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ABSTRACT

General response models are developed for materials exposed
to transient thermonuclear radiation. Models and data are
discussed for determining the energy deposition for photons, low
Z ions, high Z ions, and neutrons. Temperature response solutions
commensurate with the deposition models are developed. A thermo-
elastic wave solution which can be applied to arbitrary radiation
spectra is discussed. A general technique for determining the
nuclear displacement damage for ion radiation is developed.

The result of the application of these models in the computer
code T-DAMEN is displayed for copper exposed to a reference laser

fusion spectrum.



Table of Contents

Page

I. Introduction 1
IT. Response Models 4
IT-A. Energy Deposition 4
IT-A-1. Photons 4

II-A-2. Tons (Z < 2) 5

II-A-3. Ions (Z > 2) 17

IT-A-4. Neutrons 27

I1-B. Temperature Response 28
IT-B-1. Photon Models 28

[I-B-2. Ion Models 33

II-B-2-a. General Deposition in a Semi-Infinite

Medium 33

IT-B-2-b. Ion Deposition in Finite Slabs 43

IT-C. Stress Response 49

II-D. Displacement Response 65
II-D-1. Ions (Z < 2) 65

I1I-D-2. Ions (Z > 2) 74

IIT. Application to Specific Pulsed Fusion Spectra 76
References 88

Appendix A 90



I. Introduction

Part I]of this document outlined a systematic investigation of the
effects of transient thermonuclear radiation on materials which are used
in reactor first walls, liners and other components.

This section (Part II) contains more specific information on the
transient deposition, temperature, displacement rate and stress responses.
General models are developed to accommodate most spectra which may be
encountered in inertial confinement fusion systems. These models
in many cases incorporate the initial developments given in Part I
and extend them to more general cases.

The objectives of Part II are to specify the data and analytical
techniques which can be used for transient material response and to apply
these models to materials irradiated with representative spectra.

The models presented are not specific to any design concept as
characterized by a fuel type, wall loading, material, or cavity radius.
They are, however, subject to some limitations. The depositions of
photons are considered as exponential in space without considering
subsequent transport. The slowing down calculations are based on techniques
which do not consider the effect of the free surface in the jon interaction
process.

The temperature response is limited to materials which maintain a single
phase; that is, the coupled hydrodynamics and thermodynamics of ablation
and melting are not considered. The superposition of the responses to several

radiation types requires linearity in all temperature models.



The portion of the transient irradiation phenomenology outlined in
Part I which is addressed in Part II is shown in Figure 1. Future documents
will provide more information on other phenomena.

Chapter II contains the models developed for fhis study and includes
illustrative examples of the interaction processes and responses for a
reference material. Chapter III consists of the results of the application
of the models to the irradiation of a selected material by a characteristic

spectrum which consists of various radiation components.
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II. Response Models

The deposition, temperature and displacement response of a material
are functions of the flux, energy and type of the irradiating species. It is
convenient for determining the respective phenomena to segregate the species
into four categories:

a) photons

b) fons (Z < 2)
c) ions (7 > 2)
d) neutrons

The associated response for each category is presented in the

following sections.

II-A. Energy Deposition

IT-A-1. Photons

The energy deposition of laser light and X-rays is covered in detail
in Part I. The X-ray data is based on the work of Biggs2 and has been
incorporated into this study by developing a general library of photoelectric
cross sections for all elements (1 < Z < 100), which can be accessed by
specification of the atomic number of a material and photon energy consid-
ered. Incoherent cross sections are derived from the representation of the

Klien-Nishina formula developed by Biggs. The cross sections determine the



absorption profiles which are considered pure exponentials in space. For
high energy photons (>30 kev for carbon) the photoelectric cross sections
are negligible compared to those associated with incoherent scattering.
For these spectra the total incoherent cross sections are used in this study.
This assumption will always overestimate the primary energy near the surface
since scattering and transport are not assumed. The fact that the energy
deposition may be overestimated near the exposed surface of a material
means it may be underestimated further into the material. However, this
approximation is considered reasonable for most applications since the
average scattered photon energy is significantly lower than the incident
photon energy and, as a result, is shifted towards the region where it will
be more readily absorbed by the photoelectric process. Examples of the sum
of the photoelectric and incoherent total cross section for C, Cu, Mo, and
Ta are shown in Figure 2.

Laser 1light absorption, especially for high intensity beams, has
limited coverage in the open literature; hence the simple models discussed
in Part I are retained here.

II1-A-2. Ions (Z < 2)

Energetic 1light ions which are present in inertial confinement fusion
systems, e.g., He, D, T, lose kinetic energy in materials primarily by

electronic interaction when their energy is above a few keV. Consequently,
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the transport equation which governs their spatial distribution is dominated
by the ionization or "frictional" term. This feature was illustrated in
Part I where a comparison of the nuclear and electronic loss terms for

He in carbon was made. This domination by e]ectronic"processes

allows the spatial distribution to be determined upon knowledge of the
stopping power for the ion in a material.

The spectra from thermonuclear microexplosions consist of ions

whose energies fall in all three regions of energy loss:
Region I ~the Tow energy region where the incoming ion has lost
its original charge state where energy loss increases with
energy.

Region II -the intermediate region where the charge state can vary
from zero to a finite value less than the total ionization
state and energy loss reaches a maximum.

Region III -the high energy region where total ionization is achieved .
and energy loss decreases with increasing energy.*

In Part I it was shown that neither the Bethe-B]och3 or Lindhard4

(LSS) models are entirely adequate in all of the regions. The Brice5
formulation, however, since it is semi-empirical, can reproduce the

experimental data with reasonable accuracy. This study has, therefore, relied on
the Brice fomulation for electron energy loss data. The defining equations

for this model are Equations 24, 25, and 26 in Part I.

* for non relativistic particles.



or,

These equations will reproduce the stopping power data as a function
of energy. The desired result for response studies is energy deposited
as a function of distance. Hence, a transformation must be made to determine
the mean Tocation of an ion. The Brice formulae cannot be easily transformed
to yield a closed form expression for the mean spatial distribution and.,
hence, difference codes are normally used which integrate the transport
eGguations numerically.

This study required analytic forms for the spatial distribution which
could be readily evaluated and which yielded accuracy comparable to the
data available. As a result the deposition and Tocal mean ion energy
were determined in terms of a standard set of functions of space.

The stopping power data (as reproduced by the Brice formula) were
divided into three regions roughly corresponding to those mentioned above
as shown in Figure 3. In each region a function was found which would
reproduce the data and which could be transformed into spatial functions
which are in a closed form,

The following functions were found:

1) g%—(E) = - S, (E/EO)]/2 Region 1
2) Ee)y=-n 0-ehE

Region 2
3) £ @) - -0 - e - 8%
8y 9E (g) = - p, /B3 Region 3

3
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Figure 3

GENERAL ELECTRONIC
ENERGY LOSS FUNCTION
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where So, Eqs A], B], D, P, BZ’ A3, B5 are all constants.
These equations were chosen because they can be readily transformed

by the process:

E
i, 1
5) X(E) = fE* TE7ax(ET UE

where E* is the incident ion energy.
Equation 5 can then be solved for E, such as,

6) E=F(x,E)

and

NS0 = G FOGE) or = §FGGE

The results of performing these transformations for each of the
equations yields the spatial distributions and local energy fractions
given in Table I.

The constants for each region can be determined by selecting
reference points, as illustrated in Figure 3, from the stopping power
curve and using the relation shown in Table II.

Upon determination of the constants in Equations 1-4, the
depositions are completely determined as functions of space. The
deposition functions will be continuous in space, but the curvature
of each function will be discontinuous where the regions I, II, and III

are joined.
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Equations 1-4, although useful in specifying the depositions, are
not necessarily in a form which can be utilized by a response model;
consequently, a standard form was chosen for expressing the general
deposition function. The form chosen was a general polynomial represented

by

8) D(x) = A+ Aox + A3x2 + A4x3 + A5x4 s X3 X < Xy -

This form can be derived from the relations 1-4 if the spatial domain
is divided into three regions (Figure 4) which correspond to the energy
regions shown in Figure 3. The values are chosen so that the following

correspondence is maintained:

Location Energy
X 0
XM EZ
*
0 E

*
where E* is the incident energy of the ion. If E 1is less than E2 but
greater than E1, the value for X simply vanishes and the point x = 0

is simply within region II.
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A similar modification is made for jons with energies less than E,
where Xy and xM vanish and the entire distribution is within region I.
Within each region a relation similar to Equation 6 can be derived

and the coefficients determined. The result is a general expression

D(x) = 0 XL < X
> N-1

D(x) = T Ay X 5 X, <X <X
g I H L

9) > N-1

D(x) = T o Au X5 X < X <X
Nop 2N m H
> N-T1

D(x) = I Agyx 5 0<xc< X
N=]

A set of relations (eq. 9) can\be derived for each incident ion energy
and 1is then available for subsequent use for any response which needs
an analytic expression for the deposition.

The deposition function for region III (Equation 4) can easily be

transformed into the form given in Equation 9 since it is of the form

10) Y = TBx
which for small values of x can be expanded as
)2

y =c¢ (1 +Bx + (Bx)" + (Bx)3 + ...)

hence the relations become
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A3] = A3e_E*/B3
Ay = A5y /Bs
) Ay = Agl/Bé
Ay = A /B3
Azs = A3, /B

For Equations 2 and 3 no simple expansion is available. In this case
the coefficients can be found by evaluating a few points (e.g. n points)
directly from the equations and fitting these points with an interpolatory
polynomial (of order n-1).

It should be noted that Equation 1 is already in the form of Equation 9

so that:
(E*)]/Z
A, =S (&
11 0 Eo
12) Ay = - S/2
Mg =Py = A =0
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Examples of the accuracy of this technique are given in Figures 5, 6,
7 in which deposition functions are depicted for helium ions into nickel for
energy ranges from 200 keV to 4 MeV. Figure 5 gives the stopping power for
the Brice electronic energy loss formulation {solid line) with a comparison
of the function of equations (1-4) (dotted line). Fig. 6 shows the spatial
deposition functions as generated from this work corresponding to various
incident energies. Also in Figure 6 are deposition values determined by the
more formal ion implantation computer codes by Brice.6 The agreement by the
simple calculation developed in this study is notable. Figure 7 gives the
mean local ion energy (calculated from equation 1-12) as a function of space
for the various incident energies.

I1-A-3. Ion Deposition (Z > 2)

For heavy ions the energy deposition is more complex since it is no
longer poésib]e to exclude the nuclear energy loss from consideration. |
Consequently the general transport equation must be solved taking into
account the energy dependent nuclear interaction cross sections which are
also anisotropic. Various approximate solutions are available for such

calculations. Three of the most widely used methods are those of Briceq

Winterbon7 and Manning and Mue]]er8
In general these methods develop the momentsabout the origin of the
nuclear energy loss {(damage), electronic energy loss (ionization) and

particle distribution (range). These moments can then be used to reconstruct

the distribution. A complete solution for this distribution is contained
in the computer codes RASE4 and DAMGZQ. These codes represent a compromise

between the relatively simple EDEP 1 code of Manning and MueHer8 and the

more complex method of Winterbon.7
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Figure 5
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Figure 6
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In this study an examination of the results of the RASE4 and DAMG2
codes was made to develop a general method of reproducing the results for
use in a response calculation. An example of the code calculation for the
deposition of aluminum ions into nickel is given in figures 8, 9, and 10.
The nuclear damage is shown in figure 8 for 5 incident ion energies. It
can be seen that the peak damage values occur when the interaction cross
section reaches a maximum and there is a depression of damage near the
surface which is due to the anisotropic redistribution of damage energy
by the primary knock-on atoms (PKA). The electronic energy loss is shown
in figure 9 and shows a maximum value at the surface with a decreasing
function thereafter. This result is consistent with ion target combinations
in which the stopping power is primarily contained in region 1 discussed
previously and encompasses virtually all heavy ijons of interest in fusion
systems.* The sum of the nuclear and electronic contributions is shown in
figure 10 and indicates that even for this combination the domingyt factor
is the electronic loss. This relationship is expected to occur in any model
which is based on the LSS theory. A comparison of the relative amplitudes
of nuclear and electronic energy loss can be seen in figure 11 which indi-
cates that for reduced energies, €, of 3 or more the electronic energy loss
is larger. The value of k (discussed in Part 1) ranges from 2 - .1. Hence,
a more practical criterion for assurance of ionization dominance would be to
select a reduced energy value of 5. Table III indicates the electronic

factor, k, and the reduced energy in keV for various ion target combinations.

*This must be modified in the case of an extremely heavy projectile and a low

Z target.
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TABLE TII

LINDHARD PARAMETERS
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IT-A-4. Neutron Depositions

The deposition of energy from neutrons in inertial confinement fusion
is evaluated by first determining the local flux in the exposed material
(both the source and scattered contributions) and then multiplying by the
Kerma factor for each neutron group. This method was outlined in Part I.
It is important to note however, that the volumetric energy deposition is

13 N/cm2 exposure) and hence the temperature transients

small (JJ/cm3 for 10
are small. The deposition is typically uniformly distributed in space and

initial gradients are small.
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II-B. Temperature Response

The temperature response of a material exposed to thermonuclear
radiation may be determined upon specification of the time and space
dependent energy deposition. In this section several analytical models
are given which can be used for determining the temperature at arbitrary
Tocations and times for photon and various ion depositions.

[I-B-1. Photon Models

Since photon models assume exponential spatial profiles, it is only
necessary to state the boundary conditions for an exposed material to
formulate a model. In part I,a general solution for a finite width, one
dimensional slab was given for both single and multiple pulses of photon
irradiation. For completeness a solution is given here for an infinite
half space to pulses of finite duration and impulses.

Exponential Impulse Into a Semi Finite Medijum

The defining equations are:

3°T _ T -
k_"—é_ pcgf CI(X,t)
9 X
where,
13) %%(O) = 0 (insulated exposed surface)
T(o,t) = 0

q(x,t) = 8(t) Ty

T0 = %%E where AE is the energy in any portion of a spectrum

As demonstrated in part I, this problem has the same solution as

2
14) kﬂz- - pc—g{—
oX
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where,
oT
5;(0) =0
T(x,t) = 0
T(x,0) = Ty ©

The solution can be found by performing the integra1]o

15)  T(x,t) = +e

e
[ To

1 o -px' { -(x-x')2/4ut
e
2vmat o

—(x+x')2/4ut
dx'

which yields the following result

T 2 _ X ——)
16)  T(x,t) = ﬁg_eu at {e ux[_] + erf (2/55' u/ot

+ eM* [ 1 - erf QJ%EE +-E§§%)}

Although this expression is exact, it cannot be evaluated numerically
for the very large values of u which could be associated with Tow energy
photon irradiation.

Therefore we make use of the explicit evaluation of the error function

which is used for computer app]icationa]] That 1is,
2
17) erf(x) =1 - f(Z) ¥
18) F(2) = ajt + a,t” + agt’ + a tt + ot
£ =

1+pZ

p, a; - @ are constants given in reference 1.
1 5
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Four cases can now be considered and as a convenience we Jet

B = what C = %__
2V/at

When equation 17 is substituted into equation 16 the following

expression is obtained:

I
—

19a) T(x,t) = f(B)

0
2. when C > B

T 2
T exp(B° - ux) + 52 [£(C+B)-F(C-B)] e

19b) T(x,t)

3. when B > C

2
[F(B-C)+f(C+B)] e C

19¢) T(x,t)

4. when B = C

T g2
9O e® [1+ f (C+B)]

|

19d) T(x,t)
Equation 19 is used in a form where all the exponential terms are

negative and can be evaluated accurately for computer analysis. These
equations represent a Green's function in time and can be used to determine
the response for any arbitrary temporal pulse shape. The application of
these equations to a pulse of finite width and constant amplitude can be
found by performing the integral

T4 1
20) T(x,t) = f . (equation16) dt'

o d
The result can be obtained by first getting the results for a continuous

pulse which is turned on at t = 0.
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In reference 10 this has been found to be:

2A A
21) T(x,t) = E—g-(oct)]/2 jerfc X— - —%— e X
H 2/at 1k
Ao uzut—ux . X
+ 5 e erfc (wat - ——)
2ku 2vat
Lot + ux . X
+ e erfc (wat + =)
2vot
C Tb AE _ ]
where AO = pt = EEE and ierfc = first integral of the compliementary error
d
function.

To evaluate this function it is possible to redefine equation 16 as

T(x,t) = H(x,t) = equation 16

Equation 21 contains equation 16 as follows:

A -UX
22)  T(x,t) = 2 2(at) /2 erfc x__ ¢ + Hix,t)
ku 2vat H

Substituting for Ao and o = k/pc, Equation 22 can be rewritten as:

~uX
23)  T(x,t) 1 ‘{To u 2(oct)]/2 jerfc =— - T e + H(x,t)}

ocuztd 2v/at °

Q(x,t)
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The solution for a pulse of finite width is simply the superposition
of a pulse which starts at t = 0 and continues indefinitely and a pulse

of equal and opposite intensity which starts at t = td as

24) T(Xst) = Q(Xat) - Q(X,t-td)
Equations 23 and 24 can then be used with superposition technique and a

cross section library to obtain the response to any general spectrum.
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11-B-2. Ion Models

In the deposition section methods were shown by which any deposition
can be transformed into the general form of a polynomial with coefficients
determined by the energy of the ion. In this section a general response
model is developed for such depositions. A solution is first obtained
for the response in a semi-infinite medium which is used for transients
and finally a result for a slab of finite width using lower order
polynomial deposition is obtained for an arbitrary number of pulses.

[1-B-2-a. General Deposition in a Semi-Infinite Medium

The general solution for any deposition function can be obtained

from the theory of Green's functions as:

25) T(x,t) = [ f<gl) g(x') G(x,t,x",t"') dx*' dt'
£ y! P
where
f(t') g(x"') = q(x!t') = volumetric energy

deposition rate

p = density

c = specific heat
and

G(x,t,x',t') = the Green's function which for a semi-infinite
slab js:
1 2 ! 1 2 I
1 -(x"-x)/8a(t-t") -(x'"+x)/4a(t-t")
26) G = —— e +e
2/o(t-t" ) Vm

where a = thermal diffusivity.
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The Green's function can be written

27) G = —— { - (x'-x)/? '(X'+X)2/A2}

€ +
VA ¢

A= 2/a(t-t")

since the variables are separable equation 25 can be written

28) T(x,t) = [ f(;é) [ g(x")G(x,t,x",t") dx' dt’
t' X!

Before addressing any particular problem such as deposition of

energetic ions, a general solution will be developed for spatial
distributions of the form
_ 2 3 4
29) a(x) = Co + Cyx * Cox™ + Cx™ + CyX
where Ci are in general functions of time.

The spatial integral becomes the evaluation of the following sequence
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we make use of the following integral,

2.2 N

N " X +bx CN-T b2/4 2 . N-k 2

31 - a N: b kK -u
) fX e dx a e %:0 k‘,*(N—_W (Za) fue du

where ax - b/2a =u
If the square is completed

v -axCebx-b2/4a?  -p2/aa?
then

y -(ax-b/2a)®  on-d ZN: vy Nk 2

32) .fx e dx = a ~ KTIN-K)T (EE) IIJ e " du

The higher order integrals can now be expressed in terms of the first two
(we will now ignore the constant terms Ci/'—). The integrals can now be

represented as:

! 2 X' X
N -(F- - X N (- + F)
A dx' + f éﬂ—-e A A

w
w
A
(%
0
——
’><
0]
(%

If the following convention is adopted

¢ (5) (+)
SN = SN + SN

we have the form of equation (32) with

= III
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(<) . .1 b _x
for Sy" 7 a=q 2a A
(+) . _1 =X
for SN a =y b/2a = - A
evaluating the SN'S
; -u? g
+) _ 1 A A 1
SO( )-j e du= [fx e dx' =1 (%)

(1) . 1 2; x Y x .
S = 1A (t A) [e du+ (% A) fu'e du
which can be expressed as

S](?) =+ X I0 + A T]

likewise
32(;) = (£ )71+ 2(4x) A 1+ A2,
D IR B Y S (+x) A1, + A%
3 * o T3 1 ! 2 3
54(:’) = =0t ra (e x)] AL+ 6(+ )% A° 1, + 4(+ x) A

Summarizing

s(+)= fx-;\ﬁ e-(A +A)
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which can be expressed in matrix form as

0 1 2 3 4
0 1
1 + X A
34)
2 (+x)° 26 x)A A
30 (%7 3+ 0% 30+ A A3
¢ =0t a0 s+ 0%2 4 (s x)a3 at
in order to evaluate the IN's the following convention is adopted
] 2
I, = J X —5)N e_(%_-_ £) dx'
N A A
X' | X 2
. N -(+7)
+ X X A A '
Iy= J (g +*q e dx

S (1, + Io+]
s; = x [1)7 - 10+] s 1,
35) S, = G [IO' + 10+] + 2xA [1]' .
S3 = x> [IO_ - IO+] + 3x%A [I]'
Sy = x* [Io_ + Io+] + 4xoA [1]'
+ A% [14' + 14+]

1]

+

+ 2 -
I] 1+ A [I2 + 12 ]

+ 2 b - + 3
I] ]+ 3xA LIZ - IZ ] +A

+ 2. 2p 1 - + 3 -
I] ]+ 6x°A L12 + 12 1+ 4xA [13

(1,

+ I3 ]

+
_]_'3]
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The complete solution to equation 28 is then

Yy 1
T(x,t) = fer) 1. .
36) (x,t) {Idt = [COSO + C]S] + C282 + C353 + C4S4] $¥;}z:tgg iF

IN's can be evaluated in the following manner:

u* /i
I,=/e du = erf (u)
Y 2
- -1
I,=fue dus= 5 e
_ N ~u? 1 N-1 ~u? N-] -2 -u®
and knowing fu e du = - U e +5fu e du (N2)
I,=- 24 e_u2 T S
2 2 270 2 1 270
I, =- 442 e_u2 A
3 2 1 "2 2 1
2
103 Y3 o 2 1 3 3
I:--.. = = o — - >
47Tz e g Juedus- G R -2 F I
in terms of Io’ I] and FN this may be summarized
n L h il 2 3
I0 1
I] 1
12 1/2 -1/2
Iy 1 : -1/2
I4 3/4 -3/4 -1/2
2
where F, = u &7
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Equation 36 and 34 may be combined to give a general result

37) T(x,t) = jdt- fle) 1 S ey, | CYeluated at

pc v limits of x'

where

SN are the diagonal terms (SN ~ NNth term) of the matrix product

lal (M|

where [Q| is

38) 11
I A
% X% + A2/2 2xA :%E
322X o )3 12+ g3 ._3>2<A_2 _2;3
iﬁi + %—2 Cad s et :%‘—2— . 324 '4>2‘A3
and |M| is
39) 11 (+) I,(-) I,(+) I,(-) I,(+)
I (+) (-) I (+) (-
F,(+) AS Fp(+)
Fol+) Fo(-)
where 'IN(+) = (IN' + IN+)
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Equation 37 represents a general solution for any deposition interval
when the functions are contained are evaluated at the limits of the region
in which the polynomial applies. Substitution of the limits can simplify
the result when the symmetry of the functions IN and FN are accounted for.

The following relations are noted:

I, = v1/2 erf(u) = odd
I, = -1 e"u2 = even
1 2
_u2
40) F] =ye = odd
2 -u2
F2 =u e = even
2
Fy = ul e ¥ = odd

when the Timits 0 -~ x are inserted into equation 35 the |M| matrix is

transformed as:

M mrrs = M1 =
M) T F21 ) I () +21(0) 1 (+)

0

X =X X _+x
where I, (+) - 2 I,(0) is to be interpreted as IN(J%—) + Iy ’"A ) - 21
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Finally, a general solution is obtained when equation 37 is evaluated.
The spatial contribution is contained in the evaluation of the function
z CNSN at the 1imits of the deposition region while the temporal contri-
bution is done numerically to accommodate arbitrary spectm.

If the deposition does not require all five coefficients, the formulation
is of course much simpler. The solution given in part I is actually the
same as equation 37 if the coefficients C2, C3, C4, C5 = 0, which corresponds
to an ion in region I with equation 1 chosen for the deposition. The

equation is simplified as the matrices |Q| and |M| become:

laf = |1

42) M| = |I_(+) 1 (-) evaluated
at 1imjts
I](+) of region

The uniform deposition model, which was appropriate for some high mass-

low energy ions, would result in an even more simplified result where

lal = 1]
43)

Ll

1]
—
—~
+
~
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In summary, the complete solution for an ion which requires deposition

functions in all regions (I, II, III) can then be expressed.

44) T(x,t) = [

dt’ C. s
1 pC —~ “IN"N|Timits of
t /r ( N= region III

4 4

> C..S + CanS

N=0 Z2NN\jinits of EEO 3NN
region I1I

limits of
region I

where S, are the NN elements of [Q| (equation 38)
and |M| (equation 39)

|Q| and [M| consist of the functions

_ v/
I0 = erf(u)
2
I, = -1/2 e Y
2
-u
F1 =y e
2
2 -u
F2 =y e
2
_ 3 -u
F3 = U e

where A = 2va(t-t")
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I1I-B-2-b. TIon Deposition in Finite Slabs

The formulation for the temperature response for a series of ion
pulses is best developed for a finite width material since the sustained
value of the temperature will be more directly influenced by a boundary
condition at the rear surface. The same semi-infinite solution presented
above would still, however, be used to evaluate the transients which are
not influenced by the rear boundary.

For the case in which a radiation pulse train is incident on a slab
of material, a solution can be developed for two simple deposition models:
a uniform deposition and a Tinearly decreasing model. The procedure is
easily extended to more general deposition models. At any given time the
spatial deposition will be given by either of the two functions shown in
figure 12. These functions will vary for arbitrary spectra but their
general shape will be the same.

The problem for aAsingle group of ions which contains f(t') dt' ions
can be stated as

2

k_a_%z pc %‘t—[
X
45)
oT -

T(x,0) = f(x)/pc = f(x)

T(L,t) = 0 (constant temperature rear surface)

This has the solution!O
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Figure 12
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o -By0 L B
46) T(x,t) T COoS BN-5 e NT 2 [ f(x) cos 2 dx
- L L
N=1 0
where By = (2N-1)m/2 8 = at/L2
a = thermal diffusivity

—
I

slab width

Equation 46 has the form

—BN28
S A e B

47)  T(x,t) =
N

™ 8

where 7 = x/L

The solution to this same group for a series of pulses as shown in
figure 13 can be obtained by Laplace transforms, similar to the method
employed in part I for multiple photon irradiations.

In this case the transfer function is the transform of equation 45

]
A(Z) B(Z) ———
1 s + By

L

48)  H(S) =
N

fn o g

The transform of the solution for a series of M pulses can be obtained by

convolution since the transform of a series of impulses is

49) V(S) =1 + e_O)S + e—ZwS + - - -

then
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where o = 9% Y =%
L L
M= # of pulses

¢ = time from last impulse
In a Tinear system equation 51 becomes a composite (meaning the response
to all previous impulses) Green's function for M impulses.

The response at time t measured from the start of the M'th pulse

(figure 13) can be determined from the theory of Green's functions as

t*
52)  T(x,t) = [ G(x,t,t') dt’
0
* =
where t t t < tmax
* =
t tmax t> tmax

and consideration of equation 51, the Green's function is actually just

2
- 2 —BN Yy M

“By® 1-e
53)  G(x,t,t') = % A(Z) B(t',Z) e 5
N=1 BN Y

1-e

B is a function of t' since in general the limits of the integration

over space will be a function of ion arrival time as

6 = a(tét )
L

At this point it is necessary to determine the function B for the

spatial profile considered. B was defined in equation 47 as

L

54)  B(t',x) = %— [ f(x) cos By %—dx
0
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If the uniform deposition profile of figure 12 is used for f(x) this becomes

R(t)
55)  B(t',x) = %- fo ﬁ%%$7%5' cos By x/L dx

where R(t') is the end of the deposition region.This yields the result

' B, R
56) B(t',x) =2 —513—1—-1— sin N

where F(t') is the energy unit area in the interval dt'.

Equation 56 can then be put in equations 53 and 52 to obtain the
solution for an entire spectrum of particles.

If the Tlinearly decreasing deposition profile (figure 12) is chosen

equation 54 becomes
A(t')/s(t")
B

57)  B(t',x) =-% J Aitl)p; S(t!)x cos —%f dx
0

where A(t') - S(t')x represents the energy per unit volume in the interval

dt'. The result of this integration is

. B, A(t')
58) B(t',x) = g—é—%iz—l [T - cos §%ET7~E_]
N

Equation 58 can likewise be put into equation 53 and 52 to obtain a

solution for a spectrum of particles.
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II-C. Stress Response

In part I the defining equations for the generation of thermoelastic
stress waves in elastic media were presented. This séction will address the
solution of these equations and consider the temporal or spatial criteria
necessary for establishment of a stress wave of significant amplitude from
the transient deposition of energy.

The procedure will be to pick a deposition model, derive a set of
equations for the temperature and stress responses and then examine the
relation between the deposition depths and times which produce stress
waves.

The emphasis will be on deriving the time scales over which energy must
be deposited for wave generation. The result will be to establish that
middle ground between the "instantaneous" deposition of energy which occurs
faster than the material can expand thus producing stress waves and the
slow heating of a specimen which produces an equilibrium expansion and does
not generate stress waves in a one dimensional strain configuration.

An example of a particular deposition pulse is chosen which can be
characterized in both time and space and which is similar to that encountered
in ion irradiations.

Problem Statement

Consider a pulse of energy which arrives at the surface of a semi-

infinite media (Figure 14).
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Figure 14

Problem Statement

The energy will penetrate into the material with some characteristic
depth, &, and will have a time history given by some function f(t) which
will have some characteristic width, 6. If g is sufficiently small a
stress wave will be generated which will propagate into the material.

The wave will have a wave Tength of the order of § and will propagate with
some velocity, ¢, in the media.

Let us consider an energy pulse with the following characteristics,

a volumetric heating rate given by:
59) q(x,t) = f(t) g(x)

X\ 2
-]/2(30

60) where g(x) =

61) and f(t) = w sin wt
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So in space the function is gaussian with characteristic width, ¢, as

Z - E (L
A
Figure 15 L 8 e 8
e
Spatial Profile
> X
and in time
w si
> inwt
Figure 16 ~
L
Time History
| ~
|
8 = 7T/CU
the integral over all space and time is seen to be
T/ o T/ 1 ) the energy
[ ] ft)ox)= [ SEesinuts=E {in the
0 0 0 pulse

The defining equation for the stress response as shown in part I is

62) M_LQL:ABT

CT T F V(T - 2v) Tongitudinal wave velocity
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A = pa ﬁl_i;_ﬁl
(1 -V

a = coefficient of thermal expansion (linear)

The temperature response is given as in the previous section as
82T of 0

63) k =% = pC 3¢ - q(x,t)
X

METHOD OF SOLUTION

The equations to be solved are 62) and 63) The equations are coupled
since the wave equation is driven by the temperature equation, but the
temperature equation is independent so in a true sense this represents
an uncoupled solution.

The procedure used here will be to assume that temperature diffusion
is a "slower" process than wave propagation and hence the times of interest
for the wave equation are short compared to the thermal response.

We will first solve the temperature equation completely and determine

the deposition times in which the response is adiabatic, that is, when the

temperature is given by:
64) T _ qx,t)

ot pC
in this case the temperature field is completely known, for short times,
and its time dependence is given by the chosen energy deposition function,
f(t) - egn. 61.

We will then solve the stress equation and examine the amplitude of the
stress wave as a function of the characteristic deposition times. If the
amplitude of the stress wave approaches zero while the deposition times are
still short enough for the adiabatic assumption to be valid then the original

assumption was valid and the solution is accurate.



53

TEMPERATURE SOLUTION

The equation to be solved* is

2 2.2 .
65) k Q_%_+__Eg_ sin wt € /8- DC-%%
ax Vers

subject to
T _ -
Fvia 0 at x =0

T-+0 as X = o

The solution can be obtained by a Green's function technique similar

to that employed in the previous section with the following result:

66) - T{x.t) = J Ty o e 2 AU i g gt
0

where

A gt
‘y:.i.ol.&_?_u’ Z’:X/é;
§

o = thermal diffusivity T, - B IR

V2m 8 pC

If © =m/w is very small, the problem will be‘adiabatic, and the solu-
tion for temperature will be the solution to equation 64) which by simple

integration is:

T oginwt e ¢ dt

0

MIN(t,n/w) o
67) T*{x,t) = {

T*(x,t) = (1 - cos “t)zg e

*This temperature solution is specific for a gaussian energy deposition and was

chosen to illustrate the coupling of temperature and stress response. The

general temperature is given in section II-B.
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The next step is to evaluate and compare the solution to Egs. (66) and
(67) so that we may determine which times (8's = w/w) are actually short enough
to be considered adiabatic. These equations were incorporated into a com-
puter program and were evaluated for various values of 6 and T, where 8 is the
deposition time and 7 is the time at which the response is evaluated, as shown

in figure 17.

- 6 -

Figure 17
Time Constants

-1 and 107 are given in Figure 18 a,b,c

for three values of x fora = .1, § = ]0_4. Data are shown in terms of

The solution for 6's between 10

T/T* for © = 1/2 and 1.

It is seen in Figure 18 that for this case the response is essentially
adiabatic (within 10%) for pulse duratjons (6's) up to about 10—8 seconds at

least out to x values of§.
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Figure 18
Transient Temperature Response
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Where, as in equation (66),

_dat _a(1)(1078)
Y= 2 Gohz

or

y = order(1)

During pulses with duration 8 < ]0~8 sec, the temperature solution is
given by Eq. (67), and if we find that the durations for stress wave genera-
tion are smaller than these, then Eq. (67) will always be a good approximation
for T(x,t).

As a reference for numerical values, for the sample problem above, the

defining parameters were:

Thermal diffusivity = .1 cmZ/sec
5=1x10"% em
E =] J/cm2
pc =1 J/°C cm3

The adiabatic temperature at x = 0 for very short times is:

Tyay = 796°C
STRESS SOLUTION
Equation (62)
0% 1 0% %1 (1 +v)
ax? 2at? atl (1=79)

can be coupled with the constitutive relation for uniaxial strain

~ eE(1 - v) _ Ea
68) M SRV Y By S ey i}
where e = strain
to set up a solution for the stress. Consider the case of

an impulse of energy deposition which has spatial form g(x). This deposition

will result in an adiabatic temperature change as discussed above.
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It will also result in a stress increase, since it will happen in a time too

short for the material to expand. The resulting stress profile will be

69) o(x) = (72%)T(x) = ¥T(x)

The response of Eq. (62) in this case must be the same as the solution

to the homogeneous' wave equation with the initial condition of Eq. (69). The

solution of the wave equation of the form

d
0

2
0°¢
70) 5 -

2
v - g
X t2

a1
2
c
with boundary condition
$(0,t) = 0

and initial conditions

6(x,0) = 94(x)
2 = Vy(x)

ot =g

is the D'Alemberts solution which 1512

71) d(x,t) = %-P(x - ct) + %—P(x + ct) + é%-J Q(z)dg

where
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In our case,

hence the solution is:

72) oI(x,t) = %{ T(x - ct)H(x - ct) - yT(ct - x)H(ct - x)
+ yT(x + ct)]

where

H(y) is the step function.

Equation (72) represents the solution for a single impulse of energy.
The general time-dependent deposition problem may be treated by recognizing

that any pulse is a summation of many impulses as in figure 19.

f(t)dt

f(t)

SOAONSAAN NN Ne N

Y
—

Figure 19. Deposition Pulse
Hence, a general solution is found by recognizing that the system is linear
and summing over all the impulses in the time-dependent deposition, which

the time variable is replaced by the physical time minus the time the impulse

occurred as:
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il

73) olx,t) = J f(t)dt; op(x,t - t,)

or

74) o(x,t) = [ op(x,t - t')f(t')dt"
ti

where oy is given by Eq. (72), and

Equations (72), (73), and (74) were derived on a semi-intuitive basis
and may seem somewhat unsatisfying. As a result, a rigorous solution of the
inhomogeneous wave equation for this case is obtained and presented in
Appendix A. The resulting solutions are identical to those developed here.

Equation 74 is similiar in concept to that of Zaker*]3 but was developed
here in the form of a general Green's function which could be applied to the
energy depositions anticipated in transient ion irradiations of arbitrary
spectra. This form of solution will now be used to determine the radiation
conditions which must be met for stress waves to develop.

If the deposition time were very short, the temperature response would
be adiabatic and the stress response would at the end of the pulse be given by:

TO _22
75) o*(x,0) = yT*(x,0) =y 2 - ©

which would Took T1ike that of Figure 20
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oﬁ(x,e) —C

Figure 20. 1Initial Stress Wave From Impulse Deposition

This stress profile will then propagate into the material and be modified
by a rarefaction wave which proceeds from the free surface so that at large

distances into the material the profile will look like that in figure 21.

*
c/2 — C

COMPRESSION
X

oy TENSION

Figure 21. Stress Wave After Propagation into Material

Equation (74) has been evaluated by numerical integration to provide a
general solution for arbitrary deposition as long as the temperature is given
by the adiabatic assumption. In order to see the results of this calculation,
the condition was solved for various values of deposition time, 0, and the

stress was examined deep into the material as the stress wave passed-
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The amplitude of the stress wave was determined as a function of time by
picking a time just before any disturbance within 26 of the surface could
arrive

_Y -28
tO =

and a time which a wave of duration 6 would be fully developed

t] C c

and observing the pulse during this interval. Results for stress as a function
of time are shown in Figure 22.
It is seen in Figure 22 that for pulse durations of 10_]0 seconds, the

maximum wave amplitude is 3980 psi with a y of 10 psi/°C. This corresponds to

v TMAX

OMAX 2

one-half of the maximum possible initial compressive wave amplitude predicted
by Eq. (69). At longer pulse durations, this amplitude diminishes, as for

the case of 6 = 3 x 10’9

sec, in Figure 22. The ratio of the stress wave
amplitude divided by maximum initial compressive wave is given for various
values of pulse duration in Figure (23). The stress wave amplitude approaches
zero as the pulse gets Tonger than ~3 x 10'8 sec. Notice that a useful cri-

terion for this case is that an approximate measure of the response time is

given by

_ deposition range - 2(1 x 10—4) P 10—9 sec

t :
r velocity ]05
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Figure 22

STRESS vs. TIME
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C = 10%cm/sec
5= 10%m
o
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Y= 10 T Si/°C
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At any time Tonger than this, the amplitude is reduced as the stress
is propagating away faster than it is created. Also shown in Figure 23 is
the front surface temperature response from Figure 18 which indicates that
for all times of interest for stress wave generation, there is negligible
heat conduction. If spatial profiles were chosen with sharper gradients,

the relative response times between stress and temperature might be closer.



64

- 03s ‘NOILYY¥NA 35TNd

O L0 0 ol o ol .0
N | | _
,,,
~
~
N\
\
N\
N | xt
// \ 1
/,
ol= =

T = A
wo 0f=Q
998/ Wd O] = J
wo | = X
NOILvydNad 3S7Nd
"SA
JANLITdANY 3AVYM SS3YIS

£2 @4nb14



65

II-D. Displacement Response

The displacement production from an arbitrary spectrum of charged
particles or neutrons can be determined upon specification of the spatial
and temporal distributions of the fluxes and the appropriate dpa cross-
section. This is conceptually easy for neutrons if the flux, as deter-
mined by time dependent neutronics, is multiplied by the cross section
for the material in question. For ions, the process is normally more com-
p]ex; since damage is limited to regions near the exposed surface and dis-
tributions for monoenergetic incident jons are determined by'ion‘implanta—
tion codes. In the following section, procedures are outlined whereby
efficient, yet approximate, calculations can be performed for ions of

various energies.

IT-D-1. Tons Z < 2

A model for light ions with energies greater than a few tens of Key
can be developed from the spatial energy distributions which were presented
in SectionII-A. This formulation allows the ion energy to be specified at
any position and is accurate at all points except very near the end of
range. Although the nuclear damage is ignored in determining the transport
characteristics, it can still be evaluated as a function of jon energy. This
damage then becomes the local displacement rate at the position where the
energy is specified.

The methodology in this paper is commensurate with that of Doran et a1!4
in a working group report on displacements and procedures for damage cal-
culations.  The approach in this study was to extend these procedures

to determine energy and spatial dependence.
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Upon determination of the mean ion energy as a function of position,
it is necessary to develop an appropriate displacement cross section. Two
alternative procedures are available:

1) a Binary Rutherford interaction model which accounts for the effective
charge of the ion; and

2) the Lindhard (Lss)4 model based on a Thomas-Fermi potential
The former is consistent with reference 14 and consists of expressing

the Rutherford differential scattering cross section as

76) do(E) = E%_,QI
T
where
2 2. 2.2
4wva,m.z, z,°F
76a) B = 0 171 "2 "r
m
2
ag = Bohr radius = 0.53 A
my = ion mass
z, = jon atomic number
zZ, = target atomic number
Er = Rydberg energy = 13.6 ey
m, = target mass
T = PKA energy
y = effective charge given by Bichse1]5 as
2 3
76b) y =1 - exp(-1.316y + 0.11712y" - 0.0650y")

y = 100872573

B = v/c

v = jon velocity

c = velncity of light

Z = ion atomic number
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A displacement cross section can be determined from the differential
cross section if the number of displacements produced by a PKA of energy
T can be established. This is usually accomplished by the selection of an
energy partition model and a secondary displacement model.

The energy partition model accounts for the relative distribution of
the PKA energy loss between the electrons and nuclei. The latter process
is the only one used in determining displacements. A convenient form which

approximates the function discussed in LSS theory is given by Robinson16 as

T
77) Tdamage " g(e)
where
78) gle) = 1 + ke + 0.40244ke>’* + 3.4008ke /0

k= LSS stopping parameter which for PKA s is

k = 0.1337 22/3,p1/2
e = Lindhard reduced energy = T/E|
E, = 0.08693 /3

The secondary displacement model accounts for the displacements pro-
duced in a cascade of a PKA with a specified damage energy. The recom-

mended value in Reference 14 is

N, =0 T<E

d d
79) Ng =1 Eg<T <2,
No= 281 2, < T
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where Ed is the effective displacement energy. Combining Egs. (76), (77),

and (79), yields the displacement cross section as

, ([ Tyax
= By dr. 0.8 ; dT_

80) og(E) = ¢ { 2t 2, | () }

Ey 2E,
where .
M-, m
1M
Ty = AE = —2_ ¢
MAX (my + mz)z

Equation (80) can only be easily evaluated by numerical integration,
which tends to 1imit its utility. The difficulty in obtaining a closed
form integral is the function g(T). The Rutherford cross section, how-
ever, is very small angle (or low energy transfer) biased and the fuﬁction
g(T) is a slowly varying function of T at low energies, hence it is reason-
able to assume g(T) is approximately a constant whose value is equal

to the function evaluated at the average PKA energy where
Tave = 2EgLog(Tyay/2E )/ (1 - 2E /Ty )

The range of the function g(T) for protons on nickel is shown in the follow-

ing data: )
E Tun(2Eg) Tave Twax
(KeV) _(KeV) (Kev) (KeV)
50 .080 .1786 3.294
g(T) = 1.148 1.169 1.280
100 .080 .2054 6.588
g(T) = 1.148 1.173 1.318
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The data indicate that for a low energy transfer cross section g(T)
can be assumed constant with only a few percent error. If this assumption

is made, Eq. (80) can be integrated as:

81) o

d

2 T
(£) = 2L {0.5 + L gy X
d g(T) d

[e]

A2, energy = eV

1

units
B = Equation (76a)
y = Equation (76b)
E = ion energy
Ed = displacement energy

TMAX = maximum PKA energy

Results from Eq. (81) were found to yield the same values (within a
few percent) as numerically integrated values in Reference 14 for protons
on nickel for ion energies of 100 KeV - 2MeV .

An alternative method for determining the displacement damage in terms

of dpa cross section is to use the nuclear stopping power derived in LSS

theory. This is the basis of the model used in the methods of Brice,6 winterbon,7

and Manning and MueHer,8 The essential difference between their approach and

the modified Rutherford method discussed above is the treatment of electron

screening. In the LSS model, the screening is treated explicitly by assuming

an interaction potential based on the Thomas-Fermi model. The modified Ruther-

ford model accounts implicitly for screening by allowing the charge of the
moving jon be a function of energy. These approaches, although different in

concept, tend to accomplish the same thing.
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The differential cross section based on the LSS model was given in

Part I (Eq. (27)), in terms of the Lindhard tabulated screening function.

Winterbon, et a]!z also give the analytic approximation:

2
82) do(E) = 15— » 430y 4 @a2/3)2/3473/24,
where
A = 1.309
t=e T/ Tyax = e sin26/2
a = 0.468(z,%/3 + 2,2/3)71/2
£ = E/EL )
- 1+ Z1%0
L A a
A= ma/my
T = PKA Energy
E = ion energy

The nuclear energy loss can be derived from Eq. (82) by performing the

integral
€2
83) | TE 7 dt
5 €
N Y
where
p = r/RL = reduced length
. (my +m,)
L~ 24
N a m]m2
N = atomic number density
- 1/2
T, = lower 1imit of PKA spectra
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Oen‘,]8 et al, give the value for this integral as

84) de| 9 1 @)VEAO 4 (14 (20)%3.8/9)172
dp \ 8¢ (2A)1/3y4/9 v (1 + (2A)2/3y8/9)]/2

(1 + (2A)2/3y8/9)]/2 B (1 + (2A)2/3e8/9)]/2

In order to evaluate a dpa cross section, the following integral must be

performed:
2Ed TM
3 do do 0.8T dT
85) ofE) = [ ar a7+ ( dr 2, o(T
Ed JZEd

Again, if g(T) is approximately constant, this can be transformed into

2F
‘ £ 0.4 +d
) = do L - de
86) ofE) = ar 97 * R, [Ed TOLET
Eq N
where the term %%- is [Eq. (84)] evaluated fore and v = (2Ed/Tm)1/2. The

N

first integral in Eq. (85) can be estimated by

where

_ 2

-— = Equation (82)
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An estimate of the dpa cross section for light ions can, at this point,
be derived from Eq. (81) (modified Rutherford) or Eq. (86) (LSS, Thomas-
Fermi). A comparison of these two values for protons on copper is shown
in Figure 24. In this case, the energy partition function was assumed
to be unity for both cases. It is noted that small differences are noted
at higher energies (100 KeV and up) but differences of a factor of 5 or
more are evident in the few KeV regions. In this study, the LSS value was
used so that results could be compared with the ion implantation codes
which use the same formulation. A more rigorous approach to resolve the
discrepancies evident at low energies would be to use alternate potential
functions 1in such codes. The methods in this study are approximate and are

most accurate at higher energies where the disagreement is negligible.

The procedure for evaluating the local displacement rate for light ions

would be as follows:

87) D(x,t) = F(t)og, [E(x,E)]

where f(t) is the instantaneous flux of ions of energy E* at the
exposed surface. |

E(x,E*) is the energy of an ion of incident energy E* at position
x (Table I).

Odpa(E) is the dpa cross section for an ion of energy E in the

target (Eq. (81) or (86)).



73

00Ol

A®M *AOYIN3I

ool ol |

! _ | | _ I !

AR G2 uﬁw <

NOILO3S SS0¥D
1NIN3IOVIdSIa

Ol

_ _ | | _ _ _

vg d4nbL4

@)
SNYVYE‘NOILI3S SSOYD INIWIIVI4SI]

~



74

II-D-2. Displacements for Ions of Z > 2

For heavier ions, the determination of Tocal displacement production
is more complex, because the mean energy of an ion is not so easily deter-
mined, and the effects of scattering and straggling are more pronounced.
One must, therefore, rely on one of the ion implantation codes. If var-
ious spectra of ions are to be studied, however, it is necessary to develop
a technique to determine the spatial displacement profiles in 5 more
efficient form.

This requirement is in part due to the considerable expense associated
with multiple runs of the ion codes.

The technique developed in this study involves the definition of a new

form of the dpa cross section (or damage factor) as:

_ * *
88) Odpa = Odpa(E ,X)

In this case, the cross section contains information on both the
amplitude and spatial extent of the displacement of an ion of incident
energy E*. These damage factors can be used to calculate the damage at

any position as simply as:

89) Dlx,t) = F(t)oy, (E*,x)

These damage factors are determined by performing a single set of ion
implantation calculations (as with the Brice codes RASE 4 and DAMG 2 in
this study) at selected ion energies covering all potential spectra of
interest. The results of these calculations are then parameterized by
determining a numerical fitting function or a set of functions whose defin-
ing coefficients can be expressed as functions of energy. An example of
the damage distribution from which the damage factors can be determined
is shown in Figure 25. These data are for aluminum ions onto nickel,

although similar data were employed for other ion-target combinations.
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Figure 25
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III. Application to Specific Pulsed Fusion Spectra

The models discussed in Chapter II allow determination of the temperature,
stress and displacement production at any location in a material exposed
to particular set of radiation spectra. In this chapter a brief
example of this application of these models to specific spectra and
materials is given. Examples are more fully discussed in reference 19
and a detailed examination of the utility of these models is planned for
Part III in this same series.

The reference spectra chosen for this example are similar to bare
pellet spectra from laser fusion systems. The components of this spectra
are given in Table IV. In this case an additional component, Si, was
added to the pellet debris to indicate the effect of heavy ions on
the temperature and displacement response. The material chosen for
this example was copper at a distance of 7 meters.

The front surface energy deposition is shown in Figure 26 while the
total energy deposition profiles for each ion component is shown in
Figure 27 at the end of each respective pulse.

The temperature excursion above ambient at the front surface for
each component is shown in Figure 28. In this case the X-ray response
was determined from an impulse source assumption while the laser light
was deposited over a period of 10 ns. The total temperature response is
shown in Figure 29 at the front surface, and at positions 1 and 5 microns

from the exposed surface.
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Table IV

Reference Spectra (100 MJ)

Energy
(M) Spectrum
Laser 2 10.6 u
X-Ray 2 1.0 kevV - BB
D 4.6 160 keV - M
T 6.9 240 keV - M
He (STow) 1.2 320 keV - M
He (Fast) 5.4 2+ .5MeV -G
Silicon 2.7 800 keV - M
Neutrons 77. 14 + 1 MeV - G

BB = Black Body M = Maxwellian G = Gaussian
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The displacement rate from each component is shown in Figure 30
for the front surface and in Figure 31 at 1 micron. All components
exhibit higher displacement cross section as their energy is reduced
near the end of range. The total displacement rate at the front surface
and at 1 micron is shown in Figure 32. The superposition of the total
temperature and displacement rate at both positions is shown in Figures 33
and 34.

The synergism of the transient temperature and displacement
production will significantly affect the various responses of the materials
to pulsed fusion sources. The role of these effects on sputtering,
blistering and clustered defects will be discussed in subsequent

sections of this series.
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APPENDIX A

RIGOROUS SOLUTION OF THE INHOMOGENEOUS WAVE EQUATION

Equation (74) was derived in a semi-intuitive fashion but will now be
derived in a more formal manner which yields the same result.
The solution to the inhomogeneous wave equation can be found from the

theory of Green's function as: (o = ¢ in our case)
t

1) y(r,t) = { dt | dV G(r,t|r',r")q(r',t")
0

t
+ [ dt0 [dSO(va - YVG)
0

- J?[ dvo[('g%)

blrg) - 6 2L ]
c

tl=0 tl=0
where the first integral is the response to the forcing function, the second
vanishes for a stress free surface and is assumed to go to zero at infinity.

The third accounts for the initial condition.

In one dimension, the Green's function is given by Morse and Feshbach |

2) 6 - 1t - t) = - S -l )

where H is the unit step.

We will now consider two problems:
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1. Proof that the response to a single impulse of heat is that given by

Eq. (71) or (72) if q{t,x) is given by

then

4) gl igt) 9(x)
2

) &= ' (t)g(x)

Equation (1) gives (with stress free initial conditions):

6) o(x,t) = I dt' I dx' g{l - H(lﬁ—lgélL - (t-t")]8"(t - t')g(x")
t! X
for x' < x

7) o(x,t)= ! dtt J dx %{1 SR O th)1st(t - t')g(x")
t! X

c
since b
-f'(0) x=0 ina-b
8) : f(x)8'(x)dx =
] 0 Xx=0 outa-+>b
a
9) olx,t)= [ dt* J dx'{z - (FE- st - t)g(x')) = % alx + ct)
t! X

for x' > x we get a similar term: %—g(x - ct), hence

10) o (,t) = 5g(x + ct) + g(x - ct)]

which is just D'Alembert's solution for infinite media. Q.E.D.
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2. Proof that response to a general pulse is the same as Eq. (74).

In general,
1) 9(xt) [ dt'J Sncl2ox L e -1 g
t! x'

in our case

loe]

x-c(t-t')
12) o(x,t) =§:I|f(t3d£[ g(x')dx* + [g(x')dx' - [» g(x) 'dx’
t 0 ) Jo

x+c(t-t!

Xx-ct
o(x,t) = g-[ F(£')dt" J g(x")dx!
J x+ct

Now, integrate by parts

13) U= | f(t')dt' = F(t)

since
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from hence
F(t)
,—/\
X-CT t
o(x,t) = %{[ f(t')dt' [ g(x")dx"
J X+CT 0

-c J - F(t')[g(x - ct) - g(x + ct)]dt'}
tl

T=1t-t'
In the first term,
when t' =20, F(t') =0
X=-CT X
16) when t' = t, J g(x')dx" = [ g(x')dx = 0
X+CT X
thus,
CZ
17) o(x,t) = v F(t')[g(x - ct) + g(x + ct)]dt’
tl
The original wave equation was
5 ok
18) 3“0_1_§2_o=_1-2\)_ _82T
ax2 c2 at2 c2 gE?

so the complete solution is
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r

20,t) = | F(eNdt STl - c1) + glx + cr)]

19) o

if x - ct > 0; T=t-t
this solution is valid for infinite media, so we must now account for
the stress free boundary.
This can by the method of images in which a symmetric pulse is started

at an image point as:

(Image)

The effect is to add to the above solution a similar pulse and integrate

over the appropriate Green's function:

200 o = J F(t')dt! J A L PP I STy
tt x"

P r—m ' - 00
21) o = I F(t*)dt* %- Ceog(xt)dxt - J ~g(x*")dx"
leTeX 0"
0~
22) o' = J f(t‘)dt‘~% g(x*)dx"
Jet-x
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as before

0
23) o' = %-F(t‘) J g(x')dx'

-C J - F(t')[g(07) + g(ct-x)]dt"
tl‘

if x - ct <0, since

24) g(07) =0
F(0) =0
g(-x) =0
therefore,
2

o' = - 5 | F(t')g(et - x)dt' if x - ct <0

adding equation (19) and (25) since

=0 +o0o

af
1 - 2v

F(t')dt'[g(x + c1)
J

POf—

a(x,t) =

+ H(x - ct)g(x - cT)

- H(ct - x)g(ct - x)]

E

YiTon Tttt

which is identical with Eq. (74 ) upon substituting Eq. (72).

Q. E. D.
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