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ABSTRACT

Self-éonsistent electrostatic potential wvariations are con-
sidered for several model situations which share important features
with proposed tandem mirror thermal barriers (which do not contain
sloshing ions). For some conditions, equivalent to a prescribed
pre-acceleration, the desired potential depressions are found. The
electron to ion temperature ratio is seen to play a critical role in
determining the necessary pre-acceleration. When the parameters are
not)prbperly adjusted, no steady-staté négative potential solutions

are found.



I. INTRODUCTION

The mirror approach to controlled nuclear fusion is under-
going a rapid evolution. The latest major stage in this evolution
involves the concept of the tandem mirror machine [1-3], which is a
straight solenoid with a minimum-B mirror cell at each end. Early
studies of this concept showed that there were advantages to having
hotter electrons in the end plug than in the solenoid. One way to
maintain different electron temperatures in two spatial regions is
to impose a potential depression between the two regions, which
tends to isolate the two electron populations from each other. This
depression is called a thermal barrier.

One method for creating the desired potential depression
involves a magnetic field depression. Ions travelling along mag-
netic field lines will be accelerated in the region of decreasing
magnetic field strength and they will be further accelerated by the
hoped for accompanying potential depression. Since the ions speed
up and the flux tube widens, the ion density is decreased. The
assumption of quasineutrality is then invoked to say that the elec-
tron density must be decreased. If the electrons are sufficiently
collisional so that the electron density is related to the potential

by a Boltzmann relation, an electron density decrease is accompanied



by an electrostatic potential decrease. Thus, the scenario appears
self-consistent.

A second approach to generating the thermal barrier involves
the injection of an energetic, magnetically confined species into a
high mirror ratio cell [4-5]. The injection angle or position is so
chosen that these ions, characterized as "sloshing ions", exhibit a
strong density depression at the cell midplane. Quasineutrality
will then require an assoclated potential depression.

In this paper we study only the former approach, i.e.,
potential dips (and hills) created by decreasing magnetic fields
with no sloshing ions present. We will utilize a model which is:
(a) one dimensional and (b) considers only steady-state solutions.
One consequence of (a) is that the potential at X = + » can only
vanish if we maintain overall charge neutrality. This follows from
the fact that in one dimension a charge separation creates an elec-
tric field which does not decrease with distance. This is in
contrast to more realistic three-dimensional models where the poten-
tail vanishes at infinity, even though there is a net charge.

A consequence of assumption (b) is that even if we find
steady-state solutions, they may turn out to be unstable.

In spite of the primitiveness of our approach, we find the
following noteworthy properties: (1) A potential dip can only exist
(without trapped ions) if the ratid of electron to ion temperatures

is not too large. (2) No solutions to our models exist for ion



distributions which include particles with vu = 0, like a half-
Maxwellian. If, however, ions with low v” are removed so that we

1

have a "pre-accelerated" distribution, steady-state solutions do
exist.

In Section IT we will describe the model that we use. Sec-
tion ITT contains results assuming a beam approximation for ions,

Section IV a water bag model, and Section V a pre-accelerated

Maxwellian ion distribution.



II. THE MODEL

Our model has a magnetic mirror field, shown in Fig. 1(a) and

1(b). The field on the z-axis is given by

B(z) = Bo(l - e(z)) = B, b(z) , e(z)>0 , (1)

where b(z) = B(z)/BO, and B_ is the field at z - + =; B(z) is sym-
metric about the z = O plane. We ignore the radial dependence on
the grounds that the scale length perpendicular to the z-axis is

much larger than that parallel to the z-axis, and write Poisson's

equation as

2

i}" o(z) = - bme(n;(2) - n,(2)) (2)

@ is the electrostatic potential, e > O the proton charge and ni(z),

ne(z) are the ion and electron densities.
We consider plasma time scales between an electron and ion
self-collision time, which are different by a factor (mi/me)l/g.

Then the electrons have thermalized and their density satisfies a

Boltzmann relation



n(2) = n_ explep(z)/T. ] (3)

with Te the electron temperature. (The assumption of constant elec-
tron temperafure is another feature in which our model is over-
simplified compared with the actual tandem mirror. The idea of a
thermal barrier is to allow different electron temperatures on each
side of the barrier.)

The ions are assumed to be collisionless. In steady state

the energy

i

W=Zm (v + v + ep(a) (4)

and the magnetic moment

m, vf BO/B(Z) (5)

T
]
M=

are assumed to be constants of the motion. We have added a factor
Bo’ the constant field at 2 = + ®» to the definition of u, so that u
has the dimensions of energy. The ion distribution function can now
be constructed from the invariants W and w. We assume a symmetric
distribution with respect to z = 0 and assume ® =0 and B(z) = Bo at
2=+ Then Wzp. As W and p are intrinsically positive, the

distribution function f(W,u) must only be specified in the first



octant of the W - p plane. The ion density for ep < O 1s then given

by

® w £(W,p )b ()
ni(z) = Io dw fo d Ji - ep(z) - b b(z) (6)

where we have used the Jacobian

to transform the density integral from v", v, to W, u.
Equations (6) and (3) together with Eq. (2) determine the
electric potential. The resulting equations can be written in

dimensionless form as

2

i;g § = [ (5 - exp 4], (7)

2 1/2 .
where ¢ = em/Te, y = z/XD, and M = [Te/(hrre n)] /2 g the elec-
tron Debye length. The resulting potential | 1s created by the
variation of the magnetic field b(y) or e(y) and will, in general,
scale with the magnetic field. If b(y) varies slowly over a Debye

length, the left-hand side of (7) will be small compared with either



ni/nO or exp ¥. In other words, the guasineutral approximation will
be a good approximation and we can to that accuracy determine {

algebraically from

n,(4,5(y) =0 (4) - (8)

e

We can also expand Eq. (7) at y = + ® to obtain

.A_gﬂ’. — 6‘v<_a_r.1£ - in_l>\ - §b .aij;
3y~ y=1% % Bl P 140
b=1 b=1

For a magnetic depression (§b < 0), the second term is positive

(since ani/ab > 0 by the arguments in the introduction). Since a
2 2 .

potential depression (8% < 0) implies & /3y \y=i@ < 0, we obtain

the following necessary condition for a potential depression:

an an,

_€ > —2L . (9)
oY =0 3y 4=0

b=l

This result will be applied to different model ion distribution

functions in succeeding sections.
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ITT. ION BEAM APPROXIMATION

We consider two equal beams of monoenergetic ions, one left

going, and one right going,

f(Wn) = C 8w - p )6(W - W)

The ion density then becomes

W, -
ni(z) =1 b(z) v/wo - em?z) -ouo b(z) : (20)

We determined the constant of proportionality in such a way as to
meke n(z - ®) = n. Inserting this result and the electron distri-

bution into Poisson's equation, we have

QEQLEI =lbnmen e T ) - — © .
2 e n_ | exp(eyp/T,) R OEeIo (11)
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We assume now €(z) << 1 (compare Eq. (1)), and expand Eq. (11) up

to linear terms in ¢ and €. Furthermore, we introduce w_ = O W

o}

(0o<a<l), ¢ = em/Te, vy = Z/KD, and the Mach number

M is the ratio of the speed v, at z » + © to the ion-sound speed.

Then (11) becomes (with a prime denoting a y-derivative)

V) - 8 uly) = ),

where a° = 1 - 1M and S(y) = [(1 - a/2)/(1 - 2)7e(y).

The general solution of (12) can be written as

¥y ~, -
yv) = [ Lsimoaly -y ey + AV e n ™ L (13)

-0

We first discuss the solution for the supersonic case M> 1 or
a? > 0. We assume that Z(y) is an even function of y and require

that (& ®) = 0, which determines the so far undetermined constants

A and B in (13). Thus, Eq. (13) can be written
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V) = - o [emlay) [ em(- ar')ils ay”
y

y ~
+ expl- ay) | exp(ay'>e<y'>ay'] , (1)

-0

where we assume that e(y) vanishes fast enough at y - + ® to ensure
the convergence of all integrations. The solution (14) is symmetric
about y = O, is negative definite, and has a minimum at the origin.
It is sketched in Fig. 2. This solution clearly exhibits the
desired potential shape.

In the subsonic case, the ion speed v, at z + -» is less than

the ion-sound speed. Defining a = (l/M? - 1)1/2, we have to solve

¢+ ety = Sy) (15)

which has the solution
y ] . —_— 1\ 7
Wy) = (1/3) [ ay’ sin 3y - y)e(y’)

-0

This solution satisfies 4(y » -®) = O whenever €(z -+ -») = 0. How-

ever, the symmetric condition {(y = +) .= 0 is only satisfied if
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+0
F= f dy’ cos ay’ e(y’) =0 (16)

-0

which is, in general, for arbitrary €(y), not the case. The poten-
tial for y = +® will therefore not vanish exactly, but will exhibit

oscillations like (see Fig. 3)

y(y =» +o0) = = sin ay . (17)

@il

If we insist on a symmetric solution, we have to write

1 LT y Y 2 O AN - .
§ = = {sin a y I cos ay’ e(y)dy’ + cos ay
o

X Iw sin a y €(y')dy "} . (18)
¥

It is easily seen that in (18) ¥(y) = ¥(- y); and ¢(y) also satis-
fies Eq. (15). This solution is, in general, oscillatory for both
z - - and z - +»o, If 2 is of order one and € varies slowly over a
Debye length, F will be quite small. Also, the fact that the ampli-
tude of the oscillations in (18) does not decrease, is clearly a
consequence of the one dimensionality of ocur model.

The quasineutral solutions of (12) and (15) reveal a striking

difference between the supersonic and subsonic solutions. In the
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supersonic case y(y) = - am2 €(y), i.e., a decrease of the magnetic
field (€ > 0) causes a potential hole (y < 0). The ions are accel-
erated in a decreasing magnetic field, and the resulting electric
field tends to enhance this effect. In the subsonic case, the
action of the electric field is reversed, i.e., we have §(y) =
5-2 E(y). Tons tend to be accelerated into the magnetic well by
the magnetic field, but are slowed down by the resulting electric
field.

In order to find the full solution in the quasineutral

approximation, we have to solve

e =\/l } _\i!_ . e . (19)

For fixed € > O, the graphical solution of (19) with @ = 1/2 is
sketched in Fig. L, We find two points A and B representing pos-
sible solutions. As we are interested only in the solution for
which § - O as z + -» and € + O, the physically acceptable solution
is the one which approaches § » O as € + 0, i.e., as the point C

moves upward toward 1. Now the slope of the left side of (19) at

¥

€

0 is 1, while the slope of the right side of (19), evaluated at

0 and ¢ = 0, is l/M?. Thus, in the subsonic case (M < 1), it is
point B which approaches 1 as point C moves up to 1, while in the

supersonic case (M > 1), it is point A which approaches 1 as point C
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moves up to 1. Therefore, we can recover Eq. (9) for this particu-
lar case.

We conclude that in the subsonic case (M < 1), the physical
branch is the one with ¢ > 0, in qualitative agreement with our
solution of the linearized Poisson equation. Likewise, in the
supersonic case (M > 1), the physical branch is the one with ¢ < O,
in qualitative agreement with our solution of the linearized Poisson
equation. The necessary condition, M > 1, for a negative potential
depression could have been obtained directly by applying cri-
terion (9) to Eq. (10).

In the next section, we consider the case of a distribution

of ion energies and magnetic moments, treating the simple water bag

model.
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V. THE WATER BAG MODEL
We consider now a distribution of ions of the form
f(W,u) = const (20)

in the triangle defined by the straight linesp = 0, W = WO and

W = W - D as sketched in Fig. 5(a). Figure 5(b) shows the same dis-
tribution in the conventional Vs v“ coordinate system. By choosing
D > 0, we have eliminated particles with very small v”, i.e., we are
dealing with a distribution drifting along B. Using (6) and

assuming that ¢ becomes negative (as in Fig. 2) we find

2 2 p) >
e\” % e\’ % 1/ 1-8 _ep ep °”
- i - - ) - - - - - -
(l . 5<l aw/ "0 ¢ |\t Thwy < W,
n,(z)=n & 0 o
i o 1 2
3 2 1,2
1 - 5 8§ + > 8

where we have introduced & = D/WO, 0 <8§<1l. As in the last sec-
tion, we expand this expression to first order in e and em/wo, where

we assume § to be a finite quantity, and find
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/

where

5 % (61/2 . 6_1/2) S 1
U VERR T S
2 T2
2
3 (1-38)
B =2 >0
851/2(1—251/2+%55/2)

The Poisson equation can be written in the form

2

d A(8)N .
o7 ¥ - (l - JMgl t=Bely) , (23)

where M? = WO/Te. This equation is exactly of the form (11) in
Section IIT.

We conclude that a potential dip as in Fig. 2 will be formed
if M? > A(§). This conclusion also follows directly from cri-
terion (9). If W < A(8), a potential hill will be formed, however,
only as long as ep < D. As soon as ep > D, the slow particles will
be turned around and we can no longer integrate over the whole tri-
angle of the distribution in Fig. 5 (see Fig. 6). It follows from

(4) and (5) that the separatrix, which separates the particles which
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contribute to the ion density at a location with potential @(z) is

given by the line
W=-~ep=-Dbu=0 . (2k)
In order to obtain the contributing particles for the symmetric

case, we have to subtract from expression (21) the integral over the

triangle abc, which is given by

L-¢ (p-ep)’/? (1 - —g— /2 4 2 §2/2)"1

and obtain

(1 - epfi )2 - Mo 4 (1 - 8)e - e )7/

51/2 + % 63/2

=S
N
il
o]
PO ™

1 -

This expression is correct as long as the line (24), coming from
below intersects the line W = + D before W = WO. The range of the

potential is thus given by

D<ecp<€Wo+(l-e)D .

Introducing ep = D + Wox, we find -
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0<yx<e(l-5)

If we want to find the gquasineutral approximation (8), we have to

find a sclution for x from

(1-5 -0 - N1 - 8)e - 072

2 2
- (1-25Y2 0 27 P el 5 P ) (25)

where §, € and M are given quantities.

We now consider a nondrifting distribution by putting &§ = 0

in (21) and obtain

n,(z) = no{(l - e@/wo>3/2 . (- ew/wo>5/2

1

R AL LA N (26)

Inserting this into (7) we find

R O aasiy

T \3/2
SR Gl &0
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where the Mgch number M is defined as M? = wo/Te' We have assumed
¥ < 0; and we must have ¢ < O as we come in from y = -» where we
agssumed ¥ = 0. If we regard € and { as small quantities of the game
order, then the leading terms on the right of (27) are of the order

of one-half; keeping only these terms we have

V() = e - yp B3R L (o ynB)3/?

However, the right side is always positive, and we have obtained a
contradiction. We conclude that the water bag model (20) with D = O
does not have acceptable solutions in which { becomes negative as it

comes in from y -~ -=.
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V. MAXWELLIAN ICN MODEL

For the case of a Maxwellian ion distribution, the integrals
in ng can no longer be given in closed form. The physical results,
however, are the same as in the two previously treated simple cases.
As in Section IV, we exclude the particles with very small v” by
integrating to the line p =W - D, D > O rather than to the line

B =W in Fig. 5. The ion density is then given by

W-D b(z)exp(~ W/Ti)
A f‘JW - ep - b(z)u

n,(z) = jD aw | (28)

o}
The result of this integration can be expressed in terms of the

error function. However, we believe it is more instructive to leave
the result in terms of integrals and then obtain closed results for

certain asymptotic cases. This integral can, after several substi-

tutions,be written as

Y, bs
n ® (== +=)
ni(z) = 3? [e_¢ I aE &S 51/2 - €l/2 e ¢ €
8-
x [ 6 & 51/2] , (29)



22

where | = em/Ti, § = D/Ti’ and

N = Im dw e-W(wl/2 - 61/2)
&

If we assume that (8§ - §) is a small quantity, the first integral in

(29) can be written approximately as

[ et g S PP
5=

In the second integral we assume (§ - W)/e to be large. We then

find asymptotically

el A
® £ .1/2 =5 - 012 1/ \\1/2
J ge>g7" =e \"e )/ *2\s-y
(6-¥)/e
Using all these results, we finally obtain
_ L5
ni(y) = no<l + A Be o, (20)

WP

where
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S 2. 7
1 2  3/2 -8 1/2
S W 8 5
and
1 -8 .-1/2
2 ¢ 8

B

—%,\/T?-%SB/E _ e-6 51/2

Poisson's equation can now be written in the familiar form

with M? = Ti/Te' The supersonic solution is obtained for small §

if 8§ > 1/(w MA) and exhibits a potential dip ¢ = - [B/(1l - A/Mz)]é.

As in Section IV we do not find an acceptable solution if the

particles with wvery small v“ are retained by putting D = O.

The quasineutrality approximation can be invoked. by equating

(29) and (3). It is useful to express this equality in terms of the

complementary error function (erfc) as follows:



ok

Wy L1 -y

n,-n, =0=¢e " erte 5 . erfe /(&6 - y

- Je e™d e(s_‘b)/€ erfe /(& - ¢)/€}

In the large { limit, this equation reduces to the form given in
Ref. [3].
The criterion for minimum acceleration results directly from

the inequality Eq. (9). Substituting (28) and (3) into (9) yields

the result
-8
s — 1 (32)

A/FG_ erfe Jg

(An equal sign would yield the minimum pre-acceleration smin.) In

the small § limit (32) gives
> (220
st \e L (33)
or

1
'n'(Ti/'I'e + 0.36

6 . 9w

min )2
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The minimum required pre-acceleration (the solution of (32))
is plotted in Fig. 7 and a comparison is shown with the small §
approximation (33). For Te/Ti ~ 1 the required minimum pre-
acceleration is ~ 0.2 Ti' Notice that this pre~acceleration

increases rapidly at large Te/Ti'
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VI. CONCLUSIONS

Three simplified ion distribution functions have been studied
in a physical context which shares some of the proposed features of
electron thermal barriers in tandem mirror fusion devices. A mono-
energetic fluid model yields potential dips in the supersonic case
(ion-beam speed greater than ion-sound speed), but yields potential
hills in the sgubsonic case. Two distributions with a spread in ion
energy, the water bag model and the Maxwellian model, have no solu-
tions at all for reasonable boundary conditions. However, when
particles with small v, are removed from the distribution, which
amounts to an ion pre-acceleration, satisfactory potential dips are
found. The minimum required pre-acceleration is seen to increase
with T /Ti.

These results indicate a difficulty in creating a potential
dip for a plasma streaming into a magnetic field depression. It
should be noted that in a Q-machine experiment of this sort a drop
in density (more precisely a drop in Langmuir probe ion saturation
current) was observed [6]. However, in this experiment the sheath
of the hot tungsten plate Q-machine source was seen to form an ion

acceleration of about 5 Te (Te ~ 0.20 eV) and so this experiment
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could be interpreted as an example of the supersonic fluid case
(M= 10).

We remind the reader that the present results are not
directly applicable to the case of a barrier with sloshing ions.

This topic will be addressed in a future paper.
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FIGURE CAPTIONS

Fig. 1(a). Magnetic field lines which can be rotated out of the
plane of the paper about the z-axis. (b) Magnetic field
intensity along the z-axis; B(z) = Bo(l - e(z)) = B b(z).

The typical scale length for variation of e(z) is Ly

Fig. 2. Self-consistent electrostatic potential vs distance for

M>1.

Fig. 5. Self-consistent electrostatic potential vs distance for

M<1.

Fig. 4. Graphical solution of the quasineutral equation (19).
Solution A is the physically acceptable solution for the
supersonic case (M > 1), while solution B is the physically

acceptable solution for the subsonic case (M < 1).

Fig. 5. Water bag model. (a) Inp - W space, (b) in conventional

v, - Vv space.

Fig. 6. Symmetric potential hill.
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Fig. 7. Minimum required pre-acceleration for obtaining a potential
depression as a function of Te/Ti’ The solid curve is the
guasineutrality result and the dashed curve plots the

approximate solution (Eq. (33)).
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Fig. 5
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