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Abstract

A review is presented of theoretical models related to irradiation creep
and to the evolution of the dislocation structure in irradiated stainless
steels. The results of detailed analysis for streﬁs-induced loop alignment
and stress-induced preferential absorption (SIPA) of point defects at dis-
locations is presented.

Stress-induced rotation of tri-interstitials is shown to be too small
to account for the observed variations in loop densities on different
crystallographic planes. However, it is possible to predict large variations
with the SIPA mechanism.

Predictions of irradiation creep by the SIPA mechanism are in agreement
with measured data at intermediate fluences. At low fluences, additional
contributions to irradiation creep must come from dislocation glide. The
evolution of the dislocation structure can be exnlained by the continuous
formation of interstitial type loops and by the radiation-induced recovery of

the dislocation network.



1. Introducticn

1.1 The Heed for Theoretical Correlations

A critical comparison between predictions of theoretical models of
irradiation creep with experimental observations and data is essential for
a better understanding of the physical basis of irradiation creep. That it is
also necessary for the proper utilization of experimental results to the design
of reactors is perhaps not obvious. Therefore, we mention some of the
critical issues one faces when experimental data of irradiation creep are
analyzed and applied to reactor design.

Perhaps the most obvious example demonstrating the need for a mechanistic
understanding is the problem of formulating a general irradiation creep law for
a triaxial stress state. Irradiation creep data are obtained in experiments
with easily realizable stress states, such as in pressurized tubes, uniaxial
tension, or in helical springs or leaf springs. The information obtained for
these specific stress states must all be condensed into one constitutive law
applicable to any state of stress, in accordance with theoretical principles.

This task is complicated by radiation-induced dimensional changes which
may be superimposed on the creep strains. The theoretical analysis must be
employed to aid in the separation of strains due to three distinct phenomena
which may occur simultaneously; these are stress-affected swelling, anisotropic
growth, and irradiation creep.

Theory is further called upon to formulate creep laws for complicated
stress and temperature histories. Most irradiation creep experiments are
conducted with constant loads and temperature. In rare cases, tests with

simple load or temperature histories have been conducted. The most burning
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questions in this context are related to the nature of the transient creep
strains. A mechanistic understanding of the irradiation creep process is
needed to separate the permanent plastic deformation from anelastic strains
which are recoverable after load removal.

Another critical issue is the superposition of irradiation creep, thermal
creep, and plastic flow. A1l three deformation models are encountered under
abnormal operation conditions which must be analyzed in order to insure the
safety of nuclear reactors. The rules of superposition strongly affect the
safety analysis. Since in-reactor experiments can simulate accident conditions
only to a limited degree, our theoretical understanding must provide the
superposition rules.

An important problem that theory must address is related to the difference
between post-irradiation and in-reactor creep rupture and fatigue failure.
Recent experiments [1] clearly demonstrated the beneficial effect that
irradiation creep has in improving the stress-rupture time. Since grain
boundary cavity formation is a prerequisite of creep rupture, an understanding
of the interplay between irradiation creep and grain boundary sliding and
cavitation may provide the key to predict in-reactor fracture.

These are but a few of the outstanding problems which demand a better
theoretical understanding of irradiation creep. Answers to these problems
posed above still await further research. Nevertheless, the critical comparison
presented in this paper between the theoretical predictions and the
experimental data may already provide important insights.

1.2 Stratification of the Theory
Various mechanisms for irradiation creep have been proposed in the past

with various degrees of sophistication. A review of the models reveals that



their components can be divided into four categories depending on a dimensional
scale. Each scale defines a level of inquiry, and we refer to them as the
atomistic, the microstructural, the micromechanical,and the macromechanical
level. On each level, different mechanistic models are involved, and they
contribute to the macroscopic irradiation creep behavior of a material.

Table 1 gives a list of those models. In order to derive theoretically the
constitutive law for irradiation creep, the modeling must be started at the
atomistic level and, in an ascending progression, be carried through all
following levels.

It is important to realize this stratification of the mechanistic approach
to irradiation creep and growth, as there are observable creep effects which do
not, for example, involve any processes on the atomistic level. We shall
discuss an example in Section 4.

Starting at the atomistic level, the basic processes capable of causing
permanent lattice deformation are the stress-induced alignment of small dis-
location loops or interstitial clusters, the stress-induced growth of dislocation
Toops, the unfaulting process of Frank Toops, the climb of edge dislocations,
and finally the glide of dislocations.

The electron microscopy observations of the dislocation structure in
irradiated and stressed metals do not reveal directly the atomistic process
behind irradiation creep. It must be inferred from the microstructural record.
However, even if this is not possible, electron microscopy observations can give
us quantitative information about the sink structure, their number density,
and its evolution as a function of dose and temperature. This information is

invaluable when quantitative predictions are required to test the viability of



Table 1. Stratification of

the Mechanistic Inquiry about Irradiation Creep

Level of Inquiry

Mechanistic Models

Alignment of Dislocation Loops
Formation and Growth of Loops

Atomistic : . .
DisTocation Climb
Processes Unfaulting of Frank Loops
Dislocation Glide
Intersection and Coalescence of Loops
Microstructural Loop-Dislocation Interaction
Processes Precipitates on Loops and Dislocations
Dislocation Network Formation and Recovery
Dependence on Crystal Orientation
Micro- Grain to Grain Interaction
mechanics Grain Boundary Sliding
Grain Boundary Cavity Formation
Roberts-Cottrell Creep
Macro- Averaging over Many Grains
mechanics Phenomenological Considerations




a certain atomistic process for irradiation creep. In particular, the temperature
and dose dependence of irradiation creep will be seen to be determined primarily
by the corresponding dependence of the Toop and dislocation densities.

To understand the evolution of the dislocation structure, a variety of
processes must be considered. These include the intersection of loops, either
with other Toops or with network dislocations, the glide resistance imposed by

sessile Frank Toops on dislocations, the interaction of loops and dislocations

with precipitate particles and voids, and the change of the dislocation .

density by radiation-induced recovery.

A comprehensive experimental study of the microstructural evolution has
only recently become available in the pioneering work of Brager et al. [2,3,4].
Their work contains sufficient details about microstructural parameters to
guide the theoretical development and to allow a meaningful comparison of
theoretical predictions and the observed irradiation creep behavior. In the
following,we shall heavily rely on their work.

Based on the atomistic and microstructural processes, it can be concluded
that the irradiation creep rate depends on the crystal orientation with
respect to the applied loads. This has recently been shown by Wolfer and
Garner [5] 1in the case of ion-bombarded surfaces. They have demonstrated
that the state of stress in the bombarded layer depends on the orientation of
the surface grain. In the case of a neutron irradiated polycrystalline material
the grain to grain variation of irradiation creep may result in residual
microstresses. Depending on their magnitude, they may affect the formation and
growth of grain boundary cavities and cracks. Furthermore, these microstresses
must be taken into consideration when one interprets the microstructural

records in stressed specimens.



Internal stresses are also generated if anisotropic irradiation growth
occurs which varies from location to location. Residual stresses generated
by such a process have recently been suggested as a cause for irradiation
creep [6]. This particular mechanism is based on ideas put forth by Roberts
and Cottrell [7] for irradiation creep in a-uranium. This particular creep
mechanism requires no detailed description of the atomistic process involved
except for the assumption that it is glide. However, for a clear demonstration
of the viability of this mechanism it is necessary that a detailed micro-
mechanical analysis is carried out for a polycrystal. Unfortunately, such
an analysis is still lacking. The irradiation creep models based on the idea
of internal stresses employ mostly intuitive and suggestive arguments rather
than rigorous ones.

The Robert-Cottrell mechanism is a case in point that the macroscopic
creep law must be derived by an appropriate averaging of the creep behavior
of many grains joined together in a compatible way. When this is done, a
macroscopic creep law emerges with new terms not present at the micromechanical
level. These terms describe the anelastic effects caused by the residual
microstresses, and they have the appearance of a transient creep effect when
load changes occur. However, they are distinct from transient creep strains
which contribute permanently to the deformation. The interpretation of transient
strains requires therefore that the anelastic effects be subtracted.

In the following sections we shall elaborate only on those models
listed in Table 1 for which some definite and lasting progress has been made,

and for which some experimental evidence can be cited to support it.



2. Atomistic Processes for Irradiation Creep

2.1 Stress-Induced Loop Alignment

It was proposed by several investigators [8,9,10,11] that a stress-induced
alignment of dislocation Toops would cause irradiation creep. However, with
the exception of the vacancy cluster collapse models [8,9], no specific
atomistic processes were given that would lead to this alignment. Instead,
it was simply conjectured that in the presence of a stress field Uij’ the
number of loops on a crystallographic plane with normal vector # (ﬁ2 = 1)

would be proportional to a Boltzmann factor
N, (A) = N0 exp (nR b o /KkT) (1)
& g EXP 0 n ?

where o
o = ?j ninjgij (2)

is the normal stress on the loop plane, b is the Burger's vector, and R0 is
the critical radius of the loop. Two opposite assumptions can be made with
regard to Ng; it can either be the number of loops in the stress-free crystal
or it can be normalized such that the total loop density on all planes remains
independent of stress. In the former case, the total interstitial 1loop
density is enhanced by a tensile stress, whereas in the latter case, the same
number of loops is merely partitioned unequally on the various crystallio-
graphic planes.

The implications of the latter model to irradiation creep have been
analyzed by Brailsford and Bullough [11] who pointed out that the deformation

produced by aligned loops is equivalent to anisotropic growth without stress.

The stress would only be required initially. However, it was suggested by



Wolfer and Boltax [12] that the state of anisotropy would only persist for

the lifetime of interstitial loops. As they continuously form, grow, unfault,
and merge with the dislocation network, any preferred Toop orientation would
eventually be replaced by a new one dictated by the present state of stress.
The transitory existence of interstitial loops appears to be confirmed now

by the experimental evidence of the evolution of the dislocation structure [4]
with dose. Therefore, stress-induced loop alignment and lack of a stress
memory in irradiation creep is no longer contradictory. Nevertheless, there
remains the open question whether the dislocation network resulting from

an aligned Toop structure preserves part of the anisotropy in the form of a
preferred Burgers vector orientation.

The first experimental observation of different 1oop densities on
different {111} planes in a stressed sample of SA 316 stainless steel [13] was
initially thought to confirm a loop alignment mechanism. However, as has
been shown recently [14], and as will be elaborated upon further in this paper,
these observations are also in agreement with the mechanism of stress-induced
preferential absorption (SIPA).

In these early observations, made on a sample from a pressurized tube
irradiated at 380°C to a rather low fluence of 2.4 x 1025n/m2, it was found
that the loop radius at the maximum of the size distribution was nearly
independent of the nofma] stress O However, the height of the size
distribution did depend on the stress, and it was enhanced by up to 32% on
some planes and suppressed as much as 28% on other planes in comparison to the

average height.



In searching for a physical process for loop alignment we have con-
sidered two possibilities: the stress-assisted rotation of interstitial
clusters, and the stress-induced change of the loop nucleation rate. Garner
et al. [15] have recently explored the latter possibility by adapting the
void nucleation theories of Katz, Wiedersich and Russell to interstitial Toop
nucleation. They showed that there exists no nucleation barrier (i.e. a
positive maximum value of the free energy defined in a kinetic theory) beyond
the di-interstitial cluster. Furthermore, since the binding energy of a di-
interstitial in nickel is 1.16 eV according to calculations by Johnson [16],
the probability for its dissociation is small. Therefore, the corresponding
nucleation barrier at the di-interstitital stage is small. Finally, as will
be shown below, stress changes the bias factor of loops of all sizes, and is
then more appropriate to describe the effect of stress in terms of loop growth.

It appears then that there remains only the possibility for loop
alignment by stress-induced reorientation of small interstitial clusters.
Evidence for such a stress-assisted rotation in Al has been found recently
by Robrock et al. [17] using internal friction and elastic-aftereffect
techniques. They concluded that reorientation of the di-interstitial is
associated with migration. Five other observed relaxation peaks were
shown to be due to the rotation of one or more members of a cluster,
but not associated with long-range migration of this cluster. In particular,
one of the more pronounced peaks was tentatively assigned to the reorientation
of the middle interstitial in a tri-interstitial cluster configuration. This
reorientation produces two identical configurations of tri-interstitial as
shown in Fig. 1. By the addition of more interstitials these configura-

tions can presumably evolve into dislocation loops with different orientations.
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The activation energy for reorientation is of the order of 0.1 eV.
This is sufficiently low so that we can assume an equilibrium distribution
of the number of tri-interstitials with a given orientation. This number

is proportional to
- (3) «
A = exp [Pij eij/kT] (3)

where ng) is the dipole tensor of a tri-interstitial and Eij is the
deviatoric elastic strain tensor.

The proposed configuration of the tri-interstitial is shown in
Fig. 1 in its six possible orientations. The middle interstitial can
rotate, whereupon each of three configurations on the left-hand-side of
Fig. 1 is converted into those of the right-hand-side and vice versa.
We assume now that the dipole tensor Pgﬁ) for each configuration can be
obtained as a superposition of the dipole tensor ng) of the di-interstitial
and the dipole tensor ng) of the single interstitial.

Robrock et al. [17] have determined the anisotropies of these dipole

tensors and found the following values for Al: for the di-interstitial,

[P%?) - Pég)] > 6 eV,

and for the single interstitial

P el =103 er .

Although we cannot determine the dipole tensor ng) with these values,

we can evaluate the deviatoric dipole tensor

5(3) _p(3) 1 (3)
Pi3" = Pi3" - 3 845 kk

’

in the following manner.



11

For the tri-interstitial in the upper left-hand corner of Fig. 1,

we find with the above assumption that

2(3) _ p(1) 4 p(2)

(3) _ p(1) 4 p(2) (3) = p(1) 4 p(2)
i 2 25+ P P’ + P P P’ + P

22 N 22 * "33 11 22

if the (11)-components are parallel to the dumbbell axis. Then

5(3) o _ L o(1) _p(1) , p(2) | p(2)y & _

Piy’ = - 3 Py - Py’ + Pyl - oyl 2.4 eV ,
5(3) = 1 rop(1) (1) _ p(2) 4 p(2)y = _

Pyy) = 3 (2P, - 2P5,) - Pyl + P35 1.3 eV,
5(3) 2 1, p(1) 4 p(1) (2) (2}

P33’ = 3 {-Pqq’ * Pop’ +2P) - 2P225- 3.6 eV .

By permutation of these three values, the deviatoric components of the
dipole tensors can be obtained for the other five configurations. We
assume that the above values reflect the order of magnitude for tri-
interstitials in all fcc metals, including austenitic stainless steels.
The alignment factor A of Eq. (3) for the biaxial stress state in a

pressurized tube is given by

; (4)

where Oq is the hoop stress and G the shear modulus. When Eq. (4) is
evaluated for a hoop stress of about 200 MPa and a temperature of 380°C,
the pertinent conditions for the experiment in Ref. [13], we obtain
the values listed in the last column of Table 2.

Although the tri-interstitials cannot be identified directly with
an embryonic loop, they must represent precursors, and their stress-
induced alignment should reflect the degree of alignment of interstitial
loops. We see from Table 2 that at the most an 8% alignment can be

assigned to tri-interstitials, whereas a 30% alignment was found for the
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Table 2

Tri-interstitial Dipole Tensors and Alignment Factors

Configuration Components of ?ipo]e T?nsor (eV) Alignment

A 5(3)  5(3)  3(3)

in Fig. 2 P]] P22 P33 Factor
a -2.4 -1.3 3.6 1.015
a' -2.4 3.6 -1.3 1.083
b -1.3 -2.4 3.6 0.985
b! 3.6 -2.4 -1.3 0.923
c -1.3 3.6 -2.4 1.068
c' 3.6 -1.3 -2.4 0.937
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interstitial loops in Ref. [13]. To explain the larger alignment it would
be necessary to require a fourfold increase in the anisotropy of the dipole
tensor for a tri-interstitial or an impurity-interstitial complex which
may also serve as a precursor to an interstitial Toop. Although this is
not outside the realm of plausibility, it would be difficult to explain
much Targer degrees of alignment of loops as seen at higher fluences.

High fluence observations were made by Brager et al. [4] on pressurized
tubes of type 316 stainless steels both in the annealed and the cold-worked
condition, and they can be explained, as shown below, in terms of stress-
induced Toop growth.

2.2 The Stress-Induced Preferential Absorption
2.2.1 The Dislocation Bias Factors

The stress-induced preferential absorption (SIPA) of interstitials at
dislocations (and to a lesser degree of vacancies) has been proposed indepen-
dently by Heald and Speight (HS) [18] and Wolfer and Ashkin (WA) [19,20].
Bullough and Willis (BW) [21] have also analyzed the stress-induced inter-
action energy of point defects with edge dislocations and proposed an approx-
imate form for it which was used by Heald and Speight [22] to determine the
stress-induced bias factor and SIPA creep. Although the point of departure
is the same, the treatments of WA and HS differ not only in their approach
but also in their final results by almost an order of magnitude. Therefore,
some clarifying statements are in order.

The origin of the SIPA mechanism is the modulus interaction of a
point defect with an edge dislocation. Since this interaction energy is
quadratic in the total strain field, there appears a cross-term in it

when a uniform strain field due to external loads is superimposed on the
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strain field of the dislocation. This cross-term is linear in both strain

fields, and given by [20]
b
SE(r,¢) = - [Ajcos¢ + Ay cos3¢ + Bysing + Bysinds] , (5)

where b is the Burgers vector, and (r,4) are the polar coordinates of
the point defect in a cylindrical coordinate system with the edge
dislocation located along the axis.

The constants in this expression are

Ay = A, = o2 2,/ [2n(1-v)] (6)
By = At (B - &)/ [4n(1-v)] (7)
B, = X e, (1-20)/[2n(1-v)] ®)
- [, (3-4v) + 2, (1-4) 1/ [4r(1-9)1,
where
N 1
€13 = %15 3 %45 ek (9)

is the deviatoric elastic strain tensor due to the external loads,

t ey, toEgy is the corresponding elastic dilatation, v is the

G

fkk T F11 T 22
Poisson's ratio, and uK and o~ are the bulk and shear polarizability,
respectively, of the point defect.

In the treatments of HS and BW, only special cases of Eq. (5) are
considered, namely for a uniaxial external stress parallel and perpendicular
to the Burgers vector of an edge dislocation; the terms with A] and A3 are
thereby suppressed.

The gradient of SE contributes to the drift term of the diffusion
equation. This equation must be solved with the entire interaction energy

included. For the case of a straight edge dislocation, the diffusion

problem can be solved in closed form only if the entire interaction energy
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has the spacial dependence sin¢/r. Apparently motivated by the desire to
also cast 8E is this form, BW approximatesterms with angular functions
sin3¢ and sin¢g cosz¢ by terms with %—sin¢. This approximation of SE can
then simply be included into the size-interaction. In so doing, HS obtain
then a bias factor Z which can be expressed in terms of zero order Bessel
functions, the argument of which is given by c¢/2a. ¢ is a capture radius
which depends on the entire interaction energy, and a is a cut-off radius
of the order of the dislocation core radius. HS now make the further
assumption that c >> a, and they proceed to approximate the modified Bessel
function by a logarithmic function. Unfortunately, as has been shown
earlier [20], this latter approximation is incorrect as c is of the same
order as a.

In the perturbation treatment of WA none of these dubious approxi-
mations have been made, and the bias factor obtained is valid for any
triaxial strain field, and hence, also for any orientation of the
dislocation.

The perturbation treatment to third order gives the following result

for the bias factor of a straight edge dislocation:

d

2%(0) = 2%0) + s2%@y) = s2%(8) . (10)

The first term is the bias factor in the absence of an external load,

whereas
s2(ey) = - éﬁég%%é"[zﬁ%5€STET32 voy ()
and*
629(5) = - %—égfjjgs () > [266, - (1-av)E 215,  (12)
[2m(1-v)kT] J Tt

*
Repeated indices imply a summation as usual.
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are stress-induced contributions to the bias due to the hydrostatic stress

1
Oy = 3 (097 * 0pp + 033) (13)

and due to the deviatoric stress

ij ~ % " %% (14)
respectively.

In Egs. (11) and (12), 2d represents the mean distance between
dislocations, v the relaxation volume of the point defect, kT is the thermal
energy, and Bi and @i are the components of unit vectors parallel to the
Burgers vector and to the dislocation line, respectively.

The stress-induced contribution SZd(cH) is independent of the orienta-
tion of the dislocation or its Burgers vector, and will have no effect on
irradiation creep, but only on swelling. On the other hand, the contribution
6Zd(6) does not affect swelling, but it gives rise to creep. Henceforth,
we shall only deal with this term.

In case of an infinitesimal dislocation loop, the perturbation treat-
ment has to be carried out only to second order to obtain the stress-induced

contribution. The bias factor for the faulted loop is given by
*(o) = 7%0) + 674(5) (15)

where the stress-induced part is
%ya 309/6  bop o
s7(5) = - T?@TTéGTET'ﬁ'bibjgij . (16)
Here, G is the shear modulus and R the loop radius.
In closing this section it is noted that the above expressions are
valid for elastically isotropic materials and for point defects with

isotropic dipole and polarization tensors.
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2.2.2 The SIPA Creep Rate
The rate of deformation (including swelling) produced by the climb

of edge components for both Frank loops and line dislocations is given

by
. 9,0 N N
€45 =0 duy N*(b) (J7 - Jy) byby (17)
+ardo sdo, N4(2,5) (99 - 0dy s(B-2) b.b
St 'O ’ I v iJ°

where Q is the atomic volume, and (JI - JV) is the difference in the
interstitial and vacancy currents.

The integrations are carried out over the solid angle Wy, of the Burgers
vector orientations, and in the case of edge dislocations, also over

the solid angle w, of the 1ine vector orientation subject to the

%
condition that b is perpendicular to 2.

If either of the two densities, NQ(B) for the loops, or Nd(g,g) for the
dislocations, dependson the crystallographic orientation, éij will not be
isotropic even in the case of no external stress. In this case, swelling
would be anisotropic. Furthermore, irradiation creep would also be
anisotropic, and would not obey the Lévy-von Mises relationships; i.e.,
éij would not be proportional to 81"

Since the Burgers vector has discrete crystal orientations, Eq. (17)
will not yield an isotropic creep law even if Toop densities and dislocation
densities have no preferred Burgers vectors. For a polycrystalline cubic
material with no texture, we must include into the integration of Eq. (17)
also the integration over all possible grain orientations . We may accom-
plish this by simply allowing Burgers vectors of any orientation. With

no preferred Burgers vector orientations, Ng and Nd are constants, and the

integration can be carried out easily.
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% ? ~ JS) for the net flow of atoms to

Frank Toops or dislocations can be derived from the general formula valid

The expressions (J% - Jy) and (J

for any sink, namely

75 1 —
93 - 35 = A% {[Zg - E—I-] F+oy(cy - b (18)
Vo4
Here
F= (N Z/200(L% + m1/2 - 1 (19)
L=1+KDC /N z (20)
M = 4K P/N°Z.7
= INZZ,, (21)

Furthermore, the recombination coefficient is given by
K= 4wrC/DV (22)

where re is the capture radius of a vacancy for interstitials. The addi-
tional parameters are listed and defined in Table 3 and 4. Sink-averaged
quantities, indicated by a bar, are defined in the following manner.

The total sink density is

where the geometric factors AS are given in Table 4. Average bias

factors are defined as
Z =7 N°ASZS /N, (24)
S

and the average thermal vacancy concentration as

3 Z N°A ZVCV/(Niv) (25)

With the help of Table 4, the net flow of atoms can be determined

according to Eq. (18), and inserted in Eq. (17). In performing the
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Table 3. Parameters for Ni or y-Fe

Parameter Symbo1 Value or Definition
Vacancy formation energy E€ 1.6 eV
Vacancy migration energy Ev 1.4 eV
Burgers vector (y-Fe) b 2.50x10710
Atomic volume Q b3
Equilibrium vacancy concentration qu (I/Q)exp(1.5-E€/kT) m"3
Vacancy diffusion coefficient Dy 1.53x10'4exp(-Ev/kT)m25']
Shear modulus 6 10" g/m3
Poisson's ratio v 0.3
Relaxation volumes v vI/Q=].4, VV/Q=—O.2
Shear polarizabilities uG u? = -150 eV, us = -15 eV
Recombination radius re 4b
Core cut-off radius a 7b (for interst.), 4b (for vac.)
Defect production rate P = 7.5*10_22 ¢ n [dpa/s]
Fast neutron flux ¢ 22x1015[cm_25_]] for EBR-11

Cascade survival fraction

0.6
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angular integrations we retain only terms linear in the deviatoric stress

tensor. The total strain rate is then found to be a sum of three terms

s ¢ 4 210, éTC

S

-1
=3930 eyt ey

> (26)

j.e., a sum of swelling, irradiation creep, and thermal creep of the
Nabarro type. Frank loops and dislocations each make separate contri-
butions to all three processes, and their corresponding expressions are
Tisted in Table 4.

The creep rate éIC + éTC can be computed from known microstructural
data. Using the data for SA 316 by Brager and Straalsund [2], predic-
tions for the creep rate were made earlier by Wolfer [23]. Based on the
experimental information known at that time, the conclusion was reached
that SIPA irradiation creep could not account for the measured creep
rates below a fast neutron fluence of 2 x 1026 n/m2. In the meantime,
however, new experimental results frompressurized tubes have revealed
that the irradiation creep rate does indeed increase with fluence. Hence,
these earlier predictions [23] based on SIPA and the observed microstructure
appear now to be substantiated after all, at Teast in principle. We shall,
therefore, reexamine the issue.

To facilitate the comparison, the accumulated creep strain, or
rather ¢/(c/G), is shown in Fig. 2 as computed with the SIPA model and
the fluence- and temperature-dependent microstructural data [2]. Experi-
mentally measured data for SA 316 pressurized tubes [24] are also shown
in Fig. 2. The predictions follow the trend of the data rather well.
However, the measured creep strains at T = 425°C are substantially higher
than the predicted ones, particularly at low fluences. Contrarily, at T =
475°C, the computed creep strains are somewhat higher than the measured ones

for fluences above 2 x 1026 n/mz.
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Several points must be noted here. First, the microstructural data
used were from small rodsamp]és not under stress. Any effect of stress on
the microstructure is therefore missing. Second, the material for the rod
samples and for the pressurized tubes were from different heats. Considering
the large heat to heat variations of measured irradiation creep strains [25],
the difference between the predicted and measured creep strains is not at all
surprising.

The accelerating irradiation creep rate predicted by the SIPA mechanism
is attributed to the rapid increase of the dislocation density in solution-
annealed materials. Based on this interpretation, one would expect that the
irradiation creep rate in the cold-worked material should be substantially
larger than in the annealed material and decelerate with increasing fluence.
The reason for this expected difference is that the dislocation density in
20% cold-worked 316 SS decreases rapidly and reaches a saturation level with-
in a fluence interval of about 1 x 1026 n/mz. We shall discuss shortly this
radiation-induced recovery of the dislocation density.

It is evident from Fig. 2 that no decelerating creep rate is observed
in 20% CW 316 SS. Although its initial creep rate is somewhat larger initially,
it seems to follow essentially the same trend as the creep rate of the
annealed material. One may explain this similarity of the creep rate in
two ways. First, the dislocations in the cold-worked material are incapable
of climbing under irradiation, because they may be effectively pinned by
impurity atoms or small precipitate particles. However, this would contradict
the observed recovery of the dislocation density.

A second explanation can be derived from the heterogeneous distribution
of the cold-worked structure. The individual dislocations are members of

dense tangles, and were formed during the cold-working by the same Frank-Read
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sources. Their Burgers vectors are therefore parallel or antiparallel to
each other. Their bias is then equally affected by the external stress.
Lacking a nearby partner with different Burgers vectors and hence differ-
ent stress-induced bias, no SIPA couples exist. Hence, the planar multipole
configurations of edge dislocations seen in cold-worked materials are not
capable of participating in the SIPA creep.

The temperature dependence of the SIPA creep is derived to a large
extent from the temperature dependence of the dislocation and loop densities,
and to a lesser extent from the temperature dependence of the point defect
concentrations and the stress-induced bias factors. Since the dislocation
densities in both annealed and cold-worked materials are of comparable mag-
nitude at high fluences and temperatures, the temperature dependence is also
expected to be similar. This is shown in Fig. 3. The SIPA predictions are
again based on the microstructural data [2] for solution-annealed type 316
stainless steel, whereas the actual creep rate data [24] are from pressurized
tubes of 20% CW 316. The agreement is rather satisfactory at temperatures
above 450°C. Below this temperature, the discrepancy between the predictions
and the data may again be due to the differences in heat treatment.

At very high temperatures, the irradiation creep rate is overtaken
by the thermal creep rate according to the Nabarro mechanism. Since the
dislocation density under irradiation is higher than in the unirradiated
annealed material, Nabarro-creep is in fact enhanced under irradiation.

In summary, the SIPA mechanism can account for a substantial fraction,
if not for all, of irradiation creep at fluences greater than 1026n/m2
in type 316 stainless steels. There appears to be some deficiency at lower
fluences, where glide processes may be contributing significantly to
irradiation creep. It is important to note that among the parameters that

enter the theoretical SIPA predictions, the shear polarizability a? of an
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interstitial is the Teast known. Although measured values exist of the
magnitude used here, they are for the stable configuration of the inter-
stitial rather than the saddle-point configuration. Furthermore, these
values are not for stainless steels. It appears then that the ultimate
success of the SIPA mechanism as an explanation for irradiation creep
depends on a better knowledge of this critical parameter.

2.3 Irradiation Creep Mechanisms Based on Glide

If dislocations climb because of the preferred absorption of either
interstitials or vacancies they will inevitably glide to some extent.

This will even happen in the absence of external loads, and the glide
motion is directed entirely by the internal stress fields. These internal
stress fields are generated by the dislocations themselves and their
arrangement, and they are responsible for the long-range interaction among
dislocations. They are also contributing to the yield strength of the mate-
rial, and they may be considered as a source for glide obstruction.

Medium and short-ranged glide obstacles are created by sessile
disTocation loops, by small defect clusters, and by precipitate particles.
If the density of these glide obstacles is sufficiently high to fill the
spaces between the glide dislocations, they will dominate the glide
resistance.

Irradiation creep models based on glide may be categorized according
to the nature of the glide obstacles and their range of interaction with
the dislocations, and according to the cause of the climb that releases
the dislocation from the obstacle. Table 5 presents a list of the glide

models for irradiation creep together with their stress dependence.
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Table 5

Glide Models for Irradiation Creep

Cause of ‘
Climb Radiation- Stress-
Glide Induced Induced
Obstacle
Short- Climb-controlled SIPA-controlled
Randqed glide (CCG) glide
ge n-1 2
0, O (PA) o
Climb around
Med ium- Frank Toops .
Ranged (CCG) Unlikely
1/2
a s 0
Climb-induced
Long- . Most
Ranged yield (CIY) Unlikely

(o
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For the case of short-ranged glide obstacles and radiation-induced
climb, it is tempting to simply modify the corresponding thermal creep
models for alloys. The third power stress dependence for thermal creep
reduces then to a oz—law for irradiation creep. More generally, the
thermal creep power n would be diminished by one for irradiation creep.

A11 these third power models for thermal creep must utilize the
fact that either the mobile dislocation density is proportional to 02 or
that the subgrain size diminishes with stress. Thermal creep models with
stress-powers n > 3 are based on dislocation pile-ups and planar multipoles
which are continously fed by Frank-Read sources.

In order to obtain a linear stress dependence for irradiation creep
by climb-controlled glide (CCG) Gittus [26] makes the ad hoc assumption
that the area swept out in the glide process,after the dislocation is
released from the obstacle,is simply proportional to the elastic bow-out,
i.e., to the applied stress. This implies that the planar obstacle density
on the glide plane decreases with the applied stress.

Mansur [27] coupled the CCG model of Gittus with the SIPA process
and deduced a quadratic stress dependence. The SIPA-controlled glide
in his model obviates the need for a net preferential absorption of
interstitials at all edge dislocations. Hence, irradiation creep proceeds
also in the absence of swelling.

If it is assumed that the glide dislocation density as well as the
average obstacle distance are independent of stress, a CCG-model with
short-ranged obstacles would give the absurd result that irradiation
creep is independent of stress above the value of the Peierls friction

stress. This demonstrates in a dramatic way that it is important



27

to consider the force distance relationship between the obstacle and the
glide dislocation. For any given applied load, there exists a sphere of
influence around the obstacle at the boundary of which the obstacle force
equals the line tension of the dislocation. Since the obstacle force be-
comes stronger closer to the obstacle, the number of effective obstacles
intersecting the glide plane as well as their effective height decreases
with increasing stress. Wolfer and Boltax [12] have applied these
considerations to the case where small Frank Toops constitute the major
glide obstacles. They derived two stress dependencies: o]/z and o. The
former would be expected only for very small stresses when dislocation
pile-ups are unlikely to occur, whereas the linear stress dependence
requires the formation of pile-ups.

They also pointed out that an increasing loop density with increasing
radiation dose will reduce the CCG contribution to irradiation creep.
Consequently, CCG is expected to be active only at low doses.

Since the effective height of the obstacle which must be overcome
by climb is rather large in the case of Frank loops, it is unlikely that
SIPA could proceed at a sufficient rate to release the glide dislocations.
Therefore, we expect that obstacles with medium-ranged interaction forces
can be overcome only by swelling-driven climb or by random climb based on
differences in the intrinsic bias factor of dislocations in different
environments [28].

The long-range forces between dislocations have recently been impli-
cated [6] as the cause of irradiation creep. Adopting the idea for the
Robert-Cottrell creep to cubic metals, Gittus [6] has argued that a climb-
ing network can be considered as a source of internal stresses whose
distribution is nonuniform and continuously fluctuating. The dislocations are

subject to the stochastic internal stress field and perform a random glide
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motion which can be biased in one direction by an externally applied Toad.

In spite of the model's intuitive appeal, however, there remain some serious
questions as to its validity. The major objection that can be raised is

that forces between any two dislocations are equal and opposite. If o

is the internal stress generated by all other climbing dislocations, the
total stress acting on one given dislocation is (o—oi) where o is the
external stress. If the specific glide contribution of any given dislocation
is proportional to (o-oi), the average glide contribution is proportional

to (0-81). The average internal stress, 51, is zero because of balance of
forces. Hence, dislocation interactions can have no effect on the irradiation
creep rate. This conclusion was in fact reached by Weertman [29] in conjunc-
tion with thermal creep.

In concluding this short review on the role of glide, it is noted that
climb-controlled glide of dislocations past obstacles is indeed an important
mechanism for irradiation creep. However, theoretical models proposed so
far are heuristic in nature, and depending on the assumptions, yield a variety

of stress dependencies.

3. Microstructural Processes

3.1 The Evolution of the Dislocation Network

The formation and growth of interstitial-type loops is one of the most
conspicuous manifestations of radiation damage in metals at elevated
temperatures. Because dislocation loops have a bias factor for inter-
stitial absorption greater than the bias factor for straight edge dis-
locations, interstitial loops continue to grow until they coalesce or
react with the network dislocations. Exceptions to this unlimited growth
may occur when impurities segregate to the loops, and at high temperatures,

when thermal vacancies diffuse to the interstitial loops.
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In a well annealed material the maximum radius Rm to which the loops

n

can grow is determined by (4m/3) NJFC R; 1, where Nx is the Toop density.
Coalescenceand unfaulting of the loops produces a network of dislocations.

As the dislocation density increases, the loops react more and more with the net-
work than with each other. One would expect then that the maximum loop radius

_]/2, where p is the dislocation

is of the order of the mesh length p
density. Such a relationship has indeed been observed [4] for neutron
irradiated type 316 stainless steels.

The continued production of dislocations by the growing interstitial
Toops is eventually balanced by the radiation-induced recovery of the
network dislocation density. To describe then the evolution of the dis-

{ models for the impingement rate of loops on the network

location density N
must be developed and models for the radiation-induced climb must be used
to compute the annihilation of edge dislocations with opposite Burgers
vector.

Instead of presenting a detailed theoretical account we adopt here a

simple phenomenological approach. First, in analogy to thermal recovery,

it is assumed that the recovery rate under irradiation is also proportional

d)Z.

between the growing Toops and the network dislocations, is assumed to be

proportional to Nd, Hence, we obtain as the rate equation for the dislocation

to (N The production rate of new dislocations, depending on the reaction

density the relation

The function A is proportional to the climb rate of edge dislocations,
whereas the function B is proportional to the growth rate of interstitial

loops.
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Both functions depend, apart from minor but essential differences
in bias factors, on the net atom flux (DICI - DVCV). Their ratio, B/A,
is then to a first approximation independent of the irradiation temperature
for T < 0.5 Tn- Above a temperature of 0.5 Tq» thermal recovery becomes
important and B/A should decrease with increasing temperature. As a

consequence of this model, the saturation value of the dislocation density

Ng = B/A (28)

is expected to be independent of the irradiation temperature as long as
the thermal recovery is negligible compared to the radiation-induced

recovery.

a
0

given by

If N, is the initial dislocation density the solution of Eq. (27) is

Nt) = v/ m+ - 1exp(1-ande)] (29)

This equation describes the experimental observations of Brager et al. [30]
rather successfully. The experimental results are shown in Fig. 4 for both
solution annealed and cold-worked type 316 stainless steel neutron irradi-

ated at T = 500°C; the curves represent merely hand-drawn lines. The

observed saturation dislocation density is NS =6 X 1010 cm'2.

Using this value for the ratio B/A and the requirement that the

dislocation density in the solution-annealed material reaches the saturation

value NS at a fluence of about 3 x 10°° (n/mz), Eq. (29) gives the results

d -
as shown in Fig. 5. The initial dislocation densities were N0 =4 x 108 cm 2

1

and Ng =7 x 10 cm'2 for the solution-annealed and the cold-worked material,
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respectively. It is remarkable that this simple model, when fitted to two
experimental values for the solution-annealed materials, predicts successfully
the reduction of the dislocation density in the cold-worked material.

It contradicts, on the other hand, the notion that the original
dislocations in the cold-worked material are in any way different from
those produced during the irradiation, with regard to their ability to
absorb point defects. Any differences between the irradiation creep rates
of solution-annealed and cold-worked materials must then be attributed to
thearrangement of groups of dislocations (multipoles vs. isolated disloca-
tions) and/or the differences in the solute atom distribution in the matrix.
The latter is known to be influenced by cold-working.
3.2 The Loop Size Distributions

It was shown earlier [14] that the number of loops formed by x inter-

stitials, g(x,t), satisfies a Fokker-Planck equation

oo 2 F ) - 2000} g(x,t) (30)

where
Fix) = ROOZEOTZYZE - 2/2,)F - 0y(C - €] (31)
D(x) = WO ZE + 2,/2,0F + 0,(C5 + )] (32)

The equation (30) can be solved by integrations when 5g/3t = 0, as
described in Ref. [14]. At temperatures below 500°C the terms containing

the equilibrium vacancy concentrations C& and CS may be neglected. Then,

F/p, which determines to a Targe extent the shape of the loop size
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distribution, is then only dependent on the bias factor ratio Z%(x)/zé(x)
and the average bias factor ratio ZI/ZV.

Previous computations [19] of the bias factors Z% and Z& were based
on the infinitesimal Toop approximation for the stress fields. The
obtained results are therefore applicable only to small loops. In another
investigation [20], corresponding bias factors were obtained for the straight
edge dislocation. These two results can be considered to represent limiting
cases of the bias factors for a finite circular dislocation Toop. Unfortu-
ately, only numerical results are available in this case [31]. In order to
obtain a simple analytical expression, the following interpolation procedure
was developed.

In the absence of any interaction of the point defect with the stress
field of the loop, the point defect current can be written in the form

_ 4ﬂ2R D S 33
J = n(8R/a) (C-1¢C) (33)

where a is the core cut-off radius and R the loop radius. Seeger and

Goesele [32] have shown that Eq. (33) is an excellent approximation to

an exact result expressed in terms of toroidal harmonics. The geometry factor

A = 4r%R/an(8R/a) (34)

bears great resemblance to the one for a straight edge dislocation, Ad,

as listed in Table 4. In fact, if A2 is divided by the circumference
2nR, the geometry factor per unit length is 2w/2n(8R/a).
The disTocation bias could now be included into the expression for
Az if the core cut-off radius were replaced by the capture radius Cr or Cy.

Alternatively, we define a Toop bias factor separately by
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ZI,V = Rn(SR/a)/zn(BR/CI,V) R (35)

and determine the capture radii C and Cy and the core cut-off radius a

such that Eq. (35) agrees with the previously derived bias factors for the
infinitesimal loop as (R/b) becomes small, and with the bias factors for

the edge dislocation as 2R approaches the average separation distance 2d

of dislocations. The results so obtained are shown in Fig. 6. The solid lines
are bias factors for the stress-free case, whereas the dashed Tines show

bias factors for a tensile stress of o/G = 10'3

normal to the loop plane.
A tensile stress enhances the bias factor for interstitials slightly more
than for vacancies. Compressive stresses result in a corresponding

1 %
reduction of Z? and, to a lesser degree, of ZV.

In addition to the bias factors, we need the following boundary
conditions for a solution of the steady-state equation 3g/3t = 0. At a
maximum loop radius of Rm = 40 nm, corresponding to a maximum interstitial

number of X = W(R/b)2 = 105

, the loops are assumed to impinge on the
network dislocation. This value of the maximum radius Rm was chosen in
accord with the experimental observations of Brager et al.[4] shown in
Figs. 7 and 8. The number of loops with this radius g(xm), becomes equal
to zero.

At the lower end of the Toop size distribution the loop density must
become equal to the number of interstitial clusters g(xo) which constitute the
embryonic Toops. Since g(x) is proportional to g(xo), the normalized size distri-
bution g(x)/g(xo) becomes equal to one as x approaches Xy The following results
are therefore presented in terms of the ratio g(x)/g(xo).

The Tast parameter needed to compute the loop size distribution is

the ratio of the sink-averaged bias factors ZI and ZV‘ Since the loops

themselves contribute to these average bias factors, it would be necessary
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to not only know the loop size distribution first, but also the density
and individual bias factors of all the other sinks present. Such a self-
consistent evaluation of ZI and ZV is only possible in a comprehensive
microstructural theory, which has not yet been developed.

For the sake of demonstrating the effect of stress on the loop size
distributions, we consider the ratio ZI/ZV as an input parameter. Its
value must be larger than the bias factor ratio Z?/ZS for edge dislocations
when Toops are present, and it is therefore equal to Z%(x*)/zé(x*), where
x* is the number of interstitials in the average loop size. We select

this average Toop size to coincide with the maximum of the experimental loop size

distribution of Fig. 7, i.e., at a radius of about R* = 32.5 nm. This

IR

corresponds to a value x* = 13300.

With all the above specifications the loop size distribution can now be
computed as discussed previously [14], and the results are shown in Fig. 9.
The three normalized size distributions g(x)/g(xo) are for the stress-free

BG,

case (0),and a normal tensile (+) or compressive (-) stress of o, = +10°
respectively.

In comparing these theoretical resultswith those in Fig. 8, it must be
noted that the loop bias factor contribution leading to SIPA and to the stress-

induced change of the loop size distribution is dependent upon the normal

deviatoric stress

where oy is the hydrostatic stress.
In a pressurized tube, the deviatoric normal stress on planes perpen-
dicular to the radial direction is equal to (—06/2),where g is the hoop

stress.  The deviatoric normal stress on planes perpendicular to the axial



35

direction is equal to zero, and on planes perpendicular to the hoop
direction Ogn = * 06/2.

Based on the theoretical predictions, the loop size distribution in
pressurized tubes should then be below and above the "stress-free" size
distribution. The experimental observations shown in Fig. 8 agree in
principle with this conclusion, although the suppression on planes nearly
perpendicular to the radial direction is less than the enhancement on
planes oriented nearly perpendicular to the hoop direction. This asymmetry
in the "splitting" of the loop size distributions in pressurized tubes is
associated with an overall increase in the total number of loops present
compared to the number in stress-free tubes.

Stress-induced rotation of the embryonic Toop density g(xo) could
produce an asymmetric splitting but it would not result in an enhancement
of the overall loop density. One would therefore be led to the conclusion
that tensile normal stresses should also enhance the number g(xo) of
embryonic Toops. Although both the asymmetry and the increase in loop
density could thereby be explained, the above theoretical analysis requires
further refinements before a firm conclusion can be reached. First,
there exists of course a range of radii at which the loops become part of
the dislocation network rather than one unique value Rm. Second, the
unfaulted Toops as well as the network dislocations may glide under the
influence of the stress, and thereby affect the range of maximum loop
radii. Third, we have neglected entirely the interaction and the possible
reaction of loops on different crystallographic planes. In spite of all

these omissions, the present theoretical explanation of the loop size
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distributions in stressed materials is considered to be one of the strongest
supports for the existence of the SIPA mechanism for irradiation creep.

4. Micro- and Macromechanics

As indicated in section 2, the constitutive equation for creep within
one grain depends on the orientation of the climb or glide systems with
regard to the stress state. This crystallographic dependence arises from
two reasons. First, there exist only a discrete number of glide systems and
climb directions in a cubic crystal. Therefore, as shown recently [ 5],
the creep strain rate tensor éij is related to the deviatoric stress

tensor G, , by a creep compliance tensor wijkz such that

k%

f37 L Yiske B (36)
In materials with microstructures having no preferred Burgers vectors, the
creep compliance tensor shares the symmetry properties of the crystal
lattice, rendering the creep properties anisotropic.

An additional anisotropy is produced in wijkz if the dislocation
structure exhibits a preferred Burgers vector. An example is provided
by the splitting of the loop size distributions in stressed materials.

Some practical implications of the anisotropy of irradiation creep
were recently discussed [5,33]. In polycrystalline materials, the grain
to grain variations of the creep properties lead to a local state of
stress which differs both in magnitude and orientation from grain to grain.
Upon removal of the external loads, internal residual stresses arise. It
has been shown [33] that these residual stresses give rise to an anelastic
transient creep strain in a polycrystal when the external stress is changed.
This example demonstrates that the macroscopic creep behavior is not only a

consequence of the atomistic process of deformation, but is also dependent

on the heterogeneous nature of structural materials.
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5. Conclusions

In comparing theory and experimental data of irradiation creep we
have restricted ourselves to type 316 stainless steel irradiated in the
fast neutron flux of EBR-II. This restriction is deemed necessary because
of several reasons. First, high fluence data are presently available only
from irradiation in fast reactors. Second, there appear to be different
mechanisms leading to irradiation creep, namely dislocation glide and
climb by SIPA. The latter makes a substantial contribution only at inter-
mediate and high fluences. Irradiation creep data obtained in ion-
bombardment experiments are presently restricted to very low doses, and
therefore, the dominant creep mechanism in these experiments appears to be
a glide process. Third, a comprehensive electron microscopy study of the
microstructure of highly irradiated materials in both the stressed and
unstressed conditions has only been done for type 316 stainless steels.

For these reasons, our conclusions may not apply to other materials,
such as Zircaloy and refractory metals. Nevertheless, the understanding
gained for SS 316 will certainly influence future investigations on
irradiation creep in these other materials.

The above comparison of theory and experimental evidence for various
mechanisms of irradiation creep leads us to the following conclusions:

1) The interstitial-type loops represent only a partial record of

the more recent stress history. Hence, the microstructure
observed at a given dose can only provide information about the
irradiation creep rate at this dose, but not about the accumulated

creep strain.
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2) Both glide and climb contribute to the irradiation creep strain.
However, at low doses, the climb contribution is small, though .
essential as a rate-controlling mechanism.

3) At intermediate and high doses, the climb contribution is substantial.
This was demonstrated by a careful evaluation of the SIPA mechanism.
In addition, the climb distance required for an edge dislocation to
overcome the dominant glide obstacle, a Frank loop, is of the same
order as the glide distance between two subsequent glide obstacles.
Hence, climb and glide must contribute to the irradiation creep
strains.

4) Whereas the SIPA mechanism yields a Tinear stress dependence in an
unequivocal manner, the same cannot be said for any of the glide
mechanisms.

5) Both the theoretical basis as well as the experimental evidence of
stress-induced Toop alignment are in favor of the SIPA mechanism
rather than a loop rotation mechanism.

6) Climb-controlled glide and climb-induced yielding are opposite
extremes of the same mechanism for irradiation creen. For the
former, the climb process at one dislocation only induces its own
glide motion, whereas in the latter case, it triggers the glide
motion of other dislocations as well. Which view is the more
appropriate one depends on the extent of the heterogeneous nature
of the microstructure.

7) Because of the crystallographic dependence of the irradiation creep
properties, a polycrystalline material is indeed heterogeneous.

The extent of the variation of irradiation creep from grain to grain
depends on the atomistic mechanism for irradiation creep. The

macroscopic irradiation creep law of a polycrystal -then contains
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terms which lead to anelastic behavior as a result of this
heterogeneity.

8) The dose and temperature dependence of irradiation creep is mainly
determined by the evolution of the loop and dislocation structure,
and at very high doses, also by the radiation-induced phase

changes.
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Fig. 1. The six stable tri-interstitial configurations in fcc metals.



43

COMPARISON OF MEASURED IRRADIATION.
CREEP STRAINS WITH SIPA PREDICTIONS
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Fig. 2. Comparison of the predicted and the measured irradiation creep
strain as a function of fluence. The solid lines are due to
SIPA creep, using the microstructural data of Ref. 2.
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Fig. 5. The evolution of the dislocation density as computed from theory.
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Fig. 9. Computed Toop size distributions for normal stresses equal to
zero (0), on/G = 0.001 (+), and on/G = -0.001 (-).





