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Abstract
Constitutive Taws for radiation-induced deformation are derived based

on a phenomenological approach which involves only simple principles of
continuum mechanics and avoids detailed mechanistic assumptions. This approach is
applied to materials which are initially in an isotropic condition that
serves as a reference state. As specific examples of this approach we
consider in detail three forms of constitutive Taws. In the first
case it is assumed that the deformation rate depends on the current stress
as the only tensor variable. For the second case we postulate a dependence
on the current stress tensor and the strain tensor as produced during the
previous radiation-induced deformation. Finally, the third case deals with
a dependence on stress and strain as accumulated during cold-working., In
both the latter cases, the material is rendered anisotropic with respect to
the reference state, It is shown for the last two cases that the phenomeno-
Togical approach provides a proper formulation and a clear distinction of
such phenomena as stress-affected swelling, irradiation creep, radiation-
induced anisotropic growth, and creep-swelling interaction. It also
supplies the superposition rules for these phenomena when the material is
subject to tri-axial stresses which change and redistribute with time.

The constitutive Taws as obtained from the continuum approach are
not completely suitable for modelling structural materials. Since they are
polycrystalline in nature, the constitutive properties may vary from grain

to grain, and it becomes necessary to derive a macroscopic constitutive



law for the aggregate. This is accomplished by considering an aggregate

of many viscoelastic elements linked in parallel. The resulting constitutive.
law for the aggregaté depends on the strain history. Upon sudden load
changes, the aggregate exhibits anelastic transient creep. It is shown

that the magnitude of the anelastic strain is related to the range of

variability for the constitutive properties of the grains.



Constitutive laws for irradiation creep and stress-induced swelling
have been proposed in the past, and they were to a large extent based
on mechanistic models [1]. As a result, the constitutive equations are not
only linked to rather specific mode] assumptions, but they also depend on many
parameters which characterize point defects, lattice properties, and the micro-
structure. Needless to say, numerical values for these parameters are very
rarely known. In addition to the multitude of parameters needed for just
one mechanistic model, there are several atomistic processes which have been
invoked as the cause of irradiation creep and stress-induced swelling [2].
It is in fact quite possible that several mechanisms contribute to the radiation-
induced deformation, and that additional mechanisms may have to be discovered

to understand the experimental data.

In view of this situation, 1tri§mde§irab]e to approach the subject matter
from a more phenomenological point of view without taking recourse to detailed
mechanistic models. This can be done, as shown in this paper, with the
formalism and tools provided by modern continuum mechanics. This discipline
offers a few guiding principles of great generality which are particularly
useful to find the proper tensorial relationships for multi-axial deformations.
The disadvantage of this approach is that it is too general in the sense of
supplying us with very extensive 1ists of possible constitutive laws. If
the selection of the particular law were to be made on the basis of experimental

tests alone, the number of tests would be prohibitively large indeed. Therefore,



in the author's opinion, an optimal strategy is reached by combining the
phenomenological approach with insights gained from mechanistic models.

This will reduce, as demonstrated in this paper, the extensive 1ist provided
by continuum mechanics. There are other shortcomings with the phenomenological

approach related directly to the basic assumption of a continuum. If one

assumes, as it is usually done, that the rate of deformation at a given
Tocation depends only on the values of stresses, temperature, etc., at

that same location, and that the same constitutive law applies to all
Tocations, then certain deformation phenomena are excluded. Indeed, the

last assumption is in conflict with the heterogeneous nature of real
polycrystalline materials where each region or grain must be assigned
different constitutive properties. By averaging over the constitutive properties
of grains we can derive a macroscopic constitutive law for a polycrystalline
aggregate and thereby overcome one of the more severe short-

comings of the phenomenological approach. As will be shown in the last
section, the macroscopic constitutive Tlaw contains then anelastic effects
not present in the corresponding microscopic law.

The major advantage of the phenomenological approach is that one can
derive constitutive Taws of a general form which include swelling,
stress-affected swelling, irradiation creep, anisotropic shape changes,
and creep-swelling coupling effects such that all these phenomena are clearly
identified without being counted twice or overlooked. Furthermore, they are

already formulated for any state of stress. To obtain that tri-axial generality



from mechanistic models involyes a great deal of Tabor and extreme care,
Hence, the phenomenological approach offers an additional check for the
correctness of tri-axial deformation laws extracted from models. Further-
more, it also provides the framework to extend measured constitutive
equations to their most general tri-axial form as needed for structural
analysis in reactor design. And finally, it defines the aboye mentioned
phenomena so that appropriate experiments can be designed to measure them,

In the following we carry out this approach with a few examples
to demonstrate its potential and value. We restrict ourselves to materials
which had at one time an isotropic state that is used as a reference state.
Consequently, the derived results are applicable only to cubic poly-
crystalline materials. However, if they have a texture because of cold-
working prior to the irradiation, this particular anisotropy can also be
dealt with in the present approach,
Notation

It will be expedient for the following to introduce first some

conventions and notations which are extensively used in continuum mechanics.

Tensors, such as the stress tensor o (1,3=1,2,3) are simply denoted by o.

iJ
A product of two tensors, as for example the stress and the strain tensor,

will be written as ge, and stands for
9—€—=zk:c1'k ki -

This product is again a tensor, not necessarily symmetrical, and we can form

a scalar quantity, called the trace

tr oe = 12‘1 Oik €Ki



If a product is formed with identical tensors, we simply write g?, meaning
oo. Finally, the unit tensor is denoted by 1 or by Sij’ where Gij has the
usual meaning of the Kronecker symbol: aij =1 1if i = j and zero otherwise.
(Skau:l: 61:1
decomposed into an isotropic part and a deviatoric part. In the case of the

Note that %;Sik » and that tr 1 = 3. Any tensor can be

stress and strain tensor, we have

g=s+lgtro (1)
and
_ 1
e=e+lgztre. (2)
Special significance in the present context is given to
= &Y .
tr e = v S, (3)
which is equal to the swelling, and to
Ttro=0 (4)
3 = H

which is the hydrostatic stress. According to the definitions of the
deviatoric stress s and deviatoric strain e, Egs. (1) and (2), their traces
vanish, i.e. tr s = tr e = 0.

It is well known that the individual components of a tensor, say 0449

depend on the coordinate system used. However, there are three basic invariants



tr o, trrg?, tr g?

which are the same in each coordinate system. The invariants of the deviatoric

tensor s are of course related to those of g; for example
. _ 2
tr s° = tr o° - 30 . (5)
Hence, we shall consider the three invariants

oy tr s%, tr s (6)

as our basic stress parameters. Among these, oy and

tr 52 =

O2
e

wir

q

have a physical meaning, whereas tr g? has no clearly defined meaning except
that it vanishes if the stress state is only uniaxial or biaxial. Oeq is
of course the maximum shear stress connected with the stress tensor.
An important thermodynamic quantity is the mechanical power

tr gf = %; Ok ék“i (7)
where ¢ is the deformation rate tensor. This gquantity represents the
rate Qf dissipation of the mechanical work associated with the deformation
at a given point, In modern continuum mechanics, the basic thermo-

dynamic laws are postulated to hold at each material point. Hence, the

first law of thermodynamics is given by

pu = tr oe + div q+ or (8)



where p is the mass density, u is the rate of internal energy change, a
is the heat flux, and r is the rate of energy per unit mass deposited
at each point by the radiation. The second law of thermodynamics is

assumed to hold locally in the form of the Clausius-Duhem inequality [3]

p”ﬁ-ﬁ)+Wgé+%a'gdeiO (9)

where n is the rate of local entropy production.

Since experiments can be designed with nearly uniform temperature we
may omit the last term from the inequality (9). In the absence
of stress, the inequality (9) implies that Tn z_ﬁ. Upon load application the
elastic deformation makes a contribution to U which cancels the elastic part
of tr oe. Hence, in the following e denotes the inelastic strain tensor if
not stated otherwise. If we assume that the inelastic deformation does not

change the internal energy u of the material, then
tr oe > 0 . (10)

The condition (10) implies that in a uni-axial tensile experiment

¢ is always positive even after the tensile stress o is reduced to a lower
positive value. Strain recovery, i.e. a negative €, was however observed

in a load drop experiment [4]. We will show in the last section of this paper
that this anelastic strain recovery is a consequence of the inhomogeneity

of polycrystalline materials, and that the macroscopic constitutive

law for them does not satisfy the inequality (10). Only, the more general

inequality (9) is applicable in this case.



‘Dependence on Current Stress

Suppose that the rate of deformation € is a function of the current stress

o, the displacement rate ¢, the time t, and a set of microstructural parameters,

m. We write then

(e

= f (0, ¢, t, m) ., (11)

If the material can be considered as isotropic, as in the case of a poly-
crystal with no texture, the constitutive law must be the same in any
coordinate system. As a consequence, as Rivlin and Ericksen [4] have shown,
the most general constitutive' law of the form (11) for an isotropic material

is given by

S 2
e=f,l+fio+f,o, (12)

where fo to f2 are scalar functions depending on ¢, t, m, and the three

stress invariants listed in (6). In order to separate ¢ into swelling and

.
€
.

£

creep we make use of the decompositions of the tensors and ¢ as given by

Egs. (1) and (2). We obtain then instead of Eq. (12) the equations

$=3f,+3f o4+ f, (30 - trs?)
- 2 3
- wo (¢9 t’ m, OH’ tr §,: tr §a) (13)
and
E=(f+2f0) s+, (s-11trsd)

s (14)

b sty (81T trs?)

where we have introduced three new functions wo’ w1, and bo which are linear

combinations of the old functions fo’ f] and fz.
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Eq. (13) gives the general form for the swelling rate in an isotropic
material under stress. With regard to irradiation creep, the directional
contributions can be divided into two parts. The first term in Eq. (14)
gives rise to creep strains which are colinear with those of the stress.
The second term, however, gives contributions to creep in other directions.
We can demonstrate this most clearly in a torsion experiment, In a
cylindrical coordinate system with the axis assignment (r, 0, z) =

(1, 2, 3), the deviatoric stress tensor is given by

o T O
S = T 0 O
0o o0 0
so that
2
T 0 0

Therefore, whereas the first term in Eq. (14) gives rise only to shear strains,
the second term produces also normal strains. Consequently, if axial and radial de-

formations were observed in a torsion creep experiment it would indicate that the second

term in Eq. (14) is required for a constitutive Taw.
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Experiments with thin-walled pressurized tubes are also suitable to test
for the existence of the second term in Eq. (14). If Ty denotes the hoop

stress, then the hoop strain rate is given by

and the axial strain rate by

—
D N

é="'_"w20

N
d

It should not be overlooked that 2 and wz are in general dependent on the
stress invariants. Thus, the two terms in Eq. (14) are not necessarily linear
and quadratic in the stress.

The requﬁrement of poSitive mechanical power imposes an important
restriction on the selection of the functions ¥, to ¥,. The condition (10),

applicable to the stress-induced deformation rate only, can be written as

) 0>0, (15)

tr (e - £

where éo is the stress-free deformation rate. Decomposition of

the tensors gives

tr(@-8)s+ (3-8 020,

and since this inequality must be valid for any stress state, it follows

that

) s>0 (16)
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and
$-8)o,>0, (17)

where So is the stress-free swelling rate. With the constitutive law of

Eq. (14), the condition (16) gives
by tr §? + ¥, tr 53,i 0

or in the case of uniaxial loading

In order to satisfy the last condition for a cdmpréssive stress of arbitrary
value, Yo must either depend on the stress invariants in such a way as to
change sign for compressive stresses, or else it must be zero. |

The condition (17) asserts that a compressive hydrostatic stress
reduces the swelling rate below its value for the stress-free case. Of
course, the function y, must be chosen so that S > 0.

Dependence on Current Stress and Strain

There are several experimental observations, discussed recently [5],
which indicate that previous swelling and irradiation creep affects subsequent
deformation. To include this in a constitutive law we may postulate the

following dependence:

€=1f(0,e. 0, t,m, (18)
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Again, it can be shown [4] that for a material which was originally (i.e. for e=0)

in an isotropic state, the most general law of the form of Eq. (18) is

E=fol+fio+fe+fy o + fy &

+ g (0= + £0) + fg (oe” + €0) (19)

+ (0% + eof) + fy (o%e? + %P

where the nine functi‘onsf0 to f, may depend on ¢, t, m and the following Tist

8
of ten invariants:

oys tr 9?, tr g?, S, trlgz, tr E? s

tr oe, tr oe?, tr oe, tr ote’ .

The constitutive Tlaw of Eq. (19) is already exceedingly complicated so
that preliminary experimental information or other theoretical insight
must be used to simplify it and reduce it to a tractable form.

Firstly, 811 mechanistic models for stress-affected swelling [6]
show that for an isotropic material, i.e, for e = 0, the effect depends on
oY only. Hence, if we assume this to be true, then f3 = 0, Secondly,
most data on irradiation creep for stainless steels [7] confirm, after proper
subtraction of thermal creep, a linear stress dependence. Therefore,
fy = fg = f3 = 0. Finally, the anisotropy created by previous deformation
is to a first approximation Tinear in the strain tensor e, In fact, most
of the current mechanistic models for irradiation creep lead to this
conclusion. Accordingly, we assume that fp = fg = f8 = 0. There remains

then the constitutive Tlaw
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€ = fol+fpo+fe+ fo(eo+oe) | (20)

which is a drastic simplification of the one in Eq. (19), but it still incorporates
important features discussed in [5] . To illuminate these, we employ again
the decomposition of tensors into isotropic and deviatoric parts, and we

obtain

§=v, (o, S, tres, ¢, t, m) (21)

and

[F% BpN)

€= U;S+ ety (es+se-15tres) . (22)

Based on our assumption of a linear stress dependence of the irradiation
creep rate, é, the functions w] and V3 are independent of stress, whereas

by may be a linear function of stress, i.e. of 9y and tr es. Let

us first consider the swelling law of Eq. (21). We see that S depends
on S. This is not unreasonable, since the void structure present will
certainly influence the subsequent swelling. A more interesting effect
on S is brought about by the dependence on tr es. Its physical meaning can
be iTluminated by the following example.
Suppose that one irradiates two square metal sheets loaded, say, in tension

along the 1-direction. At time tg the load direction is changed on the second
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sample 1into the 2-direction, and the irradiation is continued. The

deviatoric strain tensor before time t_ is

e o0 o
= 1
e(ty) = | o -p¢ ?
o o -z

and the deviatoric stress tensors after time to are

2 1
‘3‘0 o} o} -3‘0 0 0
m .|, 2 @ |, 2
S =10 30' 0 N §_ 0 ‘3'0 0
0 0 -lO 0 0 ~-=C
3 3

(2) _

For the first sample, tr g§F1) = €0, but for the second sample, tr es’ ' =
-%-80. If U, is linear in tr es, then the swelling rate should decrease
in the second sample after the rotation of the load direction. Such an
effect is 1ndeed'expected if irradiation creep results in & dislocation
Toop structure which is preferentially aligned perpendicular to the tensile
stress direction as was observed recently [8]. Upon rotation of the stress
direction most Toops are aligned parallel to the tension axis, and their
capture efficiency is reduced according to theoretical calculations [1].
This results in a lower bias for swelling. An isotropic or random loop
orientation would give no change in bias.

The anisotropy of the dis]écation stkdctﬁre, being a result
of the previous deformation, enters into our phenomenological description
in the form of a dependence of_é on ¢ itself. The isotropy assumption is

made for the reference state only where € was equal to zero.
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Turning now to the irradiation creep Taw, Eq. (22), we see that the
first term, by (S) s, represents the constitutive: law as presently used
[71. Although it is independent of e, it may be linked to swelling.
However, this does not imply that the irradiation creep law is linear in
the swelling S. The reason is that all the functions N to w3 may also
depend on the microstructural parameters, m. It is in fact well known
from theoretical models and experiments that void swelling is strongly
dependent on the microstructure. Hence, the Tist of independent parameters
in the functions wo to w1 is redundant. We may solve Eg. (21) for S and
insert it into the function w1(S), thereby obtaining a function of the
swelling rate and the microstructure, i.e. w](ﬁ,m). In this way we
can recover the previously proposed and widely used relationship for swelling
dependent irradiation creep [1].

The second term in Eq. (22) remains even after load removal. In such

a situation
é =1y, (0,0, ¢, t, me,

and if we assume that o is time-independent, the integration of this

equation gives

e(t) = efo) exp (v,t) . (23)

This equation describes a shape change after load removal which is super-

imposed on the swelling rate So' This effect, called "memory-creep", is however
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fading with time, i.e. 17 must be a negative quantity to prevent an exponential
increase of the anisotropy.

The last term in Eq. (22) can be interpreted as an anisotropic creep
behavior caused by the anisotropic loop and dislocation structure that was
generated during previous deformation.

Dependence on Stress and Cold-Working

Previously accumulated strains may not only include irradiation creep
but plastic flow imposed on the material by the cold-working process. We
may have to add then an additional tensor variable, c, to the 1ist of
parameters in the constituitive law of Eq. (18). However, to avoid further
complications, we assume that the cold-working strain tensor c¢ replaces e.
The ensuing law coq1d be suitable for the initial radiation-induced deformation
of cold-worked materials. Since plastic flow causes 1ittle volume changes,
tr ¢ ¥ 0, and the constitutive. laws of Egs. (21) and (22) become the following.

§ = ¥y (OH, S, tr cs) : (24)

_é_ = IP] (S) s + 1P2 (OH) c (25)

* g (9§+§s-l§trg§).
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The presence of the second term in Eq. (25) implies that dimensional growth is aniso-
tropic in stress-free cold-worked materials, and this was indeed observed

[9]. There is no mathematical reason in the present case that this aniso-

tropy be fading. To model it requires that b is a decreasing function with

time.

History Dependence

There 1is no compelling reason other than the desire for simplicity
that the deformation rate ¢ should depend only on the current stress o
and strain . One can, as done recently [10], assume that it
depends instead on the entire stress and strain history by introducing
superposition integrals. These integrals replace then the independent
parameters and tensors. As has been shown by Wineman and Pipkin [11] this
added complexity will not change the tensorial relationship between é_and

o. For example, the constitutive law of Eq. (14) (with Yy = 0) is

simply replaced by

e(t) = [ dt' yp (t') s (t')

O “——¢ct

where w1(t‘) depends on the stress invariants at the time t'. We show in
the following section that a history dependence with regard to the strain

emerges when we consider heterogeneous material.
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. ‘Ane1astic Effects

It was mentioned in the introduction that the requirement for
positive mechanical power was not consistent with strain recovery upon load
reduction, an effect which has in fact been observed experimentally for
irradiation creep [12]. Nevertheless, one can still retain the requirement
that the constitutive Tlaw at every material point satisfies the condition
of positive mechanical power, if one combines it with the possibility of
nonuniformity.

In a polycrystalline material this must in fact be done. Wolfer and
Garner [13] have shown recently that the creep mechanism of stress-induced
preferential absorption (SIPA) does imply that the creep rate depends
strongly on the crystallographic orientation of the grain with respect to
the stress. Consequently, a polycrystalline material consists of volume
elements with varying irradiation Creep properties. And since they form a
composite which must deform together, the stresses vary from element to
element so as to produce in each the same total deformation rate. Upon unloading,
residual stresses reside in the elements, and their subsequent relaxation
gives rise to anelastic transient effects.

A]though the isotropy assumption is no Tonger true for the constitutive
law of an individual grain, if we average over many grains we arrive at a

macroscopic constitutive that is isotropic, provided the grains have random

orientation.
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In order to treat this in a more quantitative fashion, we model the
polycrystalline aggregate as a series of viscoelastic elements connected
in parallel, as shown in Fig. 1, The stress in the a-th element is denoted
by a, and its irradiation creep rate is given by the simple
law Yy, Oys where by, is a constant differing from element to element. We
assume that the elastic modulus, E, of each element is the same. The total

strain rate, composed of elastic and creep parts, is then

Ee gl tu, 0 (26)

and it must be the same in each element to preserve the coherency of
the aggregate. Solution of Eq. (26) with the initial condition that there

are no initial microstresses, 1i.e. oq(O) = 0, gives
t *
o, (t) = E [ e(t') exp {Ey, (t'-t)} dt' . (27)
0

For a constant creep rate

_ €
5 (0) = 5 1= e (£ 4, 001 (28)
This last expression clearly shows that the stresses in different elements
are different, If Ny is the fraction of elements with the same creep
compliance Vs then the average, or macroscopic stress, can be defined as

o(t) = EE: N, O (t) . (29)

0,
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From Eq. (27) we obtain then the relation

o(t) = E [ & (t") :E: n, exp {E Vg, (t'-t)} dt' ,
[0

O =t

and, upon integration by parts, we find

e(t) = %L+ Fe(t) k (et gt (30)
0
where the creep response function is defined as
k(t) = %:na E b, exp (-E ¥, T) . (31)
For T = 0,
k(o) = EJ (32)
where

P = Z Ny Vo (33)

o

is the average creep compliance for the aggregate. _
We can derive from Eq. (30) a constitutive law for the aggregate of

the form discussed in previous sections. To this end, we differentiate Eq. (30)

with respect to the time t. Then

. t
eﬁ)=%+dﬂkw)+£dﬁ)%k(bﬂ)ﬁ',
and upon substituting e(t) from Eq. (30), we obtain finally

e (t-1) [k(o0) k(1) + g;ck(T)] dr . (34)
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The second term represents the average irradiation creep rate for the
aggregate, whereas the Tast term depends on the strain history,

The response function k(t) of the aggregate is determined by the
distribution Ny of elements with a given creep compliance by, For a poly-
crystalline material we can assume that an equal number of grains exist
with a creep compliance between § - Ay and ¢ + Ap. The sum in Eq. (31)

can then be written as an integral, i.e.
k(t) = [ dv n(y) EY exp (-Eyt) ,

where n(y) = 1/280) for § - Ap < < ¥ + AY and n(y) = O otherwise. The

evaluation of the integral in the above equation gives the following result:

k(1) = Eap e 2 {(%ﬁ'+ %& si;hz ) coihz} (35)
where
z = ENT

It is instructive to solve Eq. (34) for the case of a step-load change.
Let us suppose that at time t = 0 the stress is changed from o to o + Ao,
where Ac can be either positive or negative, To compute e(t) from Eq. (34)
Laplace transforms are used. The result of the somewhat lengthy calculations

[14] is

. ~ - ] Aw 2 - »
E(t) = YA {1 - kl (—:) [] - exp ('Ewt)]} + Eo
v
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if AY/Y << 1. Here, éo is the creep rate before the load change.
We see from this expression that the creep rate immediately after the
load change is given by (o) = JAc + éo whereas the asymptotic creep rate

for t -~ « is given by

2
Ee) = Bao 11 -3 () 7+ .

By measuring these two values of the irradiation creep rate in a load change

experiment, it is possible to find the variation of the creep compliances

for the different grains according to the formula

(o) - E(=) _ 1 awy® (38)
o) -8, ¥

The information about the parameter (Ay/¢) is not only important for a
better understanding of irradiation creep, but is also of practical significance.
If certain alloys exhibit a large variation in the irradiation creep
compliances of different grains, then large residual microstresses will
develop in these materials when subject to loads. Large differences in these
microstresses from grain to grain are likely to be detrimental to creep rupture
and ductility properties because of enhanced grain boundary fracture.

Summary and Conclusions

Using basic principles of continuum mechanics one can derive constitutive
laws on a phenomenological basis. No detailed mechanistic description is

needed to properly formulate for any state of stress such phenomena as
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irradiation creep, stress-induced swelling, anisotropic growth, and the
coupling between growth and irradiation creep. This is particularly
important when one needs to apply the measured deformation behavior
from a pressurized tube or uniaxial specimen to the deformation of
actual reactor components.

Information obtained from mechanistic insights, as supplied by micro-
scopy or theoretical modelling, is however very important for making the
proper choice among many possible phenomenological laws. As examples of
this phenomenological approach the following constitutive laws were
considered: the radiation-induced deformation rate depends only on
the stress, it depends on the stress and the previous strain, or it depends
on the stress and the deformation produced by cold-working.

The various phenomena that can arise for these cases were discussed
and in some cases related to experimental observations. It is hoped that
these examples not only demonstrate the approach but that they will provide
the framework for the analysis of irradiation creep experiments as well as
suggestions for future testing. In particular, they suggest the extraction
of additional measurements not normally made on irradiation creep specimens.
The approach also allows the extrapolation of data into stress states not
normally tested.

Not all deformation phenomena can be understood properly by considering
a specimen as a homogeneous continuum. We demonstrated this by deriving the
anelastic transient irradiation creep from a simple model that consists of
viscoelastic elements connected in parallel. This model can serve as a
realistic description of the irradiation creep behavior of a polycrystalline

material.
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Fig. 1 Viscoelastic model for irradiation creep in a polycrystal.
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