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Consider the following situation
1. a wall of unit area, and thickness , thermal con-
ductivity k, heat capacity Cp' and operating at 1/2
melting temperature on inside wall,
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2. The energy content of a unit volume of this mater1a1
is given by.
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3. This energy conducts from this volume in opposite
direction to temperature gradient.
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Therefore for P, Cp, k assumed constant, one has
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L _ thermal diffusivity

[cmz/sec] or thermal
diffusion coefficient,

In analogy with most skin effect diffusion problems one
assumes some type of sinusoidal imput of heat and gets a
characteristic skin depth. In this case it would be the depth
into the material at which the temperature reaches 37% of
Tmax(at x=0 ) in a time T,

Although the analysis is strictly valid only for a single
frequency sinusoidal input, one canoften get an order of
magnitude estimate of how a thermal pulse or "spike" might

diffuse. Therefore let us suppose that a certain heat input



[joules/cmzl is deposited on the surface of this wall in the
time 1. Therefore in this time 63% of the energy content of
this pulse remains in 1 thermal skin depth of the material.
can find this thermal skin depth from our diffusion eqn,
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duration T.

Now suppose one has an incident flux of hot plasma ions
(and o particles). The energy flux to the wall would be
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If this is deposited in a time T, then the enerqy input to ou

unit area of wall is
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This energy then goes into heating up a volume element of uni
area times thickness 8. (approximately). This energy increas
the temperature of our volume in time t, The temperature in-

crease is found from an energy balance
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substituting for § one has
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If the wall is supposed to be operating at 1/2 of its melting
point = Tm/z, and one wishes to know what powér input will ra

-

the temperature to melting T’ then



1% Yrgz;jzm‘ = v
where this formulation is valid for t which correspond to §'s
which are much less than the thickness of the wall (€.

Let us ask ourselves the following question, if I took
all of the hot plasma ((§ Ni) x Volume of plasma) and let it
go to the wall of the reactor (wall area = A,) in a time 1,
what is the minimum (fastegt) time I may allow this to
happen without the worry of melting the wall?

Take for example
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or using (1 one has
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Giving the result
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This savs that for deposition times t shorter than tc, the
wall melts.

2N
,th:n:'f‘;'un >/ ?,C = l P r’k .
¢ 7;:' (J szk

34

Given some of these physical parameters for materials of.
fusion reactor 1nterest
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Look at fange of energy fluxes.,
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1. Which says that s.s. can not stand a 10keV particle flux

ﬁfﬂ@%ﬁaﬁﬁﬁiﬁhanxVJSXlDlB paﬁticles%emgﬁsec,, or a _50kev
particle flux greater than 3.0x10 particles/cm“~-sec,

2, If our a-particle density were to build up to say 1012#/cm3,
and have an average energy of ~250keV then for a's

1c~92usec., which corresponds to a flux of 9.0x1018a's/cm2-sec.
which is higher I believe than anticipated,



Therefore unless one has some catastrophically un-
imaginable accident which would drive the plasma to the wall
at its thermal speed (time scale of ‘a few micro seconds) one
should be safe from wall meltdown. This calculational tech-
niaque however is very useful for divertor work.

This work is a slight extension of a.calculation per-
formed by H, K. Forsen in his Fusion Feasibility lecture on
Divertors in the Fall of 1971,
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