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Abstract

A fluid model to describe plasma confined in the central cell of a
tandem mirror machine is developed. The model properly includes axial
losses, radial losses and the interaction of electrons with all ionic
species either in the central cell or in the plugs. The density and ion
energy of the plug plasma are self-consistently calculated using either
fixed or calculated spatial profiles. Illustrative calculations are
performed for a specific confinement experiment, the Wisconsin tandem mirror
device, PHAEDRUS, by using classical radial transport coefficients. The
results show that the radial profile of various central-cell plasma parameters
can be controlled by tailoring the plug plasma density profile. If the
radial transport coefficients are eight to ten times the classical values,
the losses will be mainly in the radial direction. For PHAEDRUS, the

results are not sensitive to the boundary conditions used at the plasma edge.



I. Introduction

A particle has an axial confinement time of the order of an ion-ion
collision time, Tiio in a conventional mirror confined plasma and on this time
scale, radial diffusion is too slow a process to play any role. The maximum Q
value in such a mirror is limited to about 1. In a tandem mirror,(]’z) the
axial confinement time of the central-cell plasma is greater than Tis by

zeo zed
the factor T exp —T-E-. The overall confinement time can be increased
o c

sufficiently to permit Q values well in excess of 1 but this raises the
prospect that radial transport may compete with axial losses. We list in
Table 1 the major plasma parameters of several tandem mirror devices. These
include TMX,(3) a neutral beam heated tandem mirror experiment operating at
the Lawrence Livermore Laboratory, PHAEDRUS,(4) an RF heated tandem mirror
experiment operating at the University of Wisconsin, and two conceptual
tandem mirror reactor designs.(5’6) The calculated axial confinement times
for these devices are compared in Table 2 with estimates for the radial
confinement time based on either classical or Bohm-like transport. One

can see that for present day experimental tandem devices, the classical
radial confinement time is about an order of magnitude larger than the

axial confinement time. On the other hand, Bohm-like radial transport would
be substantially faster than the axial loss rate. In reactors, the axial alpha
particle confinement time is an order of magnitude larger than the classical
radial confinement time because the alphas are multiply charged and well
confined electrostatically. Furthermore, recent calculations for the
guiding-center orbits of particles in a quadrupole-field stabilized tandem

mirror show that the rapid twisting and bunching of the magnetic field Tines
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Table 2

Various Characteristic Times’for'Central—Ce11 lons

(nt in units of cm'3-s)

) praeorys ) TR ()
(n7)P 3x10'! 2.5x10'0 8x10'*
(n)¥ 110"} 9x10° 3x10' 4
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(n)¢ - ] 3.8x10'°
(n1)7. - - 2.5x10'°
(nr)&? - - 7x10'%
(o), - - 1.5x10"

(nT)z = axial jon particle confinement time; (HT)E = axial ion energy

P .

confinement time; (nt)} = classical radial ion confinement time;

(nr)ﬁ = classical radial ion conduction time; (nt)
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time; (nt)% = axial alpha particle confinement time; (nt)%
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= Bohm diffusion
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alpha particle radial confinement time; (nt),, = radial alpha diffusion

(o
time required to maintain %n = .1; (nr)%h
i

time.

= alpha particle thermalization



in the transition region between the minimum-B end plugs and the uniform
central solenoid causes particles to drift radia]]y.(7) If the plugs are
joined with their elliptical flux tubes facing each other, the radial
drift, %ﬁ-, is of the order 1. If the plugs are joined with their flux
tubes oriented at 90° to one another and if the azimuthal drift, 4AY, of a
particle in one bounce through the central cell is small (&Y << 1), the
radial drifts in the two transition regions cancel each other to the first
order. If the central-cell plasma beta, Be» is high (~0(1) ) and if the
ambipolar potential, ¢e’ of the central cell with respect to ground has

a strong radial dependence, local cancellation of the azimuthal drifts
caused by the gradient in the magnetic field and the radial electric field

(8)

can take place. This leads to neoclassical diffusion. If Bc is low
but ¢e has a strong radial dependence, an ion can drift azimuthally 90°
or more in one bounce through the central cell and can diffuse resonantly

(9)

in the radial direction. However, unlike the classical case, these two
types of diffusion are caused by like particle collisions rather than
unlike particle collisions. Such diffusion can be large and may not be
negligible compared to axial losses.

A1l these issues relate to radial transport in the central cell plasma
andhaye been the motivation for us to develop a physical model for a
tandem-mirror plasma which properly includes the radial and axial losses as

well as the interaction of the electron fluid with various ionic species

in either the central cell or in the plugs.



In the next section, we give a description of the plasma model
and a derivation of the basic equations. We then briefly consider the
transport coefficients which close these equations and finally as an
example, we discuss numerical solutions to this set of non-linear coupled
differential equations using plasma parameters characteristic of the
Wisconsin tandem device PHAEDRUS.

II. Plasma Model

Each plasma species, a, in a tandem mirror can be described using the

distribution function fa(F,V,E) which satisfies the Boltzman equation:

of af
a

- = = a = VxBy 93
st Tt Vg (BT - op
= ﬁ Cab(fa,fb) (2.1)
where Cab is the Coulomb collision operator given by
2 2 - -,
C, =~ Zﬂ:]aqb o %’v" [T f;(V) z\];b(v )
ab a o b B
fb(\7' 5 S )
- 2 s Fa(DM g (V- 7) (2.2)
a B
W () = ly% . - v v,) (2.3)
B 3 aB a’B



II1-A. Central-Cell Ions

The bulk of the central-cell ions in a tandem mirror are confined
electrostatically so that their distribution function is close to a
Maxwellian. They can thus be considered as a fluid having a local temperature

Ta(F,t) and a density na(F,t) which satisfy the moment equations:

9 -

5—-na(r,t) +V - T, = Sa (2.4)
S BT )+ T- BT +G)+nT 7-T +14° —-—auao‘=zP + 2 (2.5)
dt'2 a a 2 aa a aa a af 9X ab aux :
B b#a
where na(F,t) = fd3V fa(?,V,t) (2.6)
U, (r.t) = %— fd3v Uf_(r,V,t) (2.7)
d
Fa = naUa (2.8)
1 301 e o 20 -
T, * - [d°v Zm (¥ - 0)°f, (F.V,t) (2.9)
5 = 43y 1 - . 2 - - -
Q, = [d®v 5 ma(V - ua) (V - ua) fa(r,v,t) (2.10)

Sa is the particle source for species a, P a is the auxiliary heating term

aux
for species a, and Pab is the rethermalization term between plasma species
a and b.

Since the magnetic field is solenoidal over most of the central-cell
volume, it can be approximated by a square well. There is then no azimuthal
dependence in configuration space and the axial dependence is eliminated by
integrating equations (2.4) and (2.5) over a differential flux tube which
has radius r in the central cell and R in the plug (Fig. 1). Ngg]ecting the
a a

oB BXB

compressive flow term, naTaV'- Ua’ and the viscosity term, 7 » We have
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Fig.l. Mapping of the central cell into the plug




2
3 - _ 13 Na a
513 na(r‘,t) - T a7 (Y‘Fa) - —-2—<ch>DT Yor - LG+ Sa (2.11)
3 (3 _1 .2 a 13 3
§f(2 naTa) T4 na<OV>DTEocUoc YoT " r 5?'r(Qa t 2 Tara)
a a a
*2 Pab * Paux - Qv - Qx (2.12)

b#a

where YpT is 1 for DT plasma and 0 otherwise, Ea is the initial fusion

alpha particle energy (3.5 MeV,) and UZ is the fraction of alpha particle
energy which is transferred to species a as the alpha slows down. Qci is
the charge exchange 1oss term for species a, and L.? and Q.? are the axial

particle and energy losses. Analytic expressions for L.? and Q.? have been

obtained by several authors.(]o-]z) For a multi-species plasma in a square
well, one can write,(]])
a_"a
L|| =—é'_ (2.]3)
T
zep + T
Q,2 - e (2.14)
T
where
a _ VT 1 2,80, 2380
T,y = Ta 1 G(HaRC) T T exp( 7 ) (2.15)
H I( a ) a a
a Zaeq>C
ma1/2Ta3/2 :
X 2 (2.76)
2 mz_ e E nbzbznAab
z 2
n z %nh
Hy = b b_ab (2.17)
- Z2 __a_SLnAab
b b"bm



5 exp(%)[] - erf(x-]/z)] X < 1
I(x) = (2.18)

G(x) = wn(4x + 2) (2.19)

and

n
= _ep
ed. = Ty ’%n(nec)_- (2.20)

Rc is the mirror ratio between the plug mid-plane and the central-cell
mid-plane and nep and neC are the plug and central cell electron densities,

respectively.

II-B. Electrons

Electrons in a tandem mirror are confined electrostatically. Therefore,
their distribution function is close to a Maxwellian and they can be considered
as a fluid having a local temperature Te(F,t) and local density ne(F,t).
Because of their frequent collisions, electrons move rapidly among the three
cells and can be characterized by a uniform temperature Te along each
field line from the central cell to the plug. The electrons take energy
from the plug ions and give energy to central cell ions. As before, the
magnetic field in the central cell and the plugs is approximated by three
square wells. The electron energy balance equation (2.5) is then integrated
over a differential flux tube which has a radius r in the central-cell and R

in the plug (Fig. 1) to obtain:



3 (3 1 .2 e
d (2 ec'e vpc epTe) Z‘"c<“V DT EaUaYDT
1323 3 e
- =0 + = +
ror (Qe 2 Tele) bie P b * Paux
e
= QII - Qrad (2.2])
where Nec = Ne + 2na + zn, (2.22)
nep = np, (2.23)

Ne» Ny, and n, are the central cell ion, alpha, and impurity density,

respectively, n b is the plug ion density, and Vp is defined as

. differential flux tube volume in each plug Q
pc ~ differential flux tube volume in the central cell. “ra

d represents
bremsstrahlung, line, recombination, and synchrotron radiation losses, and
Q.? is the total axial electron energy loss rate from a differential flux

tube in the plugs and in the central cell. This latter quantity can be

(1),

written as
+ + T <>
Q.5 = eplfe * ¢ * Te)< (2.24)
Teff
where
L. 2nA n_ ¢ +4¢
a>= (] + Zf . Aeec ec C¢ e) , (2.25)
pc p n eep nep e
d -1
+
T ee = <T> <(1 * <™ et ec™Vpcllep)#> Vpo , (2.26)
eff nep(cbe + ¢1 + Te)<c>
n{4 R + + 2 R +
S n(4<Z> b 2) e(¢e ¢.) (2> b 1)
ep 4 <Z> T 2<Z>R
e p
(¢6_+ ¢ )
exp(—E
X T S , (2.27a)
e
: (e cbe * ¢C )
¢C .
@9> = s (2.27b)
1+ V.- ZEB
pc n
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me1/2Te3/2
T = s (2.28)
ep 4
V2 e nepJLnAeep
ro nec ¢c * ¢e lnAeec r
v ”
o - P nep pc+ Pq SLnAeep c ’ (2.29)
1 +.nec ¢e ¢c Lc RnAeec
ep ¢e 2Lp JLnAeep
nh .
. 1
e, =51+ HL D n, z§ o], (2.30)
ec central eec
cell
jons
and
nA .
1 ] 2
ep plug eep
ions

If the central cell volume, VC, is sufficiently large relative to that

of the plug, Vp, we can neglect electron scattering in the plugs and Q.? is

(11)

given by the simpler formula :

T + et
Q.? = —EL*—;;ji (2.32)
Ty
where
e _ e 1 e¢e e¢e .
Tir = Toe _E'G(HeRc) : I(Ie_g Te exp(Te ) (2.33)
ed
e
m 1/2 T 3/2
Toe = 2 € , (2.34)
V2 e necznAeec
and 5
Z. n.nA .
H =;_(1 P D S M -1 gl (2.35)
e central nec n ee
cell

ions
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II-C. Plug Ions

The electron energy balance equation is coupled to the plug ion density,
np, and ion energy, Ep, through the plug-ion and electron energy exchange
terms and through the axial Toss term. To describe the plug ions, we use
a point model with fixed or varying radial profile shapes. These are
described as following:

II-C-1. Fixed Radial Profile

The plug ions are assumed to have fixed density and energy radial

profiles of the form

no(R) = (MR (1 - (F—)9)" (2.36)
P max

- (ntl = R 2\n
£ (R) = (FEFHEL(1 - (") (2.37)

The average plug ion density ﬁp and plug energy Ep are given by the zero-

dimensional particle and energy balance equations:

& -
_pP-_ P
T 5 + Sp (2.38)
T
- = 3 = -
Q_(ﬁ E)=- P(AP _ E'Te) _ npEout
dt*'p-p P <P
drag '
o o _
+ (1 +-X)sE - CXgF +pP (2.39)

0; p inj 0 pp aux

where S_ is the plug ion source, Einj is the plug source injection energy
and Eout is the average energy carried out by each plug ion. EOut can be

written as
T'3/2
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where h is a parameter that is usually obtained from Fokker-Planck calculations.

Oy and 0, in eqn. (2.39) are the charge exchange and total impact jonization

cross sections, respectively, Paﬁx is the auxiliary plug ion heating term, and

R38R A N R (2.40)
Ta P T p
ii ei
p P EE_.
Toi = O T drag 9un(<be > ¢c) (2.41)
A 1/2 E 3/2
,P=¢, 2—P— 1og, R (2.42)
id 2 - 10p
Z_~ n_&nA..
p p i
and b Te3/2 1
Tdrag - C3 - nA . (2.43)
np ei

1° C2 and C3 are constants. For tandem mirror

experiments where a plasma stream is required to stabilize the plug plasma,
(13).

Rp is the plug mirror ratio; C
we use Cohen's DCLC model if the sum of the central cell and plug axial
losses and any external stream source is insufficient to supply the
stabilizing current, the plug axial loss iS increased to make up the
difference. The radius R of the flux tube in the plug is related to that

in the central cell r (Fig. 1) by conservation of the magnetic flux:

r R
[ B(X)x dx =] B (y)y dy (2.44)
0 0

where

B (r) = Bcon - Bciri , (2.45)

c



B 1 - R 1 i
) - 00 Bp ong thin plug
ptf/ = B _(R)
Bpo(l - —%——— ) short flat plug (2.46)

B
8 (r)= 1 N (r)T. (r)/=2 (2.47)
central 9 0
cell

and the plug plasma beta is

R)(.9 E (R) + T_(R
s q TR p<2> + T _(R) .
P B

and BCO and Bpo are the central cell and plug vacuum magnetic field
strengths, respectively.

[1-C-2. Varying Radial Profile Shape

In this model, the radial profile shape of np and Ep at each radius R
is calculated using particle and energy balance equations similar to
equations (2.38) and (2.39). The radius R is again related to r by
conservation of magnetic flux using egn. (2.44).

II-D. Ambipolar Potential ¢a(r)

The ambipolar potential, ¢e(r), of the central cell with respect to
ground is determined at each radius r by equating the total electron and

ion fluxes from each differential flux tube:

2 2 2
n~ (r) n. (r) V_n.%(r)
;{ezT> <> + l-éF-r Fe = 1€ 3 + —BC lPi
ep r (nti4)g (nT..)p
2
19 uc(r) 19
oy et ( toae Poa)YDT (2.49)
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where n. , n.

ic® Mip® Ny are the central-cell ion, plug ion, and alpha densities,

respectively.

II-E. Discussion

If the transport coefficients are known, equations (2.11 - 2.12),
(2.21), (2.38), (2.39), and (2.49) form a closed set of equations. Given
a set of initial conditions, they describe the time evolution of a tandem-
mirror plasma with radial losses in the central cell and axial losses in
both the plugs and the central cell. This model differs from that given
by Ryutov and Stupakov(8) in the following ways: First, it properly includes
both the axial and the radial losses of the central-cell plasma. Secondly,
models of the end plug plasma are included. The plug plasma density and
ion energy are calculated self-consistently from the particle and energy
balance equations. Thus, it provides a proper description of the
transfer of energy from the plug jons to the electrons and then from the
electrons to the central-cell ions. Thirdly, instead of assuming the
electron temperature, Te’ is uniform across the field lines, Te(r) is
calculated from the electron energy balance equation. Finally, ¢e(r) is
determined self-consistently by equating the total electron and ion
fluxes from each differential flux tube. The modelling of the axial losses
in the central cell of a tandem mirror is similar to the modelling of the

19) The situation is more

parallel losses to a divertor in a tokamak.(
complicated in the tandem mirror however because of the presence of the
two end plugs.

IIT. Transport Coefficients

The particle and heat fluxes can generally be written in terms of the

temperature, density, and ambipolar potential gradients as
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oT oT 3¢

T = - on e C ey =

FJ <%n8r Jear ¥ Djiar * “jgr) €. > (2.50)
oT 3T 3¢

0. = - an e C ey -

QJ B (Kﬂlar * Xje T in T Niar ) € - (2.51)

The full set of transport coefficients for the central-cell plasma in a

tandem mirror are not fully known except for classical scaling.

III-A. Classical Diffusion

Classically, the particle and the energy fluxes are driven by collisional

momentum exchange, i.e., the friction force and the collisional change in the

energy flux. They can be written as£]4']7)‘
Qe VT,
Q. - vT
N = F ¢ (3.1)
Fi Vnc
Fu Vna
r r

where the matrix elements of F are given by:

2
ne nh

T 1/282

-5

FH = -7.57 x 10

e
-4 ng LnA
0o = 9.80 x 10 ——-17‘2—‘2—
T B
o
-6 ni nA
Fyy = 8.15 x 10 —3772 (3.4)
‘ e
2
n_ 4nA
-5 C
1.63 x 10 —'—3—/—2—2 (3.5)

-
i
[}

-n
|
1

32

-5 n. &nA
Fyq = - 1.63 x 10 —377 7 3T - T (3.6)
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_4 ncnuﬁnA 3.5A1 + 2

Fpp = -6.33 x 10 =322 (— ) (3.7)
1
C
-3 nuﬂnA
Fgq = 1.26 x 10 1722 (3.8)
o
_5 naznA
- 1.65 x 10 T (31, - T.)
e
-4 nCQnA _g N.AnA
Fag = =6:33 x 107 =755 - 1.65 x 107° —75 (3.9)
T /B T, /B
c e
= 3

ATl other elements of F are zero. Temperature is is eV, density is in cm °,
and time is in seconds.

III-B. Neoclassical Diffusion

If the ambipolar potential, ¢e(r), has a strong radial dependence,
a particle can diffuse resonantly in the radial direction. Local cancellation
of the azimuthal drift caused by the radial electric field and VB can lead to
neoclassical diffusion for large values of BC. Formal calculations of the
neoclassical and resonant transport and rough estimates of the diffusion
coefficient for the central-cell ions have been made by Ryutov and Stupakov.(8’9)
These are given in Table 3. The qualitative shape of the ion diffusion
coefficient is shown in Fig. 2 and Fig. 3 as a function of the ion-ion
collision frequency vy The two experimental devices, TMX and PHAEDRUS,
and the two tandem reactor designs should both confine plasmas with ions
dominated by resonant plateau transport and electrons dominated by neoclassical
plateau transport. The radial confinement time predicted for these devices
based upon resonant transport for ions and neoclassical plateau transport
for electrons, Trp, is compared to the calculated axial confinement time,

T,,, and the classical radial confinement time, TS] , in Table 4. We see
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Table 3

Neoclassical and Resonant Diffusion Coefficients for
Central Cell Ions in a Tandem Mirror

Type B Regime Collisionality D
Banana £ < u3/2 u]/zrzvi
High Plateau u3/2 <& <1 azrz/Tdr
.. 2.2 2
Neoclassical Collisional &> 1 ar /(v itdr )
Low Collisionless £ < 1 alrly,
i
Collisional £ > 1 afrf/ vty )
(5113/2 sry1/2,
Resonant -- Banana no<A r) r ( r) Vi
Platea > (—303/2 éﬁi
u n r T
g = v1Tdr; N = VaiTos Ty, = azimuthal drifting period; t,, = bounce period;
tor o
a = Q 3 Or ~ —— 5 p. = ion gyro radius; L, = length of the transition
tr Ltr i tr

zone; L = Tength of the central cell; r = radius of the central cell.
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|
D
HIGH S8
Q?R2 TN
Tdr
“Low B
| | .
3
2
Q | | ViTdr
Fig. 2 Qualitative dependence of the neo-classical diffusion
coefficient on the collision frequency
Q
D
(ar?

o

3
(.A?f > | vity

Fig. 3 Qualitative dependence of the resonant diffusion coef-
fictent D as a function of ion collision frequency Vs
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Table 4

Comparison Between Resonant Plateau Transport and Axial
Confinement for Central Cell Ions in a Tandem Mirror

om” 3o sec ™X PHAEDRUS TMR-LLL TMR-UW

(nt)"P 1x102 1 x 10" 4x10°  2x10"
()] 4x10% 7% 10" 6x107  3x710
(nt),, 3x10" 3x7100 8 x 101 8 x 10
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that the radial confinement time, Tfp is only a factor of 3 to 5 greater
than the axial confinement time. Thus, radial Tosses will not be negligible.

IV. Numerical Solution of the Fluid Model Equations

The basic set of transport equations (egns (2.11, 2.12, 2.21, 2.38 and
2.39)) consists of three non-linear partial differential equations describing
central cell plasma and two non-linear ordinary differential equations
describing the plug plasma. The two sets of equations are coupled by the
term in the electron energy balance equation which describes energy transfer
between the ions in the end plugs and the electrons. The two sets of equations
have two different characteristic times. The plug ions are confined
magnetically. Therefore, the plug plasma density and ion energy vary more
rapidly than the density and temperature of the central cell ions or the
temperature of the electrons. This allows one to use well-developed tokamak
transport codes to model the central cell tandem mirror plasma without
major modifications of the code itself. The central cell equations are similar
in form to the transport equations of a tokamak except for the following items:

1. The presence of the axial loss terms in the density and in the
energy equations.

2. The terms in the electron energy equation which account for the
electrons in the plugs. These are roughly smaller by the ratio of the
plug volume to the central cell volume.

Furthermore, the central cell plasma is cylindrical over most of its volume
which makes the use of cylindrical coordinates (the standard system in
tokamak modeling programs) a quite proper choice. In this section, we

consider as an example numerical solutions of these equations using the
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Wisconsin tokamak transport code(]g) and classical transport coefficients.
The machine parameters are those characterizing the PHAEDRUS tandem mirror
experiment.

IV-A. Effects of Boundary Conditions

The boundary conditions at the axis of the central cell are that the

particle and energy flux must vanish, i.e.,

i 1 r=0

At the plasma edge, the boundary conditions for the particle density and

temperature are of the form

onA+Bg-é=y (4.2)

The usual choices are either to fix the parameter or its Togarithmic

derivative, that is, to choose either

or

"max
Both fixed and logarithmic boundary conditions are studied here. For

fixed boundary conditions, the density and temperature of the central cell
plasma at the edge are set at constant, low values. For logarithmic

boundary conditions, the extrapolation lengths, A, are set equal to 3 cm
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in all cases. The equilibrium radial profiles which have been found are
shown in Figs. 4a and 4b. The plug plasma density and ion energy are

assumed to vary radially as given by equations (2.36) and (2.37) with m=1 and
n=0.1. For PHAEDRUS, the solutions obtained are not sensitive to the type
of boundary conditions chosen.

IV-B. Effects of Classical Radial Transport

The equilibrium plasma parameters obtained with transport coefficients
scaled classically are Tisted on Table 5. 1In Figs. 5a and 5b, the
equilibrium radial profiles of various plasma parameters for PHAEDRUS are
shown for two cases in which the transport coefficients are 1 and 10 times
the classical values, respectively. A1l cases had identical initial
conditions, the same amount of injected power into the plug plasma, and the
same amount of central cell plasma fueling. The plug parameters are assumed
to vary radially as given by equations (2.36) and (2.37) with m=1, n=0.1.
Fixed boundary conditions are used. As the transport coefficients are
increased above the classical values, the profiles become flatter. The
dominant radial transport is due to ion conduction. A higher ion conductivity
and a higher diffusion coefficient lower the central-cell ion temperature
Tc. Since the central cell axial confinement time varies as zTe¢ expziic s

c
lower values of TC lead to better central cell axial confinement. Therefore

the electron temperature Te is higher and this in turn causes the plug as
well as the central cell axial confinement time to again increase. The
relative fraction of energy and particle losses through various radial

and axial transport processes for classical and ten times classical radial

transport are given in Table 6. When the radial transport is classical,
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Table 5

Influence of Radial Transport on Various Plasma Parameters

Levels of'Transport in Central Cell

3)v

0.1(0cysX4) By +Xy) 5(DgqsXey)
9.8x1012 1.0x10'3 1.05x10'3
2.4 2.4 2.44
4.0x10'2 4.0x10'2 4.2x1012
17 17 15.6
54 56 60
298 305 333
49 3 54.3

1.12x10'3
2.5
4.25x10'2
10.5

66

381

62.3
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Table 6

Relative Fraction of Particle and Energy Losses for PHAEDRUS

When the Transport Coefficients are 1 and 10

Times the Classical Values

(Dcl’ Xc]) ]O(Dcl’ Xcl)
radial ion conduction 0.050 0.79
radial ion convection 0.005 0.02
axial Toss 0.945 0.19
radial electron conduction 6 x 1074 0.04
radial electron convection 0.0 0.23
radiation 107° 5 x 107
ion drag 0.19 0.39
axial loss 0.80 0.34
axial particle loss 0.98 0 .47
radial particle loss 0.02 0.53
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particle and energy Tosses are mainly in the axial direction. When the
radial transport is ten times the classical value, radial losses become
dominant.

IV-C. Effect of Plug Radial Profiles

The plug density and energy are assumed to vary radially as given by
equations (2.36) and (2.37). We examine here the effects of different plug
radial density profiles on the equilibrium central cell radial profiles.
Typically the plug radial energy profile is relatively flat so that n
in equation (2.37) is set equal to 0.1. In Figs. 6a and 6b the equilibrium
radial profiles of the electron temperature, central cell ion temperature
and density and the ambipolar potential of the central call with respect
to ground are shown for two different radial plug density profiles:
parabolic (m=1) and flat (m=0.2). The calculated equilibrium profiles
of the central cell plasma tend to follow the plug density profile. In
particular, for the case m=0.2, the ambipolar potential ¢e(r) is flat over
most of the central cell volume. This means that the radial electric field
is weak everywhere inside the plasma except near the boundary.

IV-D. Discussion

The calculations for the Wisconsin tandem mirror deyice,.PHAEDRUS, using
classical transport scaling show that the radial profiles of various
central cell plasma parameters can be controlled by tailoring the plug
plasma density profile. In particular, the radial electric field inside the
plasma in the central cell can lead to rotation-driven 1nstabi]it1es.(20)
The radial electric field can be eliminated by keeping the plasma

density profile moderately flat(m=0.2)in equation (2.37), . If the radial
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transport in the central cell is classical, most of the particle and energy
lTosses are in the axial direction. If the radial transport is anomalous and
the transport coefficients are a few times the classical values, the losses
are then mainly in the radial direction. Finally, for PHAEDRUS, the plasma
conditions at the edge are not found to influence the plasma parameters in
the central region.
V. Summary

We have developed a fluid model for plasma confined in the central
cell of a tandem mirror. The model properly includes the axial losses, the
radial losses, and the interaction of the electrons with all the jonic
species in the central cell and in the plugs. The plug plasma density
and ion energy are self-consistently calculated with either fixed or
calculated profile shapes. The radius of each differential flux tube
in the plug is related to those in the central cell by conservation of
magnetic flux. The ambipolar potential of the central cell with respect
to ground, ¢e, is determined at each radial position by equating the total
electron and jon fluxes from each of these differential flux tubes.
Calculations are then performed for the Wisconsin tandem device PHAEDRUS
using classical radial transport coefficients. The results show that
in tandem mirror experiments, the radial profiles of various central-cell
plasma parameters can be controlled by tailoring the plug plasma density
profile. If the radial transport coefficients are eight to ten times the
classical values, the losses are mainly in the radial direction. For
PHAEDRUS, the results are not sensitive to whether a fixed or logarithmic
boundary condition is used.
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