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ABSTRACT

A new discrete neutron transfer cross section technique has been
developed to resolve difficulties found using the traditional Legendre
polynomial expansion for time dependent problems with strong source
anisotropy. An important class of such problems is the analysis of
blanket performance in inertial confinement fusion systems. The new tech-
nique can be readily incorporated without formal changes into existing
codes which solve the transport equation. A shielding problem and an ICF
blanket problem are used as examples to illustrate both the difficulties
presented by the traditional approach and the improvements brought about

with the new method.



I. INTRODUCTION
It has beennoted previously that the use of a truncated Legendre ex-
pansion for the representation of multigroup differential transfer cross
sections in combination with a discrete ordinate technique for solving the
neutron transport equation often leads to the generation of incorrect
(frequently negative) angular fluxes in problems involving severe anisotropies

in the source and cross sections. 1-3

Problems of this type include shielding
of high energy neutrons and fusion reactor blanket neutronics. Since angular
fluxes are usually of no primary interest and the angular integration

almost always produces positive scalar fluxes, relatively 1ittle effort has
been invested in the development of techniques to prevent this error.
However, it is found that a conventional time dependent neutronics analysis
involving a high energy, anisotropic pulsed source leads to negative scalar
fluxes in certain time intervals. These fluxes are not acceptable if one is
concerned with instantaneous reaction rates (time dependent reaction rates
are important for radiation damage studies of inertial confinement fusion
(ICF) reactor blankets). In addition, negative scalar fluxes in steady

state problems are found in regions where the source is exclusively due to
neutrons reflected fromanother region (e.g. reflections from a shield).

A partial-range Legendre polynomial cross section expansion was
introduced by Attia and Harms3 to eliminate the possibility of the
differential group transfer cross section representation becoming negative
over certain angular ranges. This technique in its most general and
accurate form is difficult to implement numerically because the wide range
of materials and neutron energies prevents the practical selection of any

constant set of partial angular ranges. Odom and Shultis] describe a method



which closely parallels the technique described in this paper. Their numerical
approximation of the transport equation renders the Legendre polynomial
expansion unnecessary but requires discrete cross sections for each angular
and group transfer. This is the ideal cross section representation for a
discrete ordinates solution but it requires the writing of a new numerical

code since most present neutron transport codes (e.g. time-dependent ANISN4

or TIMEX !3)

only accept Legendre polynomial expansion coefficients as input
data. The method proposed in this paper is theoretically similar to the Odom
and Shultis model but retains the Legendre polynomial formalism. A modification
to the data is made such that the discrete cross sections are preserved during
the calculation, yet the data can be used by a standard discrete ordinates
transport code.
IT. THEORY

The neutron transport equation, as presented in Eq. (1), is an integro-

differential equation involving seven independent variables,

1 §Ei£%%¢§1£i + VoDV (F,80,E,t) + 2 (F,E)e(V,8,E,t) =

v t
[ 2 (PE ) F(RES 5 > E8)o(F 87 B t)dE"dd” + q(F,8,E,t). (1)

Several approximations must be made to reduce the equation to a form which is
soluble by numerical techniques. For the purposes of this discussion, the

time integrated, one-dimensional slab form of Eq. (1) is sufficient;
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IT.A. Traditional Approach

The first term on the right hand side of Eq. (2) describes particle
scattering from all energy and angular domains of phase space (primed variables)
into the region of concern (unprimed variables). Since inelastic scattering
is reasonably isotropic, the emphasis is placed on the description of
the elastic scattering kernel. The angular dependence of the kernel is
often approximated by a Legendre polynomial expansion as

(,E")Fgq (xGE” > E,0 )2 y 22l 2y (GEE)P (1) (3)
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where My = g . 8. Due to the completeness property of Legendre polynomials,
the infinite summation is exact when the expansion coefficients are determined

using the orthogonality relationship,
1
L, (x3E™E) = 2w{]261(x,E ) F g (GE=E )P (1w )du . (4)

The expansion for the scattering kernel can be used in Eq. (2) resulting in
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Using the expression di” = du”do” and the addition theorem for Legendre poly-

nomials, the scattering term in Eq. (5) can be easily integrated over the

azimuthal direction. The resulting equation is
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where 1~ and u are the before and after collision direction cosines, respectively.
The energy dependence of the equation is approximated by the multigroup

representation and the angular integration is reduced to a weighted

summation by the discrete ordinate technique. These procedures are dis-

cussed in great detail and appropriate definitions are provided in Ref. (5)

so are not elaborated on here. The final form of the transport equation

is
G N -
9 59 9. 1a9 - ®© 2041 979 g7,
My 3x @ (x,uj) + 2i(x)e (X,uj) L oL =1 .(x)PR(uj).Z_ P ()27 (xsu, Juns +
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Within the restrictions imposed by the multigroup and discrete ordinate
approximations, this equation is still exact due to the infinite summation
over the Legendre polynomial expansion order index. However, as a matter of
practicality, this summation must be truncated at some finite limit L.

This is the cause of the negative fluxes often observed in discrete ordinate
calculations. An upper limit of three is commonly used in fusion neutronics
calculations. This figure has been arrived at from steady state sensitivity

6 It is also this low

studies of reaction rates in fusion reactor blankets.
because of the common misconception that the optimum order of a l.egendre
polynomial cross section expansion for an N-th order discrete ordinate
calculation is either f_g-or N-1. As is seen later in this article this is
not true for time-dependent and strongly anisotropic problems.

Comparisons of finite order Legendre expansions versus true group
transfer cross sections have been illustrated in several references.]’B’7

The fact that the expansion results in negative values over particular

angular ranges and positive values over angular spans where the true cross



section is zero can cause considerable nonphysical distortions of the
calculated angular flux. In extreme cases, the scalar flux is negative or
definitely incorrect. These extreme cases, however, are important in time
dependent calculations and problems involving reflected particles from
shielding.
IT.B. New Method

The technique we have developed to alleviate these problems involves
the application of the multigroup approximation before any treatment of the
angular dependence of the scattering kernel. If this is done, the resulting

equation is

G e e
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with the standard multigroup definitions. In addition, the following definition

is used:
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Using the addition theorem for Legendre polynomials with £=0, Eq. (8) can

be written as
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Allowing the azimuthal dependence to remain continuous but applying the discrete

ordinate approximation to the p variable, Eq. (10) is transformed to
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A code, MGRP, has been written to solve this equation using the discrete
transfer cross sections and favorable results were achieved.1 However, it
is of primary importance for the present investigation to develop a procedure
which is easily adaptable to existing codes.

This is accomplished by equating the scattering terms in the two

equations, Eq. (7) with a finite summation and Eq. (11),

G L *q->q N .

gJ='| 2=0 J i=1
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The expansion coefficients on the LHS of Eq. (12) are superscripted with
asterisks to indicate that they may be different from the coefficients
determined by orthogonality. In order that Eq. (12) be true, the following

identity must hold:

zéo 2221 Zzg’“\g(X)Pz(ui)Pz(uj)EfZg{*g(x,uiuf(l-uf)”z(l-uJZ-)]/Zcos(cp-q)’))d¢'(13)
If the new expansion coefficients are used as data in a discrete ordinates
code, the scattering term of the transport equation is treated as exactly
possible within the Timits of the discrete ordinate and multigroup approxi-
mations. The error introduced by the Legendre polynomial truncation is
eliminated.

The Tast step in this procedure is to determine the new expansion
coefficients. Once the quadrature set is chosen the only undetermined value

in Eq. (13) is L. It is chosen by requiring that every unique combination

of Hy and uj is preserved.



The number of unique {”i’”j} combinations depends on several factors,
namely quadrature order, symmetry conditions, problem geometry and source
direction. In order to minimize the expansion order, the usual symmetry

conditions are assumed,

o(uus) = olussu,)

J J
and

M7 HieN-t

This method can also be used with asymmetric quadrature sets but a higher
order expansion is then required.

The geometry of the problem influences the value of L. In slab
geometry, the one quadrature point of zero weight is ignored. It is
however used as a boundary condition in curved geometry. Thus SN problems
in slab geometry require the preservation of cross section only between

N quadrature points, i.e.,

o(u]+u1) i=1,2, ..., N

O(u2—>u-i) .i = 2, LECREA'Y N"]
oluyny) 1= g, -g—ﬂ
2

This means an S,, calculation requires

N
N+ (N-2) + (N-4) + ... + 2 = NI#2)

. . +2 .
cross sections or an expansion order of L = HL%——l - 1. However, in curved

geometry, the calculation begins with the determination of the angular flux
in the weightlessdirection (usually Hyep = -1.0). This is then used as a
boundary condition to find the solution for the angular flux at Hy- There-
fore, the cross sections o(—1+u1) must be preserved and this adds another

N+1 expansion coefficients so that L becomes Ni%iél



Similarly, the source direction is important. If a calculation involves
a neutron beam normally incident to a surface, it is especially important in
time dependent codes to allow the neutrons to travel at v =1 (rather than at
My which is slightly off normal) so that the time-space relationship is not
destroyed. We do this here by using an analytic first collision source.
Even in slab geometry, the preservation of o(1+ui) is imperative in order to
obtain an accurate first scattered source distribution. In curved geometry,
scattering from u = 1 to 4 = -1 should be included due to the boundary
condition mentioned earlier. This adds one additional coefficient to the
expansion and leads to L = Hiﬂigliﬂ- for an SN calculation of this nature.

The simplification of Zg‘*g(uo) is given in Ref. 8 and is not derived

here. The result is

.. h(w) b
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elastic scattering kernel
= cosine of scattering angle in CM system
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V(E”) = energy dependent weighting function,
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The azimuthal integration is performed in Eq. (13) when the expression for
the cross section is substituted from Eq. (14). The resulting algebraic
set of Lequations and L unknowns is then solved.

A disadvantage of this technique is that the coefficients are dependent
upon the quadrature used. Different quadrature sets require different data.
However, this problem is relatively minor since many users rely on only one
set, often the Gauss quadrature. In any case, any number of data sets can

be generated and stored on tape for convenient access.

ITI. APPLICATION AND RESULTS
ITI.A. Shielding

A case involving a monodirectional plane source between two paraliel
slabs (see Fig. 1 ) is an excellent example to dramatically illustrate the
consequences of using a Legendre polynomial cross section expansion. The
back scattered neutrons are isolated and the behavior of these neutrons in
the absence of an uncollided flux is highlighted in the region behind the
source. Simultaneously, the traditional slab problem is examined in
slab II enabling one to determine the effect of the alteration of the
scattering function on the forward scattered flux.

The slabs are composed of graphite since this material is often
associated with fission and fusion reactor designs. It is often considered
as a liner and reflector in magnetic confinement fusion reactor designs9
and as a first wall, reflector and structural material in ICF reactor
studies.]O

The time dependent calculations are performed using the Time-Dependent

ANISN (TDA)]] discrete ordinate computer code. The system is divided into

seventeen spatial intervals each of 5 cm width. The number density of
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graphite is 5 x 1022/cm3 which implies that the intervals correspond to

A/3 where X is the mean free path of a 14 MeV neutron. Time steps are

Ar

determined such that VAL - 1 for first group neutrons (v = 5.245 x 109 cm/s).

The analytic first collision source option is employed which allows neutrons

to be incident normal to the surface of slab II. The magnitude of the

source is 3.33 x 109 s']cm'z.

Results for the parallel slab calculations are presented in Figs. 2-9.
Note that a circumscribed symbol denotes that the actual calculated value
is negative (1.e.(:)= ~-A). The first five figures depict the results of
time dependent calculations using the following five techniques: (1) 34-P3

expansion; (2) S,-P, with traditional P, expansion;

8 3 3

(3) 54-P8 with traditional P8 expansion; (4) 58-P8 with traditional P8

expansion; and (5) 54—P]] with new discrete expansion. The last two figures

with traditional P3

illustrate results of steady state calculations using ANISN. These include
results of two other models, the 516-P3 with traditional expansion and 54-P6
with the new discrete expansion. ATl calculations use Gauss quadrature
points and weights.

The temporal distribution of first group neutrons in the fourth spatial
interval (middle of slab I) is shown in Fig. 2. Note the large
magnitude of the negative reflected flux determined by using
a traditional P3 expansion. The flux determined by using the discrete
cross section expansion shows more physically realistic behavior - a small,
positive flux due to multiply scattered neutrons. It is shown in Fig. 3
that increasing the order of a traditional expansion (in this case to P8)
causes the calculated flux to approach the magnitude of the discrete expansion

flux even though the oscillations and negative values still exist.
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There is another important point made by this figure. Contrary to
the belief of many users of discrete ordinates codes, increasing the order
of the cross section expansion beyond the quadrature order does not imply
the retention of superfluous moments. Figures 2 and 3 illustrate this very
clearly by the obvious improvement of results when switching from S4—P3 to
54-P8 techniques. The expansion order should be chosen by sensitivity
studies and is dependent on the severity of the anisotropy involved in a

problem, not necessarily on the quadrature order.

The next two figures illustrate the effect of the expansion order on
the calculation of the flux in slab II, essentially the traditional
slab problem. The first group flux in the middle of slab II as determined
using the normal P3 expansion becomes negative at times following the passage
of the source pulse. This problem is found regardless of the quadrature
order. The use of the discrete expansion generates results which are physically
acceptable, a rapid monotonic decline in the flux with time after the source
is gone. Fig. 5 1illustrates that an increase in the traditional expansion
order produces results that coincide with fluxes determined with the new
discrete expansion. HNote again the dramatic increase in the accuracy of the
results found upon switching the calculational model from 54-P3 to S4-P8.

The spatial profiles of the first group flux at a given time step are

exhibited in Figs. 6 and 7. The time chosen corresponds to the time at which
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the source pulse is in the middle of slab II. It is briefly noted again that
the use of the traditional P3 Legendre expansion leads to non-physical
oscillations in the flux in comparison with the precipitous positive slope
predicted using the discrete expansion. Increasing the expansion order
reduces but does not eliminate the negative fluxes. Figure 7 may lead

one to believe that since the magnitude of the negative flux calculated in
slab I is four orders of magnitude less than the flux in slab II, accuracy

is insignificant. Note, however, that this flux represents the reflected
neutrons that are of primary importance in shielding studies.

The effect of the cross section expansions on steady state (time-integrated)
results is illustrated in Figs. 8 and 9. The model again consists of two
parallel graphite slabs each 16 c¢cm wide, separated by a 10 c¢cm vacuum region.
A plane source emitting neutrons in only one direction is located at the
center of the vacuum between the slabs. A uniform spatial mesh with
Ax = 2cm is used and the calculation is performed with the ANISN code.

Since time integration has an averaging effect on the fluxes, one notes
that the agreement between results using the standard and new techniques is
much better than for time dependent problems. The first group fluxes in
slab II are identical due to the overwhelming dominance of the pulse. In
slab I, however, the nonphysical behavior of the fluxes determined using
the P3 expansion (negative fluxes in the 54-P3 case and boundary peaking in
the 516'P3 problem), again appear as they did in the transient example.
Allowing for multiple small angle scattering, the use of the new discrete
expansion technique yields more physically intuitive results than either of

the other methods. Note also that the discrete expansion is a sixth order
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expansion since in slab geometry, when the analytic first collision source
is not available, transfers between My and +1 need not be preserved.

The next figure, Fig. 9, shows the first group angular flux in the
middle of slab II (interface between intervals 17 and 18). For illustrative

purposes, the P]] discrete expansion results are given since the P angular

6
flux is incorrect at u = -1. The scalar flux calculation is insensitive

to this problem since p = -1 is a weightless direction. Note that the
angular flux predicted using the discrete expansion decreases monotonically
with the scattering angle while the other angular fluxes oscillate with the

general shape of a third order Legendre polynomial.

Time Dependent Reaction Rates

Negative instantaneous neutron damage rates to materials were of great
concern at the beginning stages of the laser fusion reactor design program
at w1sconsin.]0 The concern was not due exclusively to the fact that the
rates were incorrect but also because the effect may propagate through time
and cause the integrated damage rates to be incorrect. The results of this
research show that the new expansion yields integrated values that are not
significantly different from those obtained using the traditional expansion
method.

There are two main reasons for this result. One is that the significant
negative flux problem resides in the first group. The other groups are
affected by the inelastic nuclear downscattering which is predominantly
isotropic. Thus even though the first group flux is significantly negative
or incorrect, the Tower energy group fluxes at early times calculated using a

P3 expansion compare quite well with the results using the new expansion.
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At later times, several hundred nanoseconds after a neutron pulse strikes the
first wall, all source groups have substantially correct fluxes.

The second cause of the generally good time and energy integrated results
is the use of an accurate representation of the neutron source. Although
a laser fusion microexplosion may last for just tens of picoseconds, the
Doppler broadening of the neutron source energy distribution leads to a -
time-of-flight spreading in neutron arrival times at the first wall of the
reaction chamber. This spreading is further enhanced by neutron moderation
within the laser fusion pellet itself. The effectively softer neutron source
spectrum which is also spread in time permits one to use a P3 expansion
to solve this problem. Such an approach would not work if the source were
completely confined to the highest energy group and the effective source
pulse Tength were essentially zero.

The blanket configuration illustrated in Fig. 10 is used to test the
two expansions. Using the softer source spectrum from the pellet, the new
expansion leads to only a 2.5% decrease in the total helium production rate
in the first wall and a 1.5% increase in the displacements per atom when
compared to results from a standard 58-P3 computation. The instantaneous
damage rates are the same using both data sets until the magnitude of the
damage ratereacheslevels of less than 1% of the peak rate. At this point
the helium production rates dramatically diverge. This is illustrated in
Fig. 11 where the abscissa gives the time after the leading edge of the
pulse strikes the first wall. The P3 expansion leads to a relatively large
secondary pulse due to reflected high energy neutrons. The new expansion

also predicts this but at a much Tower level. The displacement rates are
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not affected by the change in expansions since the displacement cross section
for graphite is large in the low MeV and keV region. Thus, the displacement
rate is dominated by source neutrons with energies in these groups which
arrive later in time.

IV. CONCLUSIONS

A discrete cross section expansion for use in discrete ordinate neutron
transport codes has been found to produce more accurate results than traditional
methods in time dependent problems with severe anisotropies on the neutron
source or the scattering. A constraint on the technique has been that the
representation be easily incorporated into the structure of existing codes
with no formal changes necessary.

The technique relies on the fact that the discrete ordinate method
utilizes angular transfer probabilities for a finite number of angular
combinations. A major characteristic of the new expansion is the preser-
vation of the exact values of the necessary angular scattering cross sections.
This is accomplished by determining the required transfer probabilities and
generating a set of expansion coefficients which, when used in the code,
reproduce the correct cross sections. Since the data retains the formal
format of Legendre polynomial cross section coefficients, no code modifications
are necessary. Important also is the fact that when the problem does not
require such an accurate solution, the P3 expansion coefficients can be
substituted in the traditional manner. In a code written to handle discrete
cross sections, this cannot be done since the number of cross sections
required is dependent only on the quadrature order.

The new expansion results have been shown to be significantly better

than results obtained using traditional methods in the simple parallel slab
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problem used to approximate a shielding calculation. This geometry is
chosen since the correct behavior of the flux is physically intuitive.
Though it may not be absolutely correct, the new expansion leads to
results which are better than can be obtained with traditional techniques.

The time dependent damage rates in materials subject to a pulsed neutron
source, as in an ICFR, are similar at early times using either expansion method.
This is due to source broadening in energy and time which makes the initial

anisotropies in the problen less severe.
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Table 1

Neutron 25 Energy Group Structure in eV Group Limits

Group E(Top) E(Low) E(Mid Point)
1 1.4918 (+7) 1.3499 (+7) 1.4208 (+7)
2 1.3499 (+7) 1.2214 (+7) 1.2856 (+7)
3 1.2214 (+7) 1.1052 (+7) 1.1633 (+7)
4 1.71052 (+7) 1.0000 (+7) 1.0526 (+7)
5 1.0000 (+7) 9.0484 (+6) 9.5242 (+6)
6 9.0484 (+6) 8.1873 (+6) 8.6178 (+6)
7 8.1873 (+6) 7.4082 (+6) 7.7979 (+6)
8 7.4082 (+6) 6.7032 (+6) 7.0557 (+6)
9 6.7032 (+6) 6.0653 (+6) 6.3843 (+6)

10 6.0653 (+6) 5.4881 (+6) 5.7787 (+6)
11 5.4881 (+6) 4.4933 (+6) 4.9907 (+6)
12 4.4933 (+6) 3.6788 (+6) 4.0860 (+6)
13 3.6788 (+6) 3.0119 (+6) 3.3453 (+6)
14 3.0119 (+6) 2.4660 (+6) 2.7390 (+6)
15 2.4660 (+6) 1.3534 (+6) 1.9097 (+6)
16 1.3534 (+6) 7.4274 (+5) 1.0481 (+6)
17 7.4274 (+5) 4.0762 (+5) 5.7518 (+5)
18 4.0762 (+5) 1.6573 (+5) 2.8667 (+5)
19 1.6573 (+5) 3.1828 (+4) 9.8779 (+4)
20 3.1828 (+4) 3.3546 (+3) 1.7591 (+4)
21 3.3546 (+3) 3.5358 (+2) 1.8541 (+3)
22 3.5358 (+2) 3.7267 (+1) 1.9542 (+2)
23 3.7267 (+1) 3.9279 (+0) 2.0597 (+1)
24 3.9279 (+0) 4.1399 (-1) 2.1718 (+0)
25 4.1399 (-1) 2.200 (-2) 2.1800 (-1)
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Figure Captions

Fig. 1 Model problem of two parallel slabs with a plane source in the
vacuum emitting neutrons only in the direction of slab IT1.

Fig. 2 First group flux vs. time in interval 4 of 126 reflecting siab
system (S4P3, SgP3, S4P12). The density factor on this and sub-
sequent figures is a constant which multiplies the actual atomic
density and is used to account for voids, porosity, coolant channels
or other features which may Tower the density of an homogenized zone
below the actual physical density.

Fig. 3 First group flux vs. time in interval 4 of ]ZC reflecting slab
system (S4P8, SSPB’ S4P]2)°

Fig. 4 First group flux vs. time in interval 12 of
system (S4P3, S8P3’ S4P]2).

Fig. 5 First group flux vs. time in interval 12 of ]ZC reflecting slab
system (S4P8, S8P8’ S4P]2).

Fig. 6 First group flux vs. interval in ninth time step ]ZC reflecting
slab system (S4P3, S8P3’ S4P]2).

]ZC reflecting slab

Fig. 7 First group flux vs. interval in ninth time step in ]ZC reflecting

slab system (S4P8’ S8P8’ S4P12).
Fig. 8 Steady state first group flux vs. interval in ]ZC reflecting slab
system (S4P3, S16P3’ S4P6)‘

Fig. 9 First group angular fluxes in middle of slab (S4P3, 516P3’ S4P]2).
Fig. 10 Blanket schematic for ANISN and TDA studies.

Fig. 11 Instantaneous helium production rate in first wall at late times
(normal P3 VS. new P]2 expansions).
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