n(8R/a)/An(8R/c) (5)

with which we multiply the r.h.s. of Eq. (4). The radii a and ¢ are
determined by matching Eq. (5) to the results of the infinitesimal Toop
and of the edge dislocation. Two sets of values (ai = 8 bo’ C; = 20 bo)
and (aV = 2.7 bo’ c, = 3.5 bo) are thereby obtained for the capture
efficiencies Zi and ZV for interstitials and vacancies, respectively.
When based on linear elasticity, the ratio Zi/zv is the same for both
loop types. It is shown as the dashed curve in Fig. 1.

Based on the arguments given above we can include second-order
elasticity effects by replacing in the definition for the capture radius

¢ the Burgers vector bO by its apparent value b(R). In so doing, two

different curves of Z1./ZV are obtained for the interstitial- and the
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Fig. 1. The ratio of interstitial and vacancy capture efficiencies as

a function of the dislocation loop radius.
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vacancy-type loop. As seen from Fig. 1, however, the curves converge
to one for large loop radii. The results given in Fig. 1 are for Ni and
a temperature of 500°C. Similar results are obtained for other metals
and temperatures.

Since there exists a bias difference between an interstitial- and
a vacancy-type loop of equal radius, both types can indeed coexist, pro-
vided no other abundant sink is present whose capture ratio Zi/zv falls
below that of the vacancy-type loop. Such favorable conditions are ex-
pected to occur only in metals with a low 1ine dislocation density and prior

to the onset of void nucleation.
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