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Abstract
The dispersion relation for the drift-cyclotron loss-cone mode in
the presence of the lower hybrid wave is calculated using both electro-
static and finite g models. It is found that lower hybrid wave fields with
frequency w, can stabilize the mode if w2h< Wy Wys OF w0< W_< Wyps where

OV, b= A (P42 ”2]/2 and A=l e/u k. If

_ 2
Yoh~ wpi/(]+ wpe/ Pee

plasma B is greater than a critical value Bc, there is another stabilization
region, namely, wo>6w2h’ where § is a numerical constant. Even though the
stabilization effect is small in this region, the lower hybrid wave frequency
for electron heating should be in this region to avoid enhancing the particle

loss rate.



I. Introduction

Electron heating is indispensable for the plug of a tandem mirror
reactor where thermal barriers are used to enhance the electrostatic
potential barrier. Various electron heating schemes have been proposed,
one of which is Tower hybrid wave heating. In this paper, we study the
effect of the lower hybrid wave on the drift-cyclotron loss-cone mirror
instability, which is driven unstable by the coupling between a positive
energy electron drift wave and a negative energy ion Bernstein wave.
This mode has been observed in the expeur‘imen’cs.]—3

The interaction of the lower hybrid wave with microinstabilities
has been studied by many authors4’8 almost always in the electrostatic
limit. Here we study both electrostatic and finite 8 models for the
drift-cyclotron loss-cone mode and find that the finite B results are
quite different from the electrostatic case, thus showing the importance
of including finite g effects in the calculation.

The paper is organized as follows. In Sec. II, we discuss particle
orbits and the equilibrium distribution function. In Sec. III, we
briefly review the results of the electrostatic model. 1In Sec. IV,
we calculate the dispersion relation for the finite g model. Concluding

remarks are given in Sec. V.

II. Equilibrium Distribution

Consider an inhomogeneous plasma in the presence of a uniform steady
magnetic field, §O = Bo gz, where gz is the unit vector in the z direction.
The plasma has a density gradient in the x direction. A high frequency
oscillating electric field E = Eo cos wot gx is applied in the x direction

with w_ . << w. << w__, where w_.

ci o ce ci(ce) 13 the ion (electron) cyclotron

frequency. The configuration is shown in Fig. 1.



The equation of motion for the particles can be written as
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where ej and mj are the electric charge and mass of each species j,

respectively, and c¢ is the speed of light. The solution of Eq. (1) is
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where we have used u, = u, cos (w ;tta) and u, = - uy sin (w_;t+a).

cJ y J

The cyclotron frequency of species j is Wej = e; Bo/mjc, and u,, u,,

Uy Xgs Yo and z, are integration constants.



The equilibrjum distribution function FOj must satisfy the Vlasoy

equation

oF . oF . e. -~ > oF .
S v 9 4 J(FE cos wt + 1-7 xB )+ -2 =0p, (3)
at 8? mj 0 0 c 0 87

If Foj = F .(uf, un, X) with X = x + (ej/mjw ) (w,E,, cos wot)/(wz-wz-),

0j 0 o ¢j
then
oF . e, > oF .
0 > oj _
Uy _57i'+ E%E<u X By) » —==0. (4)
J ou
The approximate solution to Eq. (4) is
2 _ u
Fog = fojlutsu,) DX + 2991, (5)

cJ
where ¢ = aanoj/ax . If the excursion distance of the particle due

to the external field is small compared with the gyroradius, Eq. (5)

can be expressed approximately as

u
Foj = foj(uf,u.,) [T+e(x + ai';)] : (6)

9

where € = dznno/dx is the inverse density gradient scale lzngth.



5

[IT1. Dispersion Relation for the Drift-Cyclotron Loss-Cone Mode-Electrostatic

Model
The general dispersion relation for the electrostatic wave with wave
number K = key in the presence of a Tower hybrid wave field with frequency

i
(,UO S

+ + - -
w2 (G Oxgtx)  xe) (xe™x3)
Ed— a—X_‘ T + ~ s (7)
) € € € €
e e

where y = —kcEO/wOB0 is the ratio of the electron excursion distance to

the wavelength, Xe(i) and Xz ) are the electron (ion) electric

(i
susceptibilities at w and w * Wy respectively; eq =1 + Xe ¥ X; and ¢
=1+ xz + xf; €g = 1 % Xe.]o To obtain Eq. (7) the dipole approximation
is adopted for the lower hybrid wave. We also assume that u << 1 and only
keep terms up to uz. The effect of the external wave on ions has been
neglected in Eq. (7) since the ion excursion distance is much smaller

than that of the electron at W, >> Wege

For the drift-cyclotron loss-cone mode, Xg and Xz can be expressed as

2 2
_%pe _“pe
Xe 2 ww k >
Geq ce
mz w2
. _pe | pe € 8
Xe wge (wtwgJos, k- ®

To obtain Eq. (8), we assume kae << 1 and w << Wee where ag is the electron

Larmor radius. Assuming

™oi
with R the mirror ratio and Voi = (2Ti/m1)1/2, we obtain
wZ
X; = 3D3 1 0 cot @ , (9)
k¥a, o°.
i ci



where a, = (Voi/wci)[(R + 1)/R]1/2, Q= mu/w., and D = 2(R+1)3/2/[/5(R+/§)].1]

Since Wy >> @i ions can be treated as unmagnetized at frequencies w * o
Assuming |w/k| >> Voi» we find
2
“pi
X.i(w >>w-)="£—- (]0)

ci 2
w

Substituting Eqs. (8), (9), and (10) into Eq. (7), we obtain the dispersion
relation for the electrostatic drift-cyclotron loss-cone mode in the presence

of the Tower hybrid wave field.

2 2 2 2 2
2 .
1+ pe Zpe ely _w (g, tpe  Ype e _ Upi
w2 wwceF 2 2 uxuce'k' 2
ce Yee ®o
U)Z LL)Z
(1438 (-4 2
Yee wo D “ni
X + — —g QcotR = 0 (11)
2 2 2 2 k¥a%T w
pe 2 Woh 2 wpe e i ci
(1+ 5 ) (1- > ) -(w 5 'E)
Weg wg 0" ce

2 _ 2 2 2
where Wop = wpi/(]+wpe/wce)'

The dispersion relation of the drift-cyclotron loss-cone mode is
modified by the pondermotive force produced due to the beating between
the side band waves and the pump wave. From Eq. (11), we see that the
pondermotive force "effectively" modifies the density gradient. We can

define an effective inverse density gradient scale length €' as



where C is the expression in the braces of Eq. (11). If C > 1,

i.e., €' > ¢, the lower hybrid wave fields have a destabilization
effect on the drift-cyclotron loss-cone mode. On the other hand,

if C<1, i.e., e¢' < g,the lTower hybrid wave fields stabilize the mode.

Since the term

UJ2 (1.\2 (1)2

pe  “pe e Upi
V- %~ 2 <0,

W ce W

ce 0

the factor C can be less than 1 if Woh < W, <w

w, = [+ A+ (A2 + 4w§h

< <
b OF Wy < w_ < wpp, where

1/2 _ 2
) ]/2, and A = (.U,th E/U.)c.i k.

To estimate the field strength required to have a significant effect
on the drift-cyclotron loss-cone mode, we calculate the critical plasma
radius when Wy~ W+ The stabilizing effect becomes stronger as w approaches
w,. Defining A = (wo - wzh)/wzh and assuming 2A(]+w§e/wge)<<(wge/wzhwce)(e/k),
we can simplify Eq. (11) as

UZ ZA(wg/wz)(1+w§e/wie)
THXe ¥ x5 \1 -7

1+w§e/w§e-(w§e/wwce)(e/k)-



Solving Eq. (12) for €ay we have

2 2 4

. ka, w_. 2 w
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Defining x k3a3(w /w2 me/mi)/D, Eq. (13) can be written in dimensionless
form as
2
€a; = (A])Qx]/3 + AL x'2/392cot9~+ (A1)~ 4/3 0 cot29+(A1)(A2)x1/3QcotQ 1/2 (14)
i 2 1 ’
2
where A1 = (01/3/m) (wZ; /0l itmo/m)2/3 and A2 = mDIR/(R+ 1)1 (c/vyy)? (E/B,)°.

The wavelength and frequency at marginal stability can be determined by the

min max (ea ) p\"ocesses.]2 We obtain
X Q

1 2 2 7 2 2/39 cotﬂcsc29+(A2)x92csc29—2(A2)xcotQ
2x = 5 Q7csc Oty ,  {(15)

(ALy2,-4/308 ot g+(A1)(A2)x]/3Qcot§}‘/2

2



and

x

-2/3
2 (Al

(A1)Q cotn~8 S

))ZZ/?’QBCSCZ‘Q-(T 120

noj

1 Y

= 2sin2q T (16)

(A%)ZX-4/3Q4cotZQ+(A])(A2)x1/39c0t9]1/2

[ ——

Equations (14), (15), and (16) are solved numerically and the results are shown
in Figs. 2 and 3. In Fig. 2, we compare the Post-Rosenbluth resu]t]2

with our calculation for the case R=1, T;=20 keV, E,/By = 0.5%, and A=3x10'3.

It is seen that the unstable region is smaller when the pump wave frequency

is slightly higher than the Tower hybrid wave frequency. From the result

shown in Fig. 3 we see that the hotter the plasma, the smaller the
stabilization effect. The reason is that the wavelength of the mode

at marginal stability is longer for the hotter plasma. The electron

excursion length is thus smaller relative to the wavelength and the
stabilization effect is smaller.

IV. Dispersion Relation for the Drift-Cyclotron Loss-Cone Mode -
Finite 8 Model

Since finite B has a significant stabilizing effect on the
drift-cyclotron loss-cone mode,]1 we now include finite B effects in the
derivation of the dispersion relation. For the drift-cyclotron loss-cone
mode with kaizl, kae<<1, WSW 5 - We can treat the electrons electrostatically

11,13

and the ions electromagnetically. Assuming that the electron temperature

To ¥ 0, we can neglect the electron VB and curvature drifts.
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We first calculate the perturbed distribution function f] by integrating
Tinearized Vlasov equations along the unperturbed orbit given in Sec. II.

The linearized Vlasov equation is

of! of ! e > af’ e >
“a‘Jt‘ +V._i_+—n7~l E coswot+—l—7xso>-—% = -ai(Ew%VxB')
d j- oV J
oF .
x —2d (17)
oV
- -

where fj is the perturbed distribution of species j, E', and B' are perturbed
electric and magnetic fields, Then,
of

- »
= 0J |
~V x B') —8% gt (18)
¢ oV

t
' €.
o= -
fooow S E

Assume that every perturbed quantity has the form

6,(%,t) = [ dk [ dwZ 6 exp[i(R-P-u t)]

7
where w_ = w + na, - Then,

n
: t aF
-iw t e. -+ -+ .
zfe " o=-lyfodtt (B +LVxB) exp{i[Ke+(F'-F)-u t ']}
oo dn M e n ¢ 59
t
e oF
- . byt (—9) ek vk
T 5 2 {m dt' |2 By, uy 0 2wnch fOJ) teEu ¥
oF oF . v 'e
(v, ' u ——9%-- v, ' uy! ——9%-+ 2X foi) + 2E,, X
du, Y duy cji
oF oF
(u’ ol . s. £.) + 2E ' 0J ke )
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O Y nz ouy ou,, nz w, ¥ Bu%

X exp{ifﬁ-(?'a?)-wht']} . (19)

"~

where k = key. To obtain Eq. (19), we have used the Maxwell's equations.

After straightforward algebra, we obtain

oF

e. -
f. = - _J X (1)52'(—1)m+'|exp[1(51,+m)¢]3 (O{.)J (OL)J (U')J (U) {u, _oj
Jn mj 2,m 273" mY ] p'Td q J i auf
P-.q
+ _f_lf_&\]__ |) ( . e'ld) + 1e'1¢ )
an+p-qwcj n+p-q \ (A4T)w_ s-w q (2- )ij_wn-q
pugl OFy ((E) (€, i
+ \] 1 0 Oj ( X n+p—q+'| - X n+p_q_'l>( e
oy aup \ “hepegel Onapog-1 / \UEHTIO 0, g
_ e-i¢ ) _ ujulwo aFoj (( < )n+p_q+1
(E.') i -i of 2
+ X n+p-q—1>( e1¢ + e ¢ >+ (:_1_) U g-wo
“n+p-q-1 Ta#1 )wcj-wn-q (2-1 )wcj_wn—q 2 2
X ((EX')n+p-q+1/wn+p'q+1 . (& )n+p-Q-1/wn+p-Q‘]> + (1) (E ")
chj-wn_q Q'ij_wn-q y



3 i -
x luy Fg ((z+l)g1¢- T 1e i )
3, ci™¥n-g 2 )wcj-wn-
ef ./w
0J CJ 1
1(,&%_@”_(’)]} + R(E,") (20)

where R(Ez') are terms that are proportional to E,'. We do not write
down all the R(EZ') terms, since they do not contribute to the

perturbed current density (J_ ')

« )y and (Jy )n which are the quantities to be

calculated next. The perturbed current density (J and (Jy')n can be

xl)n
calculated from fn as

3 >

1 = Vi .
(Jx,y ) ? e i (Vx,y)J f,od” v .
The detailed calculation and complicated expressions for (Jx')n and (Jy')n are

given in Appendix A. Again, since |ui|<<lﬁel, we neglect the external wave

effect on the ions. Thus,

(3.") =-neezﬁ € (E,') - (E.'") ]
X ’n me kwce X ‘n Weg y ‘n
2
C IS TR S R ST S A E s = - S S N I
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v w
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X (B Dpapeq * 2 I ) (Ex") prpeg-1
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P - ) (B ) SR I(E)
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2wy 2 Iy [ dug Sw, /05 £ y n
Fourier analyzing the Maxwell equations, we have
(1 —f§§) (E1) = 051
k2C X ‘n k2c2 X n
oo 4ni .
(€, ) = = 5 O, (22)

. . . . 2,22 2 3 2
Substituting (21) into (22) and assuming w /k“c%<<1 and Wy Yoe e/k” €7 w o << 1,
we obtain a relationship between (EX')n and (Ey')n

2
(610 = 15— (5, (23)
cw.q

Combining Egs. (21), (22), and (23), we obtain
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[+ % ()1 (E)1) = - qu [y Intp-g Xe (©g.p) * P Ip Jpap g Xe (0g_p

- (np-a) ) 90 Xelwg) + pntp-q) 3y Jp 0 0 Xelupwg )T (E 1) g

wz m w2 W
where x (o ) = -BL  (&+ 2. ciy
e ap wz. i k2c2 kmq—p
ci
2 2
U)p..l w _l wo

2 2 2 wl. 3 . /oul
; (w0 ) = pi Zpi_ o , Xj(wg) = - 2m wp1 —% z [ duf 2_81/w - Ji
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ci

If we assume weak coupling, i.e., Mg << 1, we need only consider terms
+ e = .
of the form Xe(i)(w)’ Xe (i) Xe' (W), Xe' s Xalw), Xe 1n Eq. (24). Neglecting
all terms of order higher than “g and defining p = Ug We obtain the dispersion
relation
- ) ) GG-xa) (1 HG)
e e e M’ le e e ™ (25)
i + - )

€ € £ €
e e

2
€47 %"X

Notice that Eq. (25) has the same form as Eq. (7), except that the definition

of %o s different. Electron electric susceptibility Xe NOW has an extra

2.2

finite B term, wgi/k c¢”. Substituting various expressions for Xa (i) and

Xi(i) into Eq. (25), and using the fact that 1 + Xe * Xi = O(UZ),
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we find
2 2 2 2
w m w- ., ew 2 W s m w
&, e, p1 —iL—-QcotQ ___c1 M -% (_El_+ e, _p1_
2 ms k2C2 K a3 kw 2 m, k2C2
“pi i ®pi
2 2 2
vei, e, “pi_ Yot
2 2 m. k2 2 w2
) EW i wci) W5 i c o 1-0
ke w2
0 2 2 2
Wej me O We 2 €W 2
(5= ET"’ 22 ‘wz_) - (kwo )
“pi 0

We again define €' = Ce where C is the expression in the braces

of Eq. (26). The lower hybrid wave fields can stabilize

(destabilize) the drift-cyclotron loss-cone mode if C < (>) 1. For

the case

U)Z. m 0.)2 cw (Uz
€1, e pi ci ci
2 *m. T 07 T T2 <0,
wpi i kc wo

the factor C can be less than 1 if w. < w < w,, Or w <w_ <w

r 0 0 r?
w2 w4
2 _ 2 pe pi _ 2 2,\1/2
where (A)Y‘ (.L)p.l/(] + wz + k2C2w2.), (L)i = [i A+ (A + 4wR) ]/29
ce C1

and A = wi E/kwci’ Thus, the stabilization region is shifted toward

the Tow frequency side because of the finite B effect.
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However, for the finite B drift-cyclotron loss-cone mode, the
electron electric susceptibility Xa is no longer always negative; it
can be positive if 8 > BC. The critical Bc is defined as the plasma
B at which Xe(w,k) = 0 at the marginally stable case. By setting

@ = 7/2 at the marginally stable case, we obtain

2 m 1/3
g = t.2a —R i el (27)
c (R + vR) / \Spi m

For 8 > B, Xe(w,k) is positive in the marginally stable case, and the
lower hybrid wave fields can stabilize the drift-cyclotron Toss-cone
mode if w > 8(B)ugy. The factor & as a function of 8 is plotted in
Figs. 4 and 5 for a hydrogen plasma at R = 1 and for Ti = 10 keV and
1 MeV, respectively. We see that the minimum § is around 1.5 for both

cases. However, since

w2~ m w2 £W wz
St P - —L - S < |y
Wpi Y1 ke Wy i

and [x;| is an order of magnitude smaller than kel’ thus, the factor C
is roughly equal to 1 - 0.1u2. For uz << 1, the factor C ~ 1; thus, the
effect of the Tower hybrid wave fields on the drift-cyclotron loss cone
mode is negligible.

The stabilization effect of the lower hybrid wave fields has been
predicated and proved in Q machine expem’ments.s’]4 The lower hybrid
wave field was excited by a coil around the machine-m’]5 The resonance
frequency is around the lower hybrid frequency. By adjusting the resonance
frequency, the fluctuations associated with the drift wave instability

were suppressed. The qualitative stabilization frequency region is the
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same as predicated by theory.6 The stabilization of the drift-cyclotron
Toss-cone mode by the Tower hybrid wave field may also be proved by simi-
Tar experimental schemes. However, a difficulty may arise due to the

fact that the most stabilizing frequency region is lower than the lower
hybrid wave frequency. A very high electric field strength (E = 15 kV/cm)
is required to improve the critical plasma radius by 25% for B0 = 2T, Ti =
20 keV plasma. The field strength should be lower for Tower B, field

and Ti'

V. Concluding Remarks

One of the most important goals of mirror and tandem mirror research
is to achieve classical particle confinement in the minimum B mirror well,
Several microinstabilities can exist in the mirror well and might affect
particle confinement. The drift-cyclotron loss-cone mode is one such
instability.

We studied the effects of the Tower hybrid wave fields on the drift-
cyclotron loss-cone mode, and found that lower hybrid wave fields can
stabilize the mode if W < Wy < Wy and Wy <w_ <. There is also a
new stabilization frequency region which does not exist in the low 8
case. For B8 > BC, the Tower hybrid wave fields can stabilize the
mode if Wy > Gwzh' However, the stabilization effect is small in this
region. Nevertheless, if we want to use Tower hybrid waves to heat
electrons in the plugs, we still should choose the wave frequency
w, > Swzh in order to avoid enhancing the particle Toss rate.

Acknowledgment

This work was supported by the U.S. Department of Energy,



By definition

g jn exp(-iut)

where

1

i

18

Appendix A

L exp(-iw t) e, [
n,Jj neod

2

- I ﬁl»exp( -iw t)
n,Jj J

-
v

]

f

nJ

a3y




19

of 5\ [ ()

ntp-g+l _

(E,)

(Ex)n+p-g+1

n+p-g-1

cj duy wn+p

(E,)

(E,)

[ xn@q+1+
“n+p-q+1

W

n+p-q-1

af . ek
0

_q+]

np-g-1;y

[- uy Pyypy

VA

0J )
n+p-q

“n+p-g-1

—
o

+ uf Py

€

1P2 wcj

of .
0Jy ,
Bug




20

TP af .
i’ 0J 2
( x)n+p-q i cos wt <;1 P12p1 2 Ui Piopo

-—P
[

2 ¢
P12p3 To5 - Ut B Pi2p2

uzwz af
_fjo _9oj &
—SE €os wot <hl P]22 au2 m

E )

) (

(E,)

n+p-g+1 _

Edntp-g-

wn+p—q+]

(E,)

wn+p-q~1

n+p-g+1]

“ntp-g+1

X <(Ex)n+p-q+1 + ( x_n+p-q-1

“n+p-q+1 “n+p-g-1

)



+ & 1q 5

21

]
V2
w (JQJR/OLJ.)—J2

% MWej™n—q

W ez T g

> Prpr 71 Prgp s

2 3l 0%,

£
N

n-q ., wn-q 5 278 7] 1
wz 2 2w _.-w
cj cj cj "n-g

s

W JE

)

“ei  Mein-q

] |2
IR /mj)/(kwcj-wn_q) ;




22

2
2 w, fo.w . W
- ' -q .2
I B R e R V. P
Pooe = L (2 + 5" zwcj-wn-q 'S w2. LANN
J cJ ST (o
Jcl
kul ] .
oy = B;; , J2 = ddz/daj’ JQ is the Bessel function of order & ,

and  f ;= i foj dUu-

Since w>>w ;s |ujl<<|ug|, we set u; = 0. Assuming a; > 1, a, << 1,

2
. w w
and neglect all the terms of order of 0 (ue-%—), 0 (“e'ﬁ—_'E) or higher,
w ce

ce

we then obtain Eq. (21) in Sec. IV.
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Figure Captions

Configuration of the coordinates.

Critical characteristic length Rc/ai (=]/€ai) as a function
of density (wgi/wéi) for T, = 20 keV, E /B, = 0,5%, and
A=3x103atR=1. Curve P-R is the result of Post

and Rosenbluth at R = 1.

Critical characteristic length Rc/ai (=1/aai) as a function
. 2 2 - = "3 = [
of density (wci/wpi) at R=2, A =3 x 10 °, and Eo/Bo 0.5%

for Ti = 20 keV and 200 keV, respectively,
Factor § as a function of plasma B at Ti = 10 keV.
Factor § as a function of plasma B at Ti =1 MeV.
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