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Abstract

In order to find the dislocation mechanisms responsible for
radiation-induced creep, experiments on single crystals are proposed.
Three possible mechanisms are considered: stress-induced preferential
absorption of interstitials at Frank loops (SIPAL),or at edge disiocations
(SIPAD), and climb-controlled glide of dislocations (CCG).

The dependence of radiation-induced creep on the single crystal
orientation is derived for face-centered cubic materials. It is shown
that each mechanism gives rise to a distinct orientation dependence,
and specific examples are worked out for uniaxial tension and for torsion
of bar specimens. In addition, we discuss briefly the significance of

single crystal irradiation creep to polycrystalline behavior.



§1. INTRODUCTION

‘Radiation-induced creep of non-fissile cubic metals has become the
subject of a growing experimental effort in recent years in connection
with the development of nuclear breeder reactors (Harris 1977, Gilbert et al.,
1977). As a consequence, this has also spurred the interest in the
physical basis of this phenomenon, and several mechanisms have been pro-
posed. Among these, the stress-induced preferential absorption (SIPA)
of interstitials at dislocations has been discovered recently (Heald and
Speight 1974, Wolfer et al., 1976, Wolfer and Ashkin 1976) as a viable
mechanism for irradiation creep, whereas mechanisms based on dislocation
glide have been considered in many variations over the years.

The SIPA mechanism produces the creep deformation through the climb
of dislocations and the growth of dislocation loops, and it yields in
a natural way a linear stress dependence of the creep rate. In contrast,
models based on dislocation giide exhibit various stress-dependencies,
including linear, according to. the specific assumptions made on the nature
of the glide obstacles (Wolfer and Boltax 1973). The experimental evidence
clearly favors the linear stress dependence, although non-linear relation-
ships have occasionally been reported.

In order to elucidate further the mechanistic aspects of irradiation
creep, it appears that experiments on single crystals offer great promise.
Accordingly, it is the major goal of this paper to present the irradiation-
creep relationships for face-centered cubic (fcc) single crystals as based
on three mechanisms: SIPA for faulted dislocation loops, SIPA for edge

dislocations (or unfaulted loops), and climb-controlled glide (CCG). The



results to be reported show that each mechanism gives a different depen-
dence of the irradiation creep rate on the crystalline orientation, and
consequently, measurements on single crystals should reveal to what
extent each mechanism contributes to the deformation.

Apart from the basic interest in this question, it may also be of
practical importance. We name two examples. It has recently been demon-
strated (Bloom and Wolfer 1978) that irradiation creep has a beneficial
effect on creep rupture times, presumably because the deformation within
the grain diminishes grain boundary sliding and the concurrent formation
of grain boundary cavities. For this to be effective, the irradiation
creep properties should not vary drastically from grain to grain. This
requirement is not satisfied if faulted loops contribute predominantly
to irradiation creep. It appears that some alloys under development
for greater swelling resistance do evolve under irradiation a dislocation
structure dominated by faulted loops. Based on the above arguments,
these alloys are expected to develop adverse ductility properties.

Another consequence of the effect of crystal orientation on irradiation
creep has been investigated recently (Wolfer 1978). It was shown that when
grain to grain variations exist for irradiation creep, a polycrystal ex-
hibits anelastic effects upon load changes. Hence, upon load removal, some

of the irradiation creep strain recovers if the irradiation is continued.

§2. STRAIN RATE TENSOR DUE TO CLIMB
The dislocation structure of fcc metals irradiated at reactor temper-

atures consists of faulted interstitial loops, perfect interstitial loops,



and network dislocations. The latter two have <110> Burgers vectors,
whereas the former possess <111> Burgers vectors. With regard to climb,
we can treat the edge components of both perfect loops and network dis-
Tocations as one type of sink, henceforth simply called edge dislocations.
We label the 12 possible Burgers vectors of edge dislocations in an fcc
lattice by a superscript m, i.e., by Qm. Similarly, the four possible
Burgers vectors of faulted loops are denoted by Pn.

The preferential absorption of point defects at both edge dislocations
and faulted loops causes climb, which in turn results in a macroscopic

strain rate expressed by

4
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Here, 2 is the atomic volume, Nn the number per unit volume of loops with
Burgers vector Pn, and J? and JC are the currents of interstitials and
vacancies to one loop. Similarly, in the second term, P is the edge
dislocation density with Burgers vector Em, and JT,V are point defect
currents per unit length of the dislocation. With regard to the Tine
direction @ of the edge dislocation, it is assumed that all directions
occur with equal probability. Since g must be perpendicular to Em’ the

integration over all directions of & is restricted as expressed by the

§-function in the second term.



The net flow of atoms to a dislocation loop is given by

n -
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The similar expression
m m d
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gives the net flow of atoms per unit length of an edge dislocation.
Here, CV and CI are the average concentrations of vacancies and |
interstitials, respectively, and DV and DI the corresponding diffusion
coefficients. R is the Toop radius,2d the average distance between
dislocations, and a is the core radius.
The vacancy concentrations in equilibrium with loops, Cc, and
edge dislocations, CV’ depend on the stress and the orientation of the

corresponding Burgers vector by a factor
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where Oij = Oij -3 Gijckk . (17)

is the deviatoric stress tensor, and repeated indices indicate a
summation. As indicated in Eq. (14), a linear expansion in the stress
suffices for the following analysis since oR/kT << 1 for all practical
purposes.

The bias factors for both loops, Zz, and edge dislocations, Zd,
are functions of the deviatoric stresses. According to perturbation
theoretical calculations (Wolfer and Ashkin, 1975, 1976) these bias

factors can be written as
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where v is Poisson's ratio.

The stress-free bias factors Zg(o) and Zd(o), the term SZd(ckk)
% d

induced by the hydrostatic stress, and the parameters ¢” and 7 were
derived previously (Wolfer and Ashkin, 1975 and 1976), and they need not
be specified explicitly for the present purpose.

If we insert now the expressions for the bias factors, Eqs. (18) and
(19), and the stress dependence factor for CC and Cc, Eq. (16), into Eg.

(13), we find that the total strain rate tensor can be written as a sum

of three terms,
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Here, é.. is the irradiation growth rate tensor, elg the irradiation creep
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This interpretation is suggested by the definitions for

tensor, and e.: the thermal creep tensor.
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which is independent of the deviatoric stress, but does contain terms

dependent on the hydrostatic stress Ok On the other hand, both creep
-+ IC «TC

tensors, eij and e, i

between these two contributions to the total strain rate can be made uniquely

, are linear in the deviatoric stress. A distinction

by the requirement that égg be independent of the radiation-enhanced point
defect concentrations CV and CI. This leads to the definition for the

thermal creep rate tensor

4
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which is a generalization of the Nabarro creep mechanism (Nabarro 1967).

The irradiation creep rate tensor is then the remainder, and it is

given by
ol - g § N 4nR {s7%(5)D.C, - 62%(5)D,[C, - ct11bTp"
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In the above expressions, C% and CS are vacancy concentrations in thermal
equilibrium with loops and edge dislocations, respectively, when the devi-
atoric stress is zero. However, both quantities depend on the hydrostatic

stress through a multiplicative factor exp (ckksz/BkT).



It is easy to show that the irradiation growth rate tensor éij
becomes isotropic only when the loop parameter Nan is the same for all
four habit planes, and when the dislocation densities o for all climb
systems are equal. In such a case, there exists no preferred Burgers-

vector, and gij ~ aij' For the following, we shall only treat this case.

§3. IRRADIATION CREEP DUE TO FRANK LOOP GROWTH
The first term in Eq. (23) gives the contribution of the Frank
loops to the irradiation creep rate according to SIPA. We shall refer to
this contribution as SIPAL creep. For the case of no preferred Burgers

vector, we find that

-IC “nentnen.,
1J nz b b" bkb2 K (24)

The sum is most conveniently evaluated in a cartesian coordinate system
whose axis coincide with the <100> directions of the cubic lattice.

In this coordinate system we denote the deviatoric stress and creep rate
o .

1J Jj
normal to the loop habit planes, are listed in Table 1, and the deviatoric

tensorsaS(J and e1 , respectively. The unit Burgers vectors, being

stress components normal to the loop planes are given in Table 2. It is

then easy to show that

o} 0
0 20y, 204

n _ 4 0
X b b bkb2 kQ §- 26 0 2023 (25)
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Table 1
Unit Burgers Vectors for Frank Loops
in a fcc Lattice
n ] 2 3 4
/3 B? 1 -1 1 1
/§'Bg 1 1 -1 1
_"n
V3 b3 1 1 1 -1
Table 2

The Deviatoric Stress Component

A/\~0
bkbzckz for Frank Loops
Habit plane
index? n 1 2 3 4
3 rnpn. 0,0,0 0,0 _0 0_0,0 0 _0 _0
2 DkPeika | 91279237931 | 01219237931 | "0127923%931 | 9127923793




We may write this tensor in the more condensed form as

£

ol 850 * 85985 ~ 28

~0
ijke’%ke

where Gijkz is a generalized Kronecker tensor whose components are equal to
one when all four indices are the same, and zero otherwise.

The irradiation creep law for the SIPAL mechanism can then be written

as

- 40 ~0
5 T Yijke kg (26)
where the creep compliance tensor in the crystal frame is given by
0 -
Yijke T ¢2(61k6j2 * 685k - zsijkg) . (27)

wz is a scalar function of the irradiation conditions, the temperature,
and the loop density and radius. Its explicit form is of no interest for

the present purpose.

§4. TRRADIATION CREEP DUE TO THE CLIMB OF EDGE DISLOCATIONS

This contribution to irradiation creep is given by the second term
in Eq. (23), and it will be referred to as SIPAD creep. Again, assuming
no preferred Burgers vector, we obtain

0 12 L Ry Fopmem 2 0 %0 tmrm

&5 ~ mzl [ do, 8(2 » bT)[2b by - (1-4v) 2% 181, D35 (28)

To carry out the integration over all line directions perpendicular
to a given Burgers vector Em, we consider a coordinate system whose
z-axis coincides with Em. The line vector g' in this coordinate system

has the components (cos$, sin, 0), where ¢ is the azimuthal angle, and
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is related.’ to the line vector & in the crystal frame by the ortho-
gonal transformation

e T 3%p . (29)

Hence,

A /\' A A ~0 _ -0 ‘l /\' ~
Jdog 8(2 = B) 24 2y Gig = 3y 3yq Ty 77 40 8 2

1

- ~0 1 _ 21 ~0
=3y 35q Ske 7 (Bpr Sqr = 8p3 8q3) = - 7 843 A3 Ty

The coefficients a5 are the directional cosines of the unit Burgers

vector b in the crystal frame, i.e., a 3 = b,. Therefore, we obtain

instead of the relation (28)

by by &¢ (30)

12
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In a fcc lattice the unit Burgers vectors for edge dislocations are
those six given in Table 3 plus six more of opposite directions. The
deviatoric stress components normal to the climb planes are listed in
Table 4, to which must be added six more of opposite sign. With these

components, the sum in Eq. (30) can be evaluated easily, and we obtain

~0 ~0 ~0
617 By By
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Table 3
Unit Burgers Vector for
Edge Dislocations in a fcc Lattice

m 1 2 3 4 5 6
Jz BT 1 1 0 -1 -1 0
/?’B? 1 0 1 1 0 -1
/E'Bg 0 1 1 0 1 1

Table 4

The Deviatoric Stress Components
bk b 6?2 for Edge Dislocations

2
burgers Vector o 8 %,
2 253, - Gy,
3 2533 - Oy
4 -257, - 83,
5 253 - 8y
6 -2834 - &7
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As in the case of SIPAL creep, we can write the creep law in the form

of Eq. (26), where the creep compliance tensor for SIPAD creep is now

0 =
Vijke T V1005850 * iadik T Sijke) o (31)
and 1 is a scalar function which depends, among other parameters, on

the edge dislocation density.

§5. TRRADIATION CREEP BY CLIMB-CONTROLLED GLIDE
The glide motion of a dislocation with Burgers vector b produces

a strain rate contribution of
L b.h. +b.A))
2 Vi ji ’

where the vector é is perpendicular to the glide plane and equal in
magnitude to the area swept out per unit time. If there are Py
dislocations per unit area belonging to the slip system with index "d",

then the total strain rate is given by

0 _ 1 dxd dzd

It is now assumed that the rate of slip is determined by the rate
of escape from obstacles for trapped edge dislocations. The waiting
time at obstacles is supposed to be much larger than the transit time
between consecutive stops. Let Vyg be the average climb velocity, hd
the average obstacle height, and Ld the average glide distance perpen-

~

dicular to the line vector 2. Then

~ .
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Ai = g1.Ld Ud/hd .

where § is a unit vector normal to the glide plane.

The strain rate tensor is then given by

& =% ] 9g(toa/ng) (055 + b5a7) - (33)
To obtain the stress dependence for the CCG creep we must first specify
the stress dependence of dedud/hd. During irradiation, and particularly
when void growth occurs, dislocations climb without the assistance of the
external stress. We may then assume that the climb velocity V4 is inde-
pendent of the stress and the glide system. Furthermore, we may also
rule out the possibility for dislocation multiplication by the deformation
process when the stress is sufficiently below the yield point; Pd will
then also be the same for all glide systems and independent of the stress.
The stress dependency must then arise from the ratio Ld/hd.

We assume, as Gittus (1972) did, that Ld/hd is proportional to the shear
stress T4 acting in the glide plane in the direction of the Burgers vector

d

b~. Accordingly,

Lg/hy = & T4/0 (34)
where k is a constant, u the shear modulus, and

- pd g0 qd | (35)

Td = Pk ko9

In order to ensure that positive work is done by the external stress
for slip on each system, it is convenient to introduce the creep dissipation

function
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Table 5

Glide Systems in the fcc Lattice

Glide System

Index, d 1,2,3 4,5,6 7,8,9 10,11,12
Glid o= - -
P};ng (1) (111) (111) (111)
Burgers - - - .
Vectors [011] [o11] [011] [o11]

[101] [101] [101] [101]
[170] [T10] [170] [110]
Table 6

Shear Stress T4 for the Glide Systems of the fcc Lattice*

Glide . Glide . Fgélide -
System d System d System d
1 19927933%9127%3 2 103370117012%03 | 3 | 9117922"9137%23
4 19227933%912913 5 1933911912793 | © | 91179227913%923
7 192279337912%13 8 1033701110103 1 2 | 911792270137923
10 [0pp-033-015=013 | 11 [0337099%0q27023 | 12 | 9917022%9713%923

*For the sake of clarity the superscript "o" is omitted.
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v =1 =1 4545012
from which one can recover the creep law by differentiation:
K -1 *, .0
&5 = 2 [8¢/30 g F 3¢/30j1] . (37)

It is straightforward to evaluate for all the glide systems listed in
Table 5 the corresponding shear stresses T4 The sum of all Tﬁ is then
proportional to the creep dissipation function . For the derivatives

of $ one finds

b o 0 0 0 _ a~0
b o] - ox0
3¢/80] ~ 2012 20]2 R (39)

and analogous expressions for the other ones.
Again, the constitutive law for CCG-creep can be written in the form

of Eq. (26), where the creep compliance tensor is now given by

0

Vigke = Vo1 Gpdyy ¥ 848 (40)

285k * 8jke)
Here, w_] is a scalar function which depends on the dislocation density,

the climb velocity, and other parameters.

§6. THE GENERAL CONSTITUTIVE LAW
Upon comparing the Eqs. (27), (31), and (40), it is evident that the
total creep compliance tensor with contributions from all three mechanisms

can be written in the compact form

1sz _21 Vo E8ik8i0 * 8a85k = MOijked
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where the index n is defined as

2 for SIPAL creep
n= 9§ 1 for SIPAD creep (42)

-1 for CCG creep.

For an arbitrary coordinate system, called the specimen frame,

obtained by the orthogonal transformation
X: = @y :X: (43)

of the crystal frame, the constitutive law is given by

€ii = Vijke ke ? (44)
where both the creep strain rate éij and the deviatoric stress 8kz

are now specified in the specimen frame, and where

3

Eqs. (44) and (45) represent the general constitutive law for irradiation
creep in fcc single crystals with a dislocation structure having no pre-
ferred Burgers vector.

The creep compliance tensor is rendered anisotropic because of the

terms proportional to n, and since n is different for the three mechanisms

considered, each mechanism gives rise to a distinct character of the

anisotropy. Therefore, by measuring this anisotropy, it should be possible

to determine the dominant irradiation creep mechanism.



17

§7. TWO EXAMPLES

In order to demonstrate the anisotropy of irradiation creep, we
illustrate this by considering the two cases of uniaxial tension, and of
torsion of a bar specimen.

Let the axis of this specimen be the X3 = axis of our specimen frame.
We may imagine that this frame is obtained from the crystal frame by
two rotations as indicated in Fig. 1. The specimen orientation is then
specified by the two rotation angles © and ¢ which also correspond to a
certain point on the stereographic triangle onto which we shall map the
points of equal creep rate.

The transformation matrix connecting crystal to specimen frame is

given by

oSO coso cos® sing sino
aij = - sind cos¢ 0
-sinG cos¢ -sine sing cos0

and its elements are to be inserted in Eq. (45).

For uniaxial tension all stresses are zero except 033 = 0. The

axial creep rate e = é33 according to Eq. (44) becomes

_1 _ - :
e = 3 (203333 = V3377 ~ V3322) ©

Considering only one creep mechanism at a time, we obtain the following

relationship:

/0,0 =4 -2 (F sin®o + cos0) + n sinZo [1 - F + 2(1+F)cos?0], (46)



18

where
F = sin4¢ + cos4¢ . (47)

This normalized creep rate is shown in Figs. 2, 3, and 4 for the SIPAL,
SIPAD, and CCG mechanism, respectively. We note that in the case of
SIPAL creep no deformation occurs for tension in the <0Q1> directions.
Also, the SIPAD mechanism gives the least, and the CCG mechanism the most
creep for these directions. On the other hand, for tension in the <111>
directions the SIPA mechanisms exhibit a maximum, and the CCG mechanism
shows a minimum creep rate.

In the case of torsion around the x3-axis the state of stress is

given by
O3 = = Xy 5 Opg = HagXy s (48)

and all the other components are zero. Here, ae is the twist angle per
unit length of the specimen due to the elastic deformation. The rate
of change of this twist angle due to creep is given by an integration

over the cross-section:
. - l * - [ ]
a =3[ dA (eppxy - ey3%,) . (49)

J is the torsional rigidity. Using the constitutive law and the

stresses of Eq. (48) we obtain the relationship
o = (V323 * V1313) M % (50)

For a specific creep mechanism this equation yields the expression

2

&/uae =4 - 2nsin29[1 - F sin0 + cosze 1, (51)
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which is shown in Figs. 5, 6, and 7 for the SIPAL, SIPAD, and CCG mechanism,
respectively.

In opposition to uniaxial tension, the SIPA mechanisms give the most
creep for torsion around the <001> directions, and the least for the <111>

directions. However, this is reversed for the CCG mechanism.

§8. DISCUSSION

A distinction between the SIPA mechanisms and the CCG mechanism can
clearly be made with the proposed experiments on single crystals if all
mechanisms do not contribute equally to irradiation creep. In a recent
comparison (Wolfer 1979) between the experimental results and theoretical
predictions, it was found that the SIPA mechanism is not sufficient to
account for the measured irradiation creep strains in pressurized tubes
of type 316 stainless steel irradiated to a fluence of less than about

2 -3 x 10%% n/ml.

However, above this fluence value, SIPA creep accounts

for most of the irradiation creep strain. This fTuence value also coincides
with the dose at which the network dislocation density has reached saturation
in solution annealed type 316 stainless steel.

It appears then that irradiation creep at low doses proceeds mainly via
the CCG mechanism or possibly similar glide mechanisms. In order to test
for the SIPA mechanisms, it would be necessary to pre-irradiate the single
crystal specimens to a sufficiently large dose. This dose limit depends
on the material as well as on the irradiation temperature. For low irra-
diation temperatures, a high density of loops is reached after relatively

low doses. In materials with Tow stacking fault energies, irradiation

creep is then expected to proceed via the SIPAL mechanism. On the other
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hand, at high irradiation temperatures the dislocation loop density remains
Tow, and irradiation creep at high doses is expected to be due to a combin-
ation of SIPAD and CCG creep. In this case, we anticipate a less distinctive

orientation dependence of irradiation creep.

ACKNOWLEDGEMENT

This work was supported by the Division of Basic Energy Sciences,
U.S. Department of Energy, under contract ER-78-5-02-4861 with the

University of Wisconsin.



21

REFERENCES

Bloom, E.E., and Wolfer, W.G., 1978, ASTM STP 683.

Gilbert, E.R., Straalsund, J.L., and Wire, G.L., 1977, J. Nucl. Materials,
65, 266.

Gittus, J.H., 1972, Phil. Mag. 25, 345.

Harris, D.R., 1977, J. Nucl. Materials, 65, 157.

Heald, P.T., and Speight, M.V., 1974, Phil. Mag., 29, 1075.

Nabarro, F.R.N., 1967, Phil. Mag., 16, 231.

Wolfer, W.G., Ashkin, M., and Boltax, A., 1976, ASTM STP 570, P. 233.

Wolfer, W.G., and Ashkin, M., 1975, J. Appl. Phys., 46, 547; 1976, Ibid.,
47, 791.

Wolfer, W.G., and Boltax, A., 1973, European Conf. on Irradiation Embrittle-
ment and Creep in Fuel Cladding and Core Components, London, Nov., 1972,
Paper 31.

Wolfer, W.G., 1978, ASTM STP 683.

Wolfer, W.G., 1979, Internat. Conf. on Fund. Mechanisms of Radiation-Induced
Creep and Growth, Chalk River, Canada, May 1969; to be published in J. Nucl.
Materials.



22

List of Figures
Fig. 1 The relation between the crystal (x?) and the specimen (xi)
coordinate system.

Fig. 2 Orientation dependence of SIPAL creep in uniaxial tension.

w

Fig. Orientation dependence of SIPAD creep in uniaxial tension.

Fig. 4 Orientation dependence of CCG creep in uniaxial tnesion.

o

Fig. Orientation dependence of SIPAL creep in torsion.
Fig. 6 Orientation dependence of SIPAD creep in torsion.

Fig. 7 Orientation dependence of CCG creep in torsion.



23

Fig. 1. The relation between the crystal (x?) and the specimen (Xi) coordinate
system.
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