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ABSTRACT

The problem of neutral atom transport in plasmas is formulated in
terms of an integral equation for the charge exchange collision density.
This formulation is used as the basis for a nume(ica1 code, SPUDNUT,
which is exceptionally fast and compact. Co&barétive calculations with

other neutral particle transport codes are presented.



1. Introduction

It is well-known that neutral hydrogenic atoms play an important role
in the evolution of tokamak discharges. MNeutral atoms affect both the
particle and energy balance of the plasma and, by wall bombardment, cén
erode the chamber wall as well as provide a mechanism for the generatidn
of impurities which enter the plasma. Consequently, codes which calculate
the transport of neutral atoms, are generally included as routines in
tokamak simulation codes [1,2]. Furthermore, the energetic neutral
particles emerging from the plasma are often used as a diagnostic of the
plasma ion temperature and the quantity and energy of these neutrals are
of interest to surface physicists.

Greenspan [3] pointed out that neutral particle transport is cﬁnceptua11y
the same as photon or neutron transport. Consequently, neutronics codes,
such as ANISN, can be easily adapted to neutral atom transport. Several
calculations of this type have beén reported [3-7]. Unfortunately such
codes are bulky and slow since they are designed to treat complicated
neutron interactions; the neutral atom processes in a plasma are rather
simple in comparison. This simplicity has led to the development of special
purpose neutral transport routines which are better suited for inclusion
in tokamak simulation codes. Some of these special purpose routines have
been discussed by Hogan [2] in his review. The role then. of codes based
on neutron transport methods has been to provide an accuracy standard for
the special purpose routines [6,7].

We present here a special purpose neutral transport routine which‘is
exceptionally compact and fast. This routine, which is designed for

inclusion in tokamak simulation codes, is based on an integral equation



for neutral particle transport. The geometry is that of a finite thickness plasma
slab with a source of nautral atoms at the plasma edge. For large tokamaks in
which the neutral atom mean free path is much less than the minor radius,

this assumption of slab geometry is sufficient for wall-originated neutrals.
For neutrals originating near the center of the device (e.g., from beam
injection), cylindrical effects are more jmportant. In Sec. 2, we formulate
the integral equation on which the neutral transport routine is based.

This equation is then transformed in Sec. 3 into a finite dimensional

matrix equation in a manner which rigorously conserves particles and energy.
The dimensionality of the matrix equation is the number of mesh points

over which neutral particle transport is to be calculated. In Sec. 4 we
present some results and a comparison with the ANISN calculation of

Gilligan et al. [7] and with results using another neutral atom transport

routine (FASLAB), developed at Oak Ridge [81.
2. The Transport Integral Equation

We consider a slab of width dx filled with plasma as shown in Fig. 1.
The plasma density and temperatures are functions of x, the coordinate
normal to the slab face. We divide the neutral particles into two classes:
those emitted from the wall at x=0, and those born inside the plasma by
charge exchange. The latter are assumed to be born isotropically and with

a single energy E, defined by the jon temperature Ti at the place of

birth.

E = %—mv2 =

roj

kBTi(X) (1)

The neutral particles emitted by the wall are divided into discrete energy

groups and have a specified angular distribution with respect to the x-axis.



We begin with the wall-originated particles. Let n(8) be the number
emitted per unit wall area per unit time per unit solid angle in the direction 8.
We consider first a single energy group with eneray E0 = %-mvg. The
number of particles traversing a differential area da (normal to the x-axis)
per unit time due to source points in an annular ring of width dr and radius

r, as shown in Fig. 2, is
]

aN o~ . “Jo ds'
Fide (6) 2nrdr dQ e Yo (2)

where dQ = da coselsz. The exponential factor is due to absorption along

the path length s, and
uo(x,Eo) = ne(x) <ov>, + n;(x) [<GV>1 + <cv>cx] - (3)

The reaction rates for electron impact ionization, <oV>gs jon impact

ionization, <ov>.s and charge exchange, <OV>_y depend on x through the
electron temperature Te(x), and the jon temperature Ti(x), and on the
neutral energy Eo' ne(x) and ni(x) are, of course, the electron and ion

density, respectively. Since x = s co0sf,

s uo(X',EO) 1 x Hy(x',E )dx! _ By (X)

~ cosh ~ cos8
0 Vo co 0 Yo

(4)

B,(x) being the optical depth.
To obtain the neutral particle flux T traversing da, we integrate

(2) over r and divide by daj;

r=2n [ rdr nge%cose =By (X)/cosd

o) S



It is more convenient to integrate over u, rather than r, where u = 1/cos6.

The flux T then becomes

02 g

I =2n f] dy n{6{u))  -Bou (5)

We consider now two cases. First, let the source function n(6) be"

isotropic (n(8) = n). Then

where

E (2) = !] o (6)

is the exponential integral [9]. Noting that 2mn = T, the flux at x = 0,

we can write T'(x) as

I(x) = Ty E,(8(x)) (7)

For the second case we consider a cos® source (n(6) = ! cosd). Then we

get

r(x) = 2 T, E5(8(x)) (8)

as the expression equivalent to (7) for this case. (Recall that E3(O) =1/2,
E,(0) = 1).

For the wall originated neutral particles, we use eq. (8), corresponding
to a cos8 angular distribution of the source. This is equivalent to
assuming that these particles have an isotropic distribution function
at x = 0. The first case, isotropic source, will be used for the internally

born particles.



The absorption rate per unit volume in the plasma is

Ax) = - (9)

and the fraction of the absorption rate due to charge exchange is
ni<°V>cx/“(x’Eo)' Each charge exchange event produces a first
generation neutral particle in the plasma. Thus,
' n. (x)<ov>
100 = Sreey A
js the source rate for first generation internally born neutral particles.
We can rewrite this expression as

"i(x)<GV>cx
S](X) =2 ———TI‘O‘-'—"‘ EZ(BO(.X)) FO . (10)

To obtain the total source rate for first generation neutrals, we write
eq. (10) for each energy group and sum over groups.

Let us now consider the internally born neutral particles. Let
S_(x) be the source function for the p'th generation. At each possible

P
birth point x, they are assumed to be born isotropically and with a single

2(

w

energy E(x) = E—kBT (x) = %—mv x). Consider a slab of thickness dx' at
x' (See Fig. 1);the flux of particles at x(x > x ') due to the source in

the slab at x' is

dr‘”(x) =5 S (x ) E,(B(x",x))dx' (11)

by application of eq. (7). Ther superscript denotes that these particles
are travelling to the right at x and the %-arises because only half of the

particles born at x' go to the right (i.e., v, > 0). Also



X " '
B(x',x) = Eié(iéj"dx" (12)
fx| V X
and
M(x"sx') = ng(x") <ovag +ng (x") [<ov>y + <ov>, ] (13)

The arguments of the reaction rates in (13) are Te(x") for <ov>, and

(Ti(x"),E(x')) for <ov>, and <oV>_ .5 the absolute value sign has been
introduced in (12) for convenience later.

We now differentiate dF;(x) with respect to x to obtain the absorption

-1

rate at x due to the particles born in dx' and multiply this by ni(x)<ov> u

cX
to get the charge exchange rate at x. This gives us the contribution to the
source rate at x of the (p+1)'th generation due to the p'th generation at x'.
We also have a similar expression for the particles travelling to the left

at x; they were born at x' > x. The total source rate S is then found

ptl
by integrating over x'. We get
d
Sp+](x) = jo dx' K(x,x') Sp(x ) (14)
where the kernel K(x,x') is given by
1 ni(x)<OV>cx
K(x,x') = 3 —EY E](B(X',X)) (15)

where B(x',x) is given by (12) for both x' < x and x' > Xx.



The interesting property of (14) and (15) is that the kernel is
independent of the generation. It is convenient to write (14) symbolically

as

sp+](x) = K Sp(X) (16)

where K is the integral operator whose kernel is gjven by (15). The total
charge exchange rate per unit volume S(x) is found by summing over
generations;

oo

r S (x)
p=1 P

S{x)

(1 + K+ K2 + K3 + ...) S](x)

o
“1-x i

using (16) recursively. We can rewrite this expression as
S(x) = S;(x) + K S(x) »
which, when written out explicitly, is

d
S(x) = S](x) + [ dx' K(x,x') S(x') (17)
0

This is an integral equation determining the total charge exchange
rate per unit volume S(x) in the plasma; the inhomogeneous term S](x)
is given by eq. (10). From the function S(x) one can determine all other
quantities of interest. For example, the ionization rate due to electron

impact is



n (x)<ov>

Se(X) f dx’ W K(X X ) S(X )

(18)
n_(x)<ov>
+ -8 e 5 (x)
ni(x$<cv>Cx 1 ?
the energy loss rate due to charge exchange is
d .3
wcx(x) = fo dx E'kB[Ti(x) - Ti(x )T K(x,x') S(x')
(19)
F 3 kT () - EJ] 0 Sp(x)
2 Bi 0 1
and the neutral particle flux incident on the wall is
d 1
= [ dx 7 S(x) E,(8(0:x)) (20)
)

The integrand in (20) has an interesting significance. It is the source
rate of particles that reach the wall without further collision. From
this source rate and the temperature profile, one can construct the
energy distribution of the neutral particles incident on the wall. This
will be discussed further in the next section. The neutral particle
density profile in the plasma is most easily found from the electron
impact ionization rate. Since <ov>, is essentially independent of the

neutral particle energy, but is a function of Te(x) we can write
Se(x) = ni(x) no(x) <ov>, (21)

Hence the neutral particle density no(x) can be obtained from (18) and

(21).



3. The Discretized System

We consider in this section the reduction of the integral equation
(18) to a finitely dimensioned matrix equation which is then solved by
a single matrix inversion. The scheme used for reducing the integral
equation to the matrix equation is based upon the application we have in
mind: wuse as a neutra] transport routine in the WHIST code [10], which
is a Tokamak simulation code. This scheme has the property that it
explicitly conserves particles and energy, regardless of the mesh spacing.

We consider a set of mesh points j with coordinates xj (7 = 1,N) and
associated zones, as shown in Fig. 3. The boundaries between the zones
are midway between meshpoints (which may be nonuniformly spaced). The
zone widths are Aj = (xj+] - xj_])/Z. This is the mesh-zone con-
figuration used in the WHIST code for the plasma transport equations. The
required plasma data is given at the meshpoints j.

The reduction scheme consists of calculating, for a given generation,
the flux (of the particles travelling to the right, for example) entering
and leaving each zone. This difference represents the net absorption in
that zone; a certain fraction of it is due to charge exchange and represents
the source for the next generation. This source is assumed to be concen-
trated at the meshpoints. A higher order approximation would be to
assume that the charge exchange source is uniform inside a given zone;
the error is small if the zone widths are small compared with the neutral
mean free path. This scheme was used earlier by Khelladi [11] in another
neutral transport routine based on following generations.

We consider first the neutral partic]eé streaming from the wall.

The optical depth to the left face of the j'th zone is



10

-1 u(x.,E)
B_:I Z _...__1____0._. A‘
i=1 v0 1

The absorption rate per unit volume in the j'th zone is

0 0
E3(Bj) - E3(Bj+])

. o :
J AJ

Hence the source for the first generation of internally born neutral

particles is

ni(xj)<gv>cx 0 0
S](Xj) = 2P0 u(xj’Eo)Aj [E3(Bj) - E3(8j+])] (22)

This is the discretized version of eq. (10). Here, <ov>CX'has as argument
(Ti(xj)’Eo)'

We follow a similar procedure for the internally born neutral particles.
In this case the optical depths are calculated between the k'th meshpoint
and the two faces of the j'th’zone. Let us introduce the shorthand notation

v, = v(xj), Moy = p(Xj,X ). Then

J J
- L ( ) (23)
vV, B:p = L U A s X - x
k Pk T iy KA T 7 e D T xk
if j > k, and

-5 L, ( ) (24)
Ve BI s B uoA b (x - ox 24

k Bak TSy MK T2 Mk DT X

if k > j. We also define
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A

o Hy A
gt Bjk+—3k J (25)

Jk Vi

Clearly ng is the optical depth to the near face of the j'th zone and
ng is the optical depth to the far face.

The absorbtion rate in the j'th zone due to the source in the k'th .
zone is

S_(x:)A
=1 Pk -y - g (at

Ajk - 2 Aj [EZ(Bjk) Ez(sjk)]

for k # j. For k = j, the flux 6ut the right face is

1 r
r 2 Sp(xj) Aj EZ(Bj) s

=
1]

and out the left face is

L
Sp(xj) Aj EZ(Sj) s

—
=

I
N —

where

. X, - X.
ro_ My (X501 - %)

o k (26)
v M o %)
Bj - 2Vj (27)

The absorption rate in the j'th zone due to the particles born in the same

zone is

(r, + 1)

A

A.. =S (x.) -
P J j

JJ

which becomes
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2]
Ay = 5 Splxg) [2 - Ep(8]) - Ep(8])]

We multiply the absorption rate Ajk by the probability that the absorption
was due to charge exchange and sum over the source slabs k to get the

source for the next generation. We obtain the result

Sp+](xj) = i Kjk Sp(xk) (28)
where
1 nxg)<ov>e, 4y - +
Jk J
if j # k, and - (29)
K. 1 ni(xj)<°V>cx 2 r E 2)
if j = k.

The matrix Kjk is the discretized form of the integré] operator K defined
in eq. (14). The optical depths needed in the calculation of Kjk are given
in egqs. (23) - (27).

In the same way as in the continuous system, one sums oOver generations
to get the total charge exchange rate per unit volume. This is determined

by the matrix equation
' 3
§=§]+K-§,
which has the solution

- (FT-07 - f (30)



13

.—)
The neutral particle code SPUDNUT calculates the vector S] (determined

by the wall-originated particles), the matrix K, and then calculates 3
by computing the inverse (? - %)"]. The inversion routine used is due
to Crout [12]. The particle source and energy sink terms needed by the
plasma transport equations are then calculated by matrix operations
using S If desired, one can also calculate the neutral density, as
well, from 3. For completeness, we list here the matrix equations for

these source and sink terms.

Electron impact ionization rate:

ne(xj)<cv>e . S(x) + ne(xj)<ov>
Jjk k ni(xj)<cv>

Se(xj) =7

e
L ni(xj)<ov>'cx 5](Xj)- (31)

CX

Ion impact ionization rate:

S.(x.) = 3 ni(xj)<ov>i | ni(xi)<cv>i
L k "1(Xj)<0v>

N ’

.S](xj) . (32)

K.y S(x,) +
ox jk k n].(xj)<ov>Cx

Energy loss rate from the ions due to charge exchange
_3 _ '
Wey(x5) = 3 kg ,ﬁ [T, (x;) T;(x,)] Kim S(x)

+ [%—kBTi(xj) - )1 S (x;) - (33)
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Kinetic energy deposition in the ions due to ionization:

ne(xj)<ov> + ni(xj)<cv>i

- e .3
Wilxg) =2 DLCHET, 2 kT (X)) Ky Sx,)
(34)
. ne(xi)<ov>e + ni(xj)<cv>i

"i(xj)<0v>cx " B S](xj)°
Furthermore, one removes from the electrons an energy price for each electron
impact ionization event and from the ions for each ion impact ionization event.
In SPUDNUT, this energy price is chosen to be 13.6 eV, corresponding to the
ionization potential, but could be set higher to phenomenologically account
for excitation as well as ionization.

The flux of energetic neutrals incident on the wall is calculated using

the discretized form of eq. (20).

21
FW - 2 E S(Xk) EZ(B(Oan)) (35)
where
k-1 wsp A py (x, = X, o)
k = kk'"k k-1
B(0,x,) = 5 - +

The energy distribution of the particles hitting the wall is obtained by

noting that the particles belonging to each term in the summation in eq.

=3
(35) have an energy Ey = 5 kBTi(Xk)°
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Reflection of energetic particles at the wall can be easily incorporated
in the routine by introducing an energy dependent reflection coefficient
[13] and a prescription for dividing the reflected particles into the
various energy groups comprising the flux Ty of particles entering the
plasma. The outgoing fluxes are then calculated iteratively until the
results converge. Since this is external to the basic neutral particle

transport routine, it is not discussed further here.
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4. Comparative Calculations

Multigroup ANISN calculations of the neutral particle transport were
reported by Gilligan {7] for the TFTR plasma. For these calculations the

plasma density and temperatures were taken to be

n;(x) = n ()01 - (91 + n,(a)

T(x) = T,(x) = T,(0)1 - (51 + T, (a)

1

where n.(0) = 4 x 10 3 T.(0) = 9550 eV, T.(a) = 50 eV. The effective cold

neutral particle density at the edge (.5* physical gas density) was taken

9

to be 5 x 10 cm'3 (yielding a flux into the plasma given by the expression

T = (nggz ) with an energy of 3 eV. Using these parémeters, the same
calculation was done using SPUDNUT and FASLAB. The neutral density profile
obtained by each of the routines is shown in Fig. 4. As can be seen,
significant differences in the neutral density, as calculated by the three
different codes, appear only after the neutral density has been attenuated
by more than two orders of magnitude. This difference is not generally
significant in tokamak simulation codes; the interesting region is the
first two orders of magnitude. The energetic neutral particles reaching
the wall are born primarily in this region. Furthermore, the neutral
particle effects in the plasma transport equations are significant only
in this zone (i.e., near the edge of the plasma). The energy spectrum
of the energetic neutral particle flux incident on the wall is shown in
Fig. 5 for the ANISN and SPUDNUT calculations; again the agreement is good.
The ANISN calculation took 75 sec on an IBM 360/91 [7], compared to

1.35 sec for FASLAB and .06 sec for SPUDNUT, both on the CDC-7600.
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A comparison has also been made for a reactor size plasma, NUWMAK [14],
using FASLAB and SPUDNUT. In this case the assumed plasma density and

temperature are

ny(x) = n_(x) = n(0)1 - (5)?1 + n(a)

To(x) = T;(x)

. T (001 - (9% + 7,(a) .

14

where n(0) = 1.95 x 10'%, n(a) = 3.2 x 10°, T.(0) = 10 keV, T;(a) = 30 eV.

The effective cold neutral density at the edge is 1.9 x ]010

and their
energy is 5 eV. The neutral particle density is shown in Fig; 6., the
jonization rate in Fig. 7, and the energy loss rate from the ions in Fig. 8.
The solid lines are for no particle reflection at the wall, and the dotted
line is for particle reflection. Particle reflection does not make a
significant difference, at least in these calculations. The agreement
between the two codes is good.

Shown in Fig. 9 is the source rate for neutral particles that reach
the wall without further collisions, and in Fig. 10 is their energy spectrum
(normalized to unity). The total particle flux incident on the wall is

15

Pw = 8.5 x 10]5, as calculated by SPUDNUT, and Ty = 7.5 x 10 7, as calculated

by FASLAB.
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5. The Subroutine SPUDNUT

In this section a detailed description of the subroutine is given.
Sections 5.1.1 and 5.1,2 describe a way of indexing certain yariables which allows
for considerable savings in core space and execution time. In section
5.2 the structure of the subroutine and its particle and energy balances
are discussed. Later sections contain Tists of common blocks, variables
and subroutines called.

5.1.1 Indexing of Local Variables

Variables that are relevant outside SPUDNUT are labeled with an in-
dex 1 (or i1), counting from 1 at the center through N just outside it.
Recall that the plasma boundary is located between the meshpoints N-1
and N. Variables Tocal to SPUDNUT have an index J (or J1) counting from
1 at XN—] to NMD at a specified point in the plasma. This means that
these variables are only defined where they are actually required, i.e.,
in the area to which the neutral calculation is restricted.

5.1.2 Indexing of Cross-Sections and Energy Groups

When calculating the various cross-sections, three distinct types of
energies play a role:
(1) at every one of the NMD meshpoints, particles can originate from all
these meshpoints, having the corresponding energies,
(2) the energy groups in which the flux from the wall is divided number
NMD/2 (= NSC) and are choosen such as to make their energies coincide with
these corresponding to the temperatures at the odd meshpoints, counting
inwards on the J-scale,
(3) an extra energy group is allocated to the external influx. Hence the
cross-sections have dimension NMD x (NMD+1) while the flux from the wall

(FWALL) and its energies (ENS) are dimensioned NSC+1.
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5.2 Structure of the Subroutine

The structure of the program is very straightforward, containing only
a single iterative loop. The table below Tists the most relevant sections,
an * identifying the sections inside the iterative loop. The variable TOL,
which serves to decide on the convergence of the latter, and KSPUT which
indicates whether or not the subroutine ALBDST (see Section 5.5) is called, are

the only arguments of SPUDNUT.

STMNT Calculates

51 - 62 cross-sections

71 -~ 120 kernel AKCX

124 - 146 Crout decomposition of AKII
* 159 - 187 initial SCX@, SION, VTE, VII, (DENO)
* 793 - 208 SORCX
* 210 - 247 final SION, VTE, VII, ALBEDO, (ALBEDI), (DENO)
* 252 call BKSCAT
* 253 - 262 convergence test

274 call ALBDST

The statements 224-235, calculating the inwards escape rate ALBEDI and 180-187/244-247
where the neutral density DENO is calculated are optional and should not be in-

cluded when the subroutine is used as a part of the transport codes WHIST or CRIST
(version 53 or later).

Particle and energy balances can be tested according to:

L FWALL(k) = » [SION(i) + ALBEDO(i) + ALBEDI(i)] *DR(i)
k i

and

% FWALL(k) * ENS(k) + 1.5 £ [VTI(i) * DENP(i) + VTE(i) * DEN(i)] *DR(i)
k i

= I [13.6 * SION(i) + 1.5 * TI(i) * {ALBEDO(i) + ALBEDI(i)}] *DR(i) ,
i

respectively,
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5.3 Common Blocks

/DENH/ contains all the output variables of the subroutine, including
those calculated in the subroutine BKSCAT.
FWALL(k), ENS(k): flux from the wall and its energy distribution.
The first NSC elements come from BKSCAT, the last
two are actually input variables. (#/cmz-sec and
eV, respectively).
SION(i): 1local jonization rate (#/cm3-sec)
VTE(i), VTI(i): Tocal energy transfer from electrons, ions to neutrals
(eV/particlessec)
ALBEDO(i), ALBEDI(i): 1local outwards, inwards escape rate (#/cm3 sec)
/GEOM/ contains geometrical data (see section 2 and figs, 1-3)
R(i): meshpoints
DR(i): distance between meshpoints i and (i+1).
DDR(i): width of slab containing meshpoint 7.
/INDEX/ N: number of meshpoints
NX: 1innermost meshpoint to which neutral calculation is extended.

NMD

N-NX; but is made even and < 22 in the subroutine (output).

NSC = NMD/2 number of energy groups in FWALL (output).
IND: number of iterations when convergence criterion is satisfied
(output).
NM1 = N-1
/DEN/: DEN(i), DENP(i),DENO(i): electron, proton and neutral density, respe%;}Z$§{
JTEMP/: TE(i), TI(i): electron and proton temperature, respectively (eV)
/ATOMIC/: AMZ: atomic mass number of Timiter material

ZIMP: charge of nucleus of limiter material
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ENFC: Franck-Condon energy (eV)

Al: atomic mass number of ions in cross-section calculation

AN: atomic mass number of neutrals in cross-section calculation
AMU: atomic mass number of plasma ions

FLUX: dnput to initiglize the flux from the wall

5.4 Local Varijables

[f the subroutine is used in conjuction with a code of the WHIST- or CRIST-family,
these variables can be written over the main matrix containing the coefficients
of the discretised equations. This use of the EQUIVALENCE feature allows
for an important saving of core space.

SVIMPE(j],jé), SVIMPI(j1,j2), SVCX(j],jz): cross-sections for electron

and jon impact ionization and charge exchange, multiplied by the

relevant particle densities (ne or ni). The index j1 Tocalizes the
event; j2 specifies the energy of the impacting neutral particle.
SVTOT(j],jZ): sum of the above.

AKCX(jﬁ,jZ): the kernel as defined in eq. 29.

VT(j): particle velocity corresponding with the ion temperature at R(i).
ENI(j), ENE(j): energies corresponding with ion, electron temperature

at R(i).
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AKII(j1,j2): identity matrix minus AKCX(j],jz).

AKL(j1,j2), AKU(j],jz): lTower and upper triangular matrix resulting
from the Crout decomposition of AKII(j1,j2).

SCXP(j): original neutral source at R(i).

SORCX(j): final neutral source at R(i).

ASOR(j,j'): number of neutrals at X5 originating from X3t (#/cm3)

BETP, BETM: optical depths (g',p7).

.5 Subroutines Called

SIGVE: calculates <OV, the electron impact ionization rate.
Input: TE(i), ENI(j), AN
Qutput: x = <ov>,
SIGMAV: calculates <ov>; and <OV>
Input: TI(i), ENI(j), AI, AN
Output: x = <OV>4, Y = <ov>

BKSCAT: calculates the flux and energy distribution of the neutrals
that are backscattered from the wall. A1l input and output
is through common blocks. This subroutine calls the function
REFL (see section 5.6).

ALBDST: calculates the energy distributicn of the neutral flux escaping
from the plasma, assuming that each plasma slab is characterized
by a Maxwellian distribution of the slab temperature.

Input: ALBTOT, SORCX

Output: E = neutral escape flux energies, F = neutral escape flux

with energies E (both dimensioned 50)
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5.6 External Functions

EXPI2(x): calculates the exponential integral of the second order,
using a polynomial approximation.
REFL (ENI(i), AMZ, AMU, ZIMP): calculates the particle reflection co-

efficient using data from Oen and Robinson.]3
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Figure Captions

The slab geometry for the neutral particle transport code.
Coordinates for the integration to obtain the flux of particles
through the area da.

Numbering scheme for meshpoints and zones in the discretized
version.

Neutral density profile in the TFTR calculation.

Energy spectrum of the neutral particle flux incident on the
wall - TFTR case.

Neutral particle density in the NUWMAK calculation.

Ionization rate per unit volume - NUWMAK case.

Ion energy loss rate per unit volume - NUWMAK case.

The source rate for particles that reach the wall without further
collisions - NUWMAK case.

The energy spectrum of the particle flux incident on the wall -

NUWMAK case.
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