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ABSTRACT. Variational procedures for neutron and photon transport calculations in CTR blanket studies are considered.
The procedures can be readily implemented to yield accurate results in an efficient manner and will be especially useful in
performing sensitivity studies and survey calculations. They are applicable to multidimensional problems and to the time-~
dependent, as well as the steady-state, case.. The use of the dual-space approach for certain sensitivity studies is also
considered. Numerical results are presented to demonstrate the efficacy of the procedures discussed.

1. INTRODUCTION time-dependent problems and to coupled neutron-
photon transport calculational procedures. The
The analysis of CTR (Controlled Thermonuclear functionals employed are the bilinear and frac-
Reactor) blanket systems via neutron and photon- tional forms of the Schwinger variational principle
transport calculations has become a widespread [6,7], suitably generalized for the needs of this
endeavour inthe past few years [1-5]. At this work [8,9]. The Schwinger functionals, which
early stage, one is frequently interested in per- traditionally require trial functions, and generali-
forming survey calculations and sensitivity zations thereof, which employtrial matrices {7, 10},
studies. In general, one is most often interested have proven effective tools in the study of colli-
in reaction rates, examples of which include the sion phenomena [11]. In reactor physics, basic
tritium production, atom displacement, and studies using the variational method have been
helium and hydrogen production rates, the neutron  carried out by Francis et al. [8] and Selengut [12]
and gamma heating rates, certain transmutation and a generalization to allow the estimation of
rates, and so on. It is useful to determine the arbitrary linear functionals of the solution to an
sensitivity of these quantities to material com- inhomogeneous equation has been given by
position and/or material substitution in the blanket, Pomraning [9]. Stacey has extended the forma-
and to the nuclear data (the cross-sections and . lism to derive variational estimates and a
transfer matrices). Up to this time, the proce- generalized perturbation theory for ratios of
dure has been to make those changes in blanket linear and bilinear functionals {13}, and has ap-
design of interest and perform a new neutron- plied these developments to several problems in
photon transport calculation. A separate calcula- nuclear reactor physics (14].
tion is, therefore, required for each successive In this paper, the variational theory is formu-
change that might be considered. Clearly, it is lated and specialized for studies of CTR blanket
desirable to have a procedure that allows the- systems. A generalized perturbation theory is
evaluation of the effect of these changes without presented for eva]_uating the sensitj_vity of integral
the need to carry out a new transport calculation quantities, such as reaction rates and ratios
each time. Such a scheme would have a consider- thereof, to changes that are made in the nuclear
able advantage when performing survey and data or in the material composition or structure
sensitivity studies and can bring about a consider-  of the blanket. A new flux calculation is not re-
able reduction in computing time and effort, quired to obtain the quantities of interest. The
especially for multidimensional problems. use of variational methods to study the changes in
Such a procedure can be formulated for CTR the calculational model, such as the order of a dis~
blanket and shield studies by using variational prin- crete ordinates calculation, the order of scattering
ciples. The theory is applicable to steady-state and anisotropy, or the form of the source, is also
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discussed. Numerical results for some model
calculations are given which serve to demonstrate
how the theory is implemented, the types of
estimates and alterations in system parameters
which can be examined, and the effectiveness of
the theory.

2. THEORY
A. BASIC EQUATIONS

Consider the problem of estimating a functional,
Gl¢], of the neutron-photon flux, ¢(x), when the
latter satisfies the linear equation

L¢ =S (1)

L is the Boltzmann transport operator {15], S is
an external source, and the variable x represents
a collection of independent variables (e.g. space,
time, energy). The functional G[¢] most commonly
encountered is a reaction rate or a ratio of reac-
tion rates.

Assume that we have carried out the solution to
Eq.(1) in some reference configuration, obtaining
a reference solution ¢, . We are interested in
changing the blanket configuration, nuclear data,
or source and obtaining an estimate of Gl¢ ., 1,
the value of the functional when evaluated with the
flux solution in the changed system, without
actually solving Eq.(1) for the perturbed flux,
¢ pert - We can estimate G[¢ pert ] in a perturbed
system directly from G[qbrefﬁe. This is just the
first-order perturbation theory result and the
error made is first-order in 6¢ = épert - Oref -

A variational estimate yields results accurate
through second order in 6¢. Consider the
functional, {9],

(0%, 81 = GI9] + {T%, (S pen ~Liper )2 (2)

with {, > denoting a sum over discrete indepen-
dent variables and an integral over continuous
independent variables. This functional is sta-
tionary about functions ¢, and I* for which

81p
6T

81 = ——&I; 56 + 5T* = 0

for arbitrary 6¢ and §T"*. This requires that ¢,
and I'F satisfy

Lpert¢s = Spert
and
L'J';)ert I = G'”’pert ] (3)

where L* is the adjoint transport operator [15]
and G'[¢] is the functional derivative of G with
respect to ¢. Obviously, ¢¢ = dpent -

The advantage of using the functional Iz of
Eq.(2) to estimate the quantity of interest accrues
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from the observation that if arbitrary trial fune-
tions T'* and ¢ are used to evaluate Iy the re-
sulting estimate of G[¢ ot ] is accurate to second
order, i.e.

I (1%, 8] = GI6] + <T%, (Spert - Lpert ©)>
= Glé per ] - <6T*, L g 66
where §1'= I'* - T and6¢s¢—¢55¢-¢wt. ’

In particular, an estimate of G[¢ .1 ], accurate
through second order in the errors 6I"* and 54, is

{

IB[Pr::e:f ’ ¢ref] = G[¢‘ref] ) ’
: % pert pert ; ~ () :
+< Fref . (S -L et )7
where I'ji; ‘and ¢,; are obtained from a re-
ference system calculation. Most conveniently,
writing L Pt = LL7f + AT, and SPett =gref L A5 the
functional in Eq.(4) becomes (using Lrefg = Sref)

IB[F;:éf » ¢ref] = G[éref] + <Fr-§f » (A5~ ALéref)>
(5)

In the important case of bounded linear func-
tionals, for which G[4¢] can be written as { W¢ >,
(and G'[ 4] = W) the fractional, or Schwinger,
form of the variational principle is useful {8].
Using ¢ = cd, I'* = ¢*I"* and rendering Iz[ c*T*, c¢]
stationary with respect to arbitrary variations in
the constants c¢ and c¢* yields

pert N pert N
<S r‘ref 7 <W ¢ ref ~ (6)
K% » LP 0 :

IF[Frtf ’ ¢tef] =

This fractional form is independent of the norma- i
lization of I'* and ¢.

When the functional G[¢] can be written as the
ratio of linear functionals, i.e.

Glgl = KWy 65 KWeé)
the equation to be solved for F:tf is, from Eq.(3),

L*ref I_‘*ref = Gl[d’ref] =

W W

Y1 . —2
<\V2 ¢ref > G[¢ref ] <W2 ¢ref >

(The mathematical properties of this equation are
discussed elsewhere [9, 13].) In this case, since ‘
the magnitude of I'*; depends inversely upon :
the normalization of ¢, Iz is independent of the i
normalization of %, and @er. -

As in synthesis methods [16], it can sometimes
be advantageous to use trial functions that are
linear combinations of several reference flux and .



reference adjoint calculations. Write the trial
functions, ¢,(x) and I}*(x), as

N
P (x) = Z ai¢1;ef (x) = ;T'&;xef (7)
ul - (8)
Ty *(x) = 2 br" l'(X) =bT. ref
i=1

where N is the number of reference functions .
used, T denotes transposes, and 3, @, and Iyes
are the vectors

a={a;} (9)
PR {¢ief} (10)
= {1 (11)

The index i labels the i-th component of these
vectors. Rendering the functional IB[—f‘*, 31
stationary with respect to the {a;} and {b;} leads
to the compact expression,

T
T, ¢] = (T, sPt > M. (Wo > (12)

where M-1 is the inverse of a matrix, M, whose
elements M;; are given by

- :{:-i it
1, = KT, LR S (13)

This procedure can be important for generating
accurate estimates even if a poor set of trial func-
tions is used. It has been found, for example, that
N
even when the partial sums, [ ¢
i=1
diverging, the procedure leading to the func-
tional, Eq.(12), yields accurate results [10].

ref( ), are

B. ESTIMATION.OF CTR BLANKET AND
SHIELD PARAMETERS

Since most CTRblanket and shield calculations are
carried out using some computer code to solve
the neutron-photon transport problem, it is use-
ful to examine the discrete ordinates form of the
functionals in Egs (4) and (6). Consider the
steady-state case and slab geometry. Formula-
tions in other geometries and several dimen-
sions, as well as inclusion of the time variable,
is straightforward (the time-variable may be im-
portant for pulsed CTR systems [17]}). The multi-
group discrete-ordinates form of the transport
operator, L, and its adjoint, L*, are

G N L
.2 5 _3"’ N 2e+1>
LDO'“} x + E3(x) /. l l < D)
g'Sg i'=1 1=0
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X f ()P (e )“ P, (‘;j') (14)
G N L
L, =-u,;f;+2<><>'>:zz (,222+1>
g'=g =1 =0
X EEEM B )W, By ) 2

The index j labels the angular ordinate, g labels
the group, W; is the angular weight, P, (u) is the
f-th Legendre polynomial, N is the order of the
discrete-ordinates approximation, G is the total
number of energy groups, L is the order of
scattering anisotropy, and the remaining nota-
tion is standard [15]. When the order of the
discrete-ordinates calculation is unchanged from
the reference to the altered or perturbed system,
the variational expression (5) becomes

¢ X

IB[F;:::f 4 éref] = G[d’ref} +[\ dx > Z.;
g1 = oy
bunm ) s
X W, T%i 8 (x)AaS8(x) 68 (%) - fdx ) )
g=1 j=1

G x[
X W, T8, [ 2B 88 (x) - Z 2 L

X <2£2+1> ATEE (x)6E . P ] (16)
where

asb(x) = s¥x) - sfx) (17a)

"arfx) s té - o¥x) (17b)

A):fi';g = E%: (x) - 2:5';8(x) (17¢)

Pl = Wi Py )Py (up) (17d).

The parameters with bars overhead are evaluated
in the altered system whereas those without bars
refer to the reference system. An analogous ex-
pression can be obtained for the fractional form,
1I:[T*, 4], in Eq.(6). Recall that in Eq.(6), I'*
and ¢ refer to a reference system, whereas the
functions S(x) and W(x) and the operator Lpg are
evaluated in the altered system.

The variational estimation of quantities im- -
portant for CTR blanket studies requires as trial
functions the reference flux and one reference
adjoint for each physical quantity, Gl{¢]. The
sensitivity of G[¢] to changes in the blanket con-
figuration, nuclear data, and source can then be
evaluated without the necessity of performing
additional transport calculations. The integrals
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which must be evaluated are similar to those which
arise in first-order perturbation theory. Thus,
existing codes can be used to evaluate the
variational estimates.

Some specific examples of functionals, G{¢], of
interest in CTR studies are:

(a) Reaction rate of i-th type

Glél = <z;¢> (18)

1 spatial zone of interest
0 otherwise

G'[¢] = eiEi(x), Ei = {

(19)
(b) Ratios of i-th reaction rate to 1 -th
reaction rate
. SE¢
Glé1 = 256 (20)
Li- Gl L;
1 = - 21
Regionwise estimates again are possible.
(c) Ratio of fluxes at two points in blanket
or shield
<6 (x - x)b) -
GOl = et w85 (22)
8 (x - x0) - Gld]6 (x - x7)
[ = 23
G'lel o G- %106 ®)
(d) Neutron and gamma heating rates
clel = [ axni (24)

A

where A denotes the width of the zone in which
the heating rate is required and H(x) is defined as

H(x) = 7 7

The subscript i labels the i-th isotope, N; is the
atomic density of the i-th isotope, K§ and K&
are the neutron and gamma Kerma factors [18],
and

€. +Kg . 67)¢g(x)
(25)

1 g € (neutron groups)
0 otherwise

(26)

. |1 ge (gamma groups)
% " o otherwise
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The functional derivative of G[¢] is therefore

G
G'[¢] = ¢, }_‘ N, Z (Ki’ien+K$’i67) ;

(27)

- 1 xeA
€r 0 otherwise

Other quantities, such as the ratio of neutron
and/or gamma currents, can similarly be
formulated.

It is also clear by inspection of-Eq.(16) that one
can examine the following types of changes in the
blanket system or calculational model: (1) changes
in nuclear data (microscopic cross-sections and
transfer matrices); (2) changes in material com-
position; (3} changes in the order of anisotropic
scattering in the problem; and (4) changes in the
type of source. Further, the effects of entire
material replacements can be examined. The ad-
vantage of not requiring a new flux calculation
each time a set of changes is made can be im-
portant when performing survey calculations and
sensitivity studies, especially when studying
multi-dimensional problems.

One can also examine variationally the effects
on G{¢] of a change in the order of discrete ordi-

_ nates from N to N > N without performing higher-

order Sy calculations. Considering Eqs (4) or (§),
one requires a method to generate trial functions
compatible with the order N form of LDO using
trial functions known only at the N quadrature /
points of the reference case. Linear interpola-
tion and extrapolation can be used for this pur-
pose [19]. Further, standard methods in approxi-
mation theory [20] can be utilized. For example,
consider developing an interpolation formula for a
function ¢/ (u)}, defined on [-1, 1], given values of

¢ at N distinct points, {u;} , with corresponding
quadrature weights {W;}. Expanding ¢(u) in poly-
nomials, ¥ (1), orthogonal on [-1, 1] with weight
function ¢ (I»‘) yields

Vi) = ) ane @)F, @) (28)
n=0
1

a, = f Fp ()¢ (u) du (29)

-1

For y/(u) known only at the N abscissa {u;} with
corresponding weights {W;}, the approximation
for a, is

}: W F )0 ,) (30)
=1

‘he most common choice for F, (u) is the Legendr
polynomial, though Chebyshev polynomials can




also be used. Both choices will guarantee con-
servation of total flux and current. For the
present need of developing adequate trial func-
tions, either choice should suffice.

We have indicated how the sensitivity of integral
parameters to changes in blanket configuration
can be evaluated. In this development, the
generalized adjoint function, I'*, has played a
major role. Infact, I'* is something of a sensi-
tivity or importance function relative to the
integral parameter G[¢]. When G[¢] = {W¢ >,
examination of I'* itself provides useful insight.
To understand this, consider the form taken by
I; in this case:

I [T*, 6] = <Wé> +<T*, (S-Lé)>  (31)

When ¢, satisfies Lé, = S, I;{I*, ¢,] = <W¢, >
On the other hand, when I[* satisfies L*[* = W,
then Ig{I"*;, ¢] = {r'*;S>. Thus, the stationary
value of I is

Ig[T%, 6,1 = <W¢ > = KT% 8D (32)

Consequently, if one is interested in the effect of

a change in the source distribution on {W¢ >, I'*
provides this information. This introduces in-
teresting possibilities. Most obvious is the assess-
ment of different representations of the plasma
neutron source. However, in addition, a reference
transport calculation may be performed to

generate an incident source of neutrons and/or
gamma rays from the interior at any annular
surface in the blanket. Then, if a local change

CTR BLANKET STUDIES

is to be made to the blanket, a local transport
calculation may be performed to determine how
the incident source is altered and Eq.(32) may be
used to determine the effect upon {W¢ >.

3. DEMONSTRATIVE EXAMPLES

Calculations were performed using the varia-
tional method to estimate the tritium production
rate from 7Li and the helium production rate.
The former is important for breeding tritium
while the latter is typical of quantities important
for materials studies. These calculations are
intended as illustrative and other quantities of
interest can be estimated in an analogous manner.
By choosing to estimate the tritium production
rate in 7Li and the helium production rate, one

- can simplify the calculational model. In parti-

cular, as noted by Maynard and Abdou {5, 22],

these effects can be adequately studied using a
six-group cross-sectionset that extends from

8.187 MeV to 14.918 MeV. The transport calcula-
tions were thus performed using six-group, P,
cross-sections, slab geometry, and an S4 discrete-
ordinate approximation. (The ANISN code [23}

was employed.) The above model is adequate for
the present purposes. _

A single reference neutron flux, ¢,.r, plus the
reference generalized adjoints, I'*.¢, for each
quantity to be estimated are required to implement
the variational method. The results follow from
Eqs (4) or (6). Exact answers in the altered
systems, required for comparison, were ob-
tained by solving the altered problem using the
transport code. The reference flux and adjoints

=2
=
=
w0
2 TRITIUM BREEDING ZONE MODERATOR-REFLECTOR :
b g
-] e
- 94% Natural Li, 6% Nb Graphite =
: ks
hs et
g -
=3 v
- '
2 w
3 &
o
! 2
o ! 9 o
3 jr) = t:
& I £
-~ —
2 E < 5
28 g
1 i . A 1 A
00.5 3.5 4.0 x{cm) 64.0 94.0 100.0
FIG.1. Reference system,
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TABLE I. EFFECT OF INCREASING NIOBIUM
ABSORPTION CROSS-SECTION BY 1 BARN IN
FIRST AND SECOND WALLS

Total tritium
Calculation | System P roducn.’on‘ rate Difference
from ' Li, P A 1, %
at/em’~s tom exact result, %
Direct Reference 0,4136 13.3
Variational | Altered 0, 3648 -
Direct Altered 0. 3649 --
(exact)
Helium
production rate
in first and
second walls,
at/cm®-s x 1074
Direct Reference 10,685 9,00
Variational | Altered 9.718 0.93
Direct Altered 9, 809 --
{exact)
TABLE II. EFFECT OF INCREASING

ISOTROPIC DOWNSCATTERING CROSS-
SECTIONS OF NIOBIUM BY 2 BARNS IN FIRST
AND SECOND WALLS. L HELD CONSTANT.

Total tritium
Calculation System profductx.’o:rate Difference
rom H, from exact result, %
atlem®-s
Direct Reference 0.4136 11,4
Variational | Altered 0,4616 1.1
Direct Altered 0, 4665 --
(exact)
Helium
production rate
in first and
second walls,
at/em’-s x 10~
Direct Reference 10,685 8.8
Variational | Altered 11,676 0.2
Direct Altered 11,697 --
(exact)

were obtained from ANISN calculations on a re-
ference system taken to be the blanket illustrated
in Fig.l with an isotropic source in the highest
energy group located in the first spatial interval

of the first wall.

The first alterations were changes in the

nuclear data.

In Table I are results for a case

where the absorption and total cross-sections for
niobium are increased by 1 barn in the first and
second walls, This is a 25% change in the total
cross-section and is analogous to increasing the
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optical thickness of these two zones by that per-
centage. The variational estimate is in excellent
agreement with the exact calculation. In Table I
are results for a case where the scattering

transfer matrices are altered. Here, the Py \

component of the transfer cross-section to the
next lower group, i.e. crf'-o g of niobium, is in-
creased by 2 barns in both the first and second
walls. This enhances the downscatter and in-
creases o §.-01~>g by a factor of 20. The total cross-
section in each group was not altered which has
the effect of decreasing the absorption. Both

this and the previous case correspond to substantial
changes and yet the variational results are quite
accurate. Note that, for these first two cases,
first-order perturbation theory would predict no
change from the reference result. :
replacements, the niobium first and second walls
were replaced by vanadium. The results are
given in Table III. We have included the first-
order perturbation theory result since it now
differs from the reference result. The variational
values are again very accurate.

The procedure to examine the effects of changing
the source, based on the dual-space relation,
<5¢*> = {W¢ >, is simply illustrated in Table IV.
The results all agree to less than 1/2%, or to
roughly within the convergence criterion employed.
Of course, to use {S¢*) requires only an adjoint
calculation to determine ¢* for the quantity being
estimated. The results labelled <W¢ > were ob~
tained from different flux calculations for each
source considered,

TABLE III. EFFECT OF REPLACING NIOBIUM
BY VANADIUM IN FIRST AND SECOND WALLS
Total tritium
ducti ats i
Calculation System me :L l?;,r € Difference
rom 3 t from exact result, %
at/cm’-s
Direct Reference 0.4136 7.3
First-order Altered 0,4136 1.3
perturbation
theory
Variational Altered 0, 4402 1.2
Direct Altered 0, 4459 -
(exact)
Helium
production rate
in first and
second walls,
at/cm®-s x 1074
Direct Reference 10, 685 67,00
First-order Altered 31,17 4.4
perturbation
theory
Variational Altered 32,20 1,2
Direct Altered 32,61 --
(exact)

4




TABLE IV. SENSITIVITY TO NEUTRON
SOURCE REPRESENTATION

Helium
Total tritium production rate
production rate in first and
from "Li, second walls,

at/em’-s at/cm®-s x 107*
Source & <Wq> <F ‘S> <W0> <I"‘0>
No.1 0.4136 0.4137 10, 685 10. 698
No, 2 0. 4156 0. 4155 10, 528 10, 558
No. 3 0.3380 . 0,3379 6, 3850 6. 421

No. 1: isotropic source, highest group; first spatial interval
of first wall,

No, 2: isotropic source, highest group; uniformly distributed
over first wall,

No. 3: isotropic source, equal strength in each group; first
spatial interval of first wall.

4. CONCLUSIONS

Variational methods provide. efficient proce-
~dures for performing sensitivity studies and survey
calculations on CTR blanket systems. For multi-
dimensional blanket calculations, one can expect
further substantial savings in computing time.
The integrals that must be evaluated in the
variational method are of the same form as those
which occur in perturbation theory. As such,
existing segments of computer programs that
perform perturbation-type integrals can be
readily adapted for use with the variational method.

The numerical examples presented herein, on
some representative CTR blanket problems,
establish the promise and feasibility of the varia-
tional method in this field. Further numerical
studies are required to establish the full, useful
range of the variational method for these
applications.
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