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Abstract

Geometric optics is used to find the shape of the image and the
irradiance cast on a spherical target by a circular beam after reflection
by a far off-axis paraboloidal mirror. For moderately large f/no. the
image is found to be nearly circular with its center shifted slightly
from the beam axis. However, the target irradiance can be highly
asymmetric-unless the beam intensity falls off rapidly with radius. An
expansion in powers of inverse f/no. is used to obtain closed form
expressions for the image shape and the target irradiance. Numerical studies
are carried out for parameters relevant to the design of a laser fusion
reactor. Limits are placed on allowable tilt errors by means of a naive
analysis of ray aberrations. A useful formula is derived for the perturbed
target irradiance under small tilt errors, based on a new expression for the

caustic. These simple formulas allow one to carry out detailed design

studies without recourse to ray tracing codes.



I. Introduction

Off-axis parabolic mirrors are widely used in astronomy
and laser fusion experiments for simultaneously deflecting and
focusing a collimated beam.! Traditionally difficult to
fabricate, their use has become much more economical with the
advent of the diamond-turning techm’que.2 In this paper,
geometric optics is employed to obtain analytical expressions for
the shape of the image and the irradiance cast on a spherical
target by a circular beam. (The target is assumed to be large
enough that diffraction effects may be ignored). For moderately
large f/no. the reflected beam is found to be nearly circular,
with its geometric center shifted by a small amount from the
beam axis. The target irradiance, on the other hand, can be
highly asymmetric unless the beam intensity falls off rapidly at
the beam edge. An expansion in powers of inverse f/no. is used
to obtain closed form expressions for the image shape and target
irradiance. Numerical calculations are carried out for parameters
relevant to the design of a laser fusion reactor.

Since proposed laser fusion reactor targets are small (~ 1 mm) and
focal lengths 1ong3’4 (> 10 m), pointing errors must be held
to about one arcsecond.  Conventional analysis of Seidel

aberrations is limited to regions near the optical axis of



axisymmetric systems, and does not apply to far off-axis rays.S
Nevertheless, since spherical aberration is absent at all ray
heights, one may readily calculate aberrations due to various

tilt errors. This is done analytically in Sec. IV, An expression
is derived for the perturbed target irradiance under small tilt
errors, based on a new calculation of the caustic curve, These
simple formulas allow one to carry out detailed design studies
without recourse to ray tracing codes.

Figure 1 depicts a circular beam of radius Py incident on an
off-axis portion of a parabolic mirror such that the beam axis is
turned (deflected) through an angle % and the effective focal
distance measured along the beam axis is r . A paraboloid of

revolution may be described in cylindrical coordinates by
R = 4a(a-z) (1)
and in spherical polar coordinates by

28__ - 5 sec?(4/2) . (2)

r= T1+coso

where a is the paraxial focal length of the complete paraboloid. The

distance 4a is then the Tatus rectum. Here z is measured to the left

of 0' in order that the turning angle ¢ be the spherical polar angle.

The distance from ray to axis is then

R = %%%%2%—= 2a tan(¢/2) . (3)

We shall refer to the symmetry plane 6 = 0 as the median plane.







IT. Image Mapping

We wish to find the shape of the image and the irradiance
distribution on a small (RT ~ 1 mm) spherical target and the image
outline at some distance from the target, where the beam ports
are to be placed, Figure 2 depicts the image of a circular beam
in a plane normal to ?o’ at an arbitrary distance r: < T from the
focus. Let us identify a point P on the edge of the object disk by
polar coordinates (pB,W) and its image P' in a plane normal
to ?: by (p',¥'). The polar coordinates of point P with respect to

the origin at the focus 0 are
RS = R + 05 - 2R py cos¥ (4)
Y ,
sing = ﬁﬁ siny . (5)

The reflected ray r(r,0,6) is then determined by Egs. (2). (3) and
(5). In most laser fusion reactor applications the spot size is
sufficiently small that the angle £ may be used in place of the dis-
tance p' = r: tang in measuring port radii.

The angles £ and ¥' in Fig. 2 locate the vector ¥ with
respect to a rotated spherical polar coordinate system having its
z axis along ?0, as shown in Fig. 3. (We have reversed the sense of
¥ and r. relative to Fig. 1). Rotating the z axis.through the angle

0
. . >
by 10 the x-z plane, the new coordinates of r are

r sing cos(m-¥') (6)

x
i

X cos¢0 -z sin¢o

r sing sin(m-¥"')

<

=Y

NR
il

X sin¢0 +z coscp0 = r cos& .,
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where
X = r sine cosé (7)
Y = r sin¢g sine
Z = r coso .
Thus,
cos¢ = sing, sing cose + cos¢, cos¢ (8)
tany’ = sin¢o cozcz;m1> égggo sing cosH (9)
sing siny' = sing sine . (10)

Any pair of Eqs. (8)-(10) determine the image in beam-
centered coordinates. It is useful to introduce the smallness

parameter (essentially inverse off-axis f/no.)
e =0p/ry . (11)
Egs. (8)-(10) may then be expanded in powers of ¢ to obtain
2

V' =y + g sing tan(o,/2) + 0() (12)

e + %-82 cosy tan(¢0/2) + 0(53) . (13)

Y
1]

3

where terms of order 52 and € have been omitted.



It follows that

2

g sinzw' + (gcosw'—AE)z = &2 4 0(84) , (14)

where

AE = %_62 tan(¢,/2) . (15)

That is, to lowest order the image is circular with its center
shifted through the anale AZ in the median plane from the beam axis in
the -¢ direction as depicted in Fig. 4. Higher order contributions
to £ and y' are very tedious to calculate.
The angles & and £s delimiting the spot size in the median

plane are then (Fig. 1)

£ tan(¢0/2)) . (16)

N —

E1,0 = el &

The following semi-empirical formula is more accurate:

e tan(¢o/2))"] ) (17)

N|

= g1 +

Since the image is nearly circular, it makes sense to define an

effective off-axis f/no. from £ = (g1 + gz)/2;

(18)

1 = ~ 1
F—'Z—C0t€~z ’

independent of ¢ .




Figure 4



Equations (17) and (18) are accurate to 0.3% for ¢ < 0.2 and
g 5_1350. As an important physical consequence, note that an
auxiliary beam used to align the beam axis will not pass through
the center of the beam port. When ¢y = 900it may be shown that

£ and £, are given by the exact formulas,

tang, = e (1%%%?5 (19)
e, < ¢ (2L 20)

in agreement with Eq. (16) to 0(52). Typical laser
fusion reactor parameters are ry = 10 m, pp = 1 m and
4, = 90°, for which £, = 6.03°%, £, = 5,43° and F = 5.

ITI. Two-Dimensional Irradiance Profiles

The target and beam irradiances are related by conservation

of energy;
- (21)
ITdAT IBdAB .
where (Fig. 1)
dA = RdRds (22)
da, = R$ sing dode . (23)
Thus
| gleIReR (24)

T 2 . >
RTs1n¢d¢
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where 0 < p < pg. From Eq. (3),

sing dR = Rd¢ , (25)
so that
2 1
T R 2
T (1+cos¢)

Irradiance profiles are shown in Figs. 5-7 for an off-axis focal
length o = 5m and a beam radius pg = 1 m. I(g) is given
in the meridional plane (along the Xy axis) for turning

angles ¢0 = 450, 90° and 1350, normalized to unity at £ = 0. The

beam profiles used were flat and Gaussian;
—a(p/pg)?
IB(p) = IO e B (27)

with a = 1 and 2. The flat profile results are seen to be
highly skewed, worsening with decreasing rs and increasing ¢
The asymmetry is much less severe, however, for the Gaussian
profiles, especially for the case o = 2. The reason for this

improvement is that the largest distortion, occurring at the beam
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edge, is scaled down by the rapidly decreasing Gaussian. The

requirecd symmetry depends on the details of the target design.

&

Detailed parameter studies” show that quite symmetric irradiances

obtain for ro > 10 PR and % 5_900, using paraboloidal mirrors

alone as final focusing elements.
Again taking advantage of the smallness of £, one may

obtain an explicit formula for I(£) along the X; axis. The

result is, in normalized form,

2)«:21 exp [-a(E/e)® (1 + tg)]  (28)

IT(g) TI1 4+ 2t + 5 (1 + 5t

nNj—

where t tan(¢0/2) and -£1 < E < .

IV. Mirror Positioning and Pointing Errors

ITluminating a 1 mm radius target from a distance of 10 m or
more with a large off-axis paraboloid and keeping it on target
is a formidable technical task. Six degrees of freedom must be
controlled in an explosive environment. Further, it is not clear
how feedback control can be accomplished or how often
corrections would have to be made. Current large scale laser
fusion experiments allow hours between shots for alignment, as
compared to perhaps 50 msec between pulses in a reactor.3
In this section analytic ray tracing is employed to calculate

tolerances on each of the six positioning coordinates for arbitrary

values of ¢o’ s Pgo and RT‘ In each case we assume a stationary
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target and collimated beam, allowing only motions of the
mirror.

A. Translational Positioning Errors

Any purely translational error &x, 8y or &z preserves the
parallel relation between the incident ray and the axis of the
paraboloid. Consequently, the focal point simply follows the
displacement without magnification or confusion of the focal
region. Since stepping motors capable of 0.5 um motions are in
existence today,7 translational errors should not be problematical.

B. Rotational Positioning Errors

Consider rotations about the x, y and z axes with origin
at the intersection of the beam axis with the mirror.
As the ray displacements on target are proportional to the
focal distance ros such errors can be quite serious.
1. Rotation About the y_-axis {5¢)

Figure 8 shows the deflection of the principal ray (or any
ray in the median plane 6 = 0). Simple triangulation yields the

axial aberration,

sin(289) ~ 2rde
sing' T singp (29)

§z=r

The angle of incidence o and target central angle B are given by

e = 68Z sy~ 2réd
sino = RT sing' < ’p;f‘ (30)
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B=0¢'-a < d-a , ro>> RT . (31)

It can be shown that the deflection of meridional rays
out of the median plane differ by terms proportional to 6, which
we have assumed to be small. Similarly, when Ad = ¢ - 9o << ¢,
it follows from Eq. (29) that a general ray lying in the median

plane is deflected by

1-2cos¢

62 = 8z, [1 + ( 9) a¢] (32)

”"E?Tﬁi;“
where 620 is the deflection of the principal ray. Since A <& <€,
the fanning of the rays (corresponding to classical coma and
astigmatism) is seen to be negligible. Eq. (32) points out the
curicus fact that ray fanning is a second order effect when
¢ = 60°. While ray fanning is unimportant for tilt error
control, it does markedly affect the irradiance on the pellet
surface, as we shall see in the next section.
Rather than impose a Timit on the axial aberration 6z, we
choose to require that the arc length displacement §s be less than
a specified fraction of the pellet circumference (Fig. 9). Since 8§s = aRT,
this is equivalent to Timiting the angle ¢ - 8 ~ a. From
Eq. (30),

RTsina

56 < max
—_ r

0]



16

The precise value of a will depend on the particular pellet design.
As an upper bound on o we have the condition to just miss the

pellet,a = 90°%, for which

86,y = Ry/2rg (34)

max

The deflection of a general ray, for which 6 # 0, is
complicated by the fact that the axis of rotation is no longer
normal to the local meridional plane, with the result that the
reflected ray does not Tie in the unperturbed meridional
plane. That is, 6 # constant for the perturbed ray. This
calculation has been carried out, with negligible difference from

Eq. (34), owing to the smallness of 6.
2. Rotation About the z_-axis (8z)

In this case the incident rays remain parallel to the
axis of the paraboloid. The result is a simple lateral motion
of the focus, as depicted in Fig. 10. The Tever arm is now Ro

and the defiection simply
Sy < Rodg =1, sin¢0 St . (35)

Introducing the angle of incidence o, we obtain a criterion

analogous to Eq. (33),
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In this case there is some advantage in going to smaller o

3. Rotation About the Xp-axis (6n)

As before, due to the smalless of 8, we need only consider
an unperturbed ray Tying in the median plane. Fig. 11 is a top
view of the mirror, showing how the axis of the paraboloid is

rotated through the angle én. The perturbed unit ray is
Po= 42 cos(o'/2)n' .

In order to calculate the perturbed normal H', we introduce

yet another coordinate system (x .,y ) centered at the point

m m’zm

Po where the beam axis strikes the mirror, as sketched in

Fig. 12. From the figure, the Cartesian coordinates of n' are

~

n.

1]

(sin(9/2), 6n cos(e/2), cos(¢/2)) .
Thus,

(singd, 26n cosz(¢/2), cosd) .

~
"

The ray displacement at the focus is

A N~

>
(a3 , -
Srm Sor(r'-r)

or

Sy r (1 + cos¢) 8n = 2a é&n

(37)
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To impose a meaningful 1imit on &n, we again introduce

the angle a:

8y = Ry sina , (42)

which gives

Resina__

T max 43
i-r0(1+cosq>d)_ ’ (43)

dn

exhibiting a rather weak dependence on g e
In summary, we have derived the three angular constraints

(pitch, roll and yaw)

RTsinamax
8¢ < —p—
0
sz = 280 (44)
s1nq>O

§n = Ti%g%ﬁ;'
Figure 13 displays these tolerances as functions of turning angle,
with 8¢ normalized to unity. The tightest tolerance is on
3¢, due to the fact that the reflected ray is perturbed by twice
the tilt angle. However, note that yaw becomes equally important
at small turning angles. The minimum in 8z is easily understood
geometrically. To get an idea of the order of magnitude of these
0

tolerances, let RT =Tmm, v. =15 mand o = 30°.

o Then 8¢ = 16.5 prad,

or about 3 sec of arc, a reasonable design Timit.
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V. Perturbed Irradiance

While it is sufficient to look at the deflection of the beam
axis in estimating allowable tilt errors, more precision is called
for in calculating irradiance variations over the translated spot.
This calculation is greatly complicated by the fact that the
perturbed rays no longer come to a sharp focus. One must then
find the intersection of two contiguous rays for each value of ¢,
the Tocus of such points forming the caustic surface, as discussed in
the Appendix. We shall restrict our attention to the perturbed
irradiance under the most deleterious tilt, &¢. The effect of the
other two rotations may be found by ray tracing, if desired.

A. Target Irradiance Under the Rotation &¢

Figure 14 illustrates the geometry required to solve this
problem. Two contiguous rays intersect at the point 0" in the R-z
plane, having polar coordinates (2,x). As before, we invoke

energy conservation

(45)

with dA, = RdRd6. Examinaticn of Fig. 14 shows that the target

B

area element is

dA; = (Ry dB) (% sing') do , (46)



23

FIGURE 14



24

so that
2
II i} IB R™ d¢/dB , (47)
TRy g sin%
where Eq. (25) has been used to eliminate dR. Simple triangulation
yields
%y seca dp = Ry dB (48)
2 sin(¢-x) = Ry sin(B-x) . (49)
From the Appendix,
x=%¢-%. (50)

Combining Eqs. (47)-(50) we obtain

IT = 1 cosazcos $/2) (51)
cos“ (a+¢/2)

2 (

where IT is the unperturbed irradiance and o is given by

sino = 2r8¢ - 2289 (. 2(4/2) | (52)
RT RT

The irradiance is infinite when the caustic intersects the pellet
surface; that is, when x = g=>a + ¢/2 = w/2. From Eq. (52) we see
that a hot spot occurs when

R
8¢ = §£~cos3(¢/2) , (53)

provided that ¢ falls within the focal cone. In laser fusion
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reactor applications ¢ varies from ¢0 by only a few degrees,

in which case Eq. (53) simplifies to
Ry

§6* = 5 cos (¢0/2) . (54)
0

For example, if ro = 10 m, ¢0 = 90° and RT = 1 mm, then S§¢*
= 35.4 yrad; but if Yo = 100 m, &¢* = 3.54 urad, which might be
difficult to maintain in practice.1

It is interesting to relate the perturbed irradiance to our

tilt error criterion, a 5_300. Setting o = 30° in Eg. (51) gives

I; = 6.5 I for ¢, = 90° but only I; = 2 I for ¢, = 459,

general, larger turning angles result in less uniform, higher

In

average irradiance. Now it is easy to show that the displacement
angle corresponding to &§¢* is approximately a* = w/2 - ¢0/2.
(Recall that the ray misses the target when o > w/2). Thus,
satisfying the tilt error criterion automatically avoids the caustic
when by < 120°. Nevertheless, as we shall see, significant dis-
tortion of the target irradiance can take place for 8¢ < S¢*.

To complete this discussion of pellet illumination near a
caustic, we must express I% in terms of the peliet angle B
(Fig. 14) rather than the ray angle. Combining Egs. (31) and
(52) we have

B = ¢ - sin”] (Asec2 (6/2)) (55)
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with

A= 2§5¢ = ng6¢ cos? (¢,/2) . (56)
T T
In order to obtain I%(B) we must solve Eq. (55) for ¢(B). Un-
fortunately, this leads to a cumbersome quartic equation. Moreover,
the mapping is double-valued. That is, when 8¢ approaches 8¢*, a
given point on the pellet surface is illuminated by two distinct ray

bundles. To clarify this point, we set dg/d¢ = 0 in Eq. (55) to obtain

the location of Bmax;

cos(%/Z) = (%%;)]/3 cos(9,/2) . (57)
It follows that
_3 7 0w
Bmax A (58)

That is, the maximum pellet angle always lies on the caustic.

Also note that ¢ = % exactly when 6¢ = 8¢*, the critical tilt
angle given only approximately by Eq. (54). An approximate
expression for ¢(B) may be obtained by Taylor expanding Eq. (55)

about ¢. The result is

R [% sing (Brax - e, (59)

clearly exhibiting the double-valued character of the mapping.
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To use these results for given ro? RT’ g and 8¢ one may
proceed as follows: obtain &¢* from Eq. (54), & from Eq. (57)
and Brax from Eq. (58). The target irradiance is then given by
Eq. (51) summed over both branches of ¢(g). If ; lies outside
the focal cone, only one branch is to be retained. Figures 15
and 16 depict I%(B) for various tilt errors with ro © 10 m,
pg = 1 m, Ry = 1 mm, and 9o = 45° and 90°, resp. (The angle

B is out of range in all these cases). Flat beam profiles

max
were used in all cases except one, to illustrate the dramatic

smoothing effect of a Gaussian beam profile, taking o = 2 1in
Eq. (27). In these figures we have normalized I by taking It =1
when ¢ = by» @s in Figs. 5-7.

Figure 17 illustrates the very large irradiances that occur
near the caustic, in this case for ¢o = 900, for which §¢* = 35.4 urad.
The singularities occur at Bhax 35 given by Eqg. (58); the discon-
tinuities are a result of the folding of the ray bundles about Bnax
as discussed above. These results have been verified quantitatively
by ray tracing. Thus, the extraordinarily simple equation (50) for
the caustic provides a wealth of new information on pellet irradiance,

previously obtainable only by machine computation.

The author's efforts to investigate the role of diffraction,
however, have been frustrated by the lack of full-physical optics
codes valid near caustics. It would be worthwhile to develop such
a code, in lieu of quantitative guidelines for the limits of
geometric optics. One can easily see, nevertheless, that the
smooth structure manifested in Figs. 15 and 16 covers about
200 um of the surface of a 1 mm radius pellet, comfortably large

compared to 10 um laser light. On the other hand, the spikes
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in Fig. 17 occupy only about 20 um of the surface and will certainly

be strongly modified by diffraction.

VI. Discussion

We have studied the imaging properties of far off-axis paraboloidal
reflectors in the parameter range encountered in laser
fusion reactor applications. The shape of the image disk was calculated
analytically by means of an expansion in powers of inverse off-axis f/no.
and was found to be a shifted circle in Jowest order. The f/no. itself
was shown to be nearly independent of turning angle for large
f/no. Closed form expressions were derived for the irradiance
cast on a spherical target centered at the mirror focus. Excellent
agreement was found between numerical calculations and the
analytic formulas. The asymmetry of the target irradiance was found
to increase with decreasing f/no. and increasing turning angle (large
turning angles necessitate excessively Targe mirrors).

The effect of various tilt errors on the focus was also
exhibited, first by calculating ray deflections and then by a
detailed examination of the perturbed target irradiance. Maximum
allowable roll, pitch and yaw tilts were shown to depend
differently on turning angle, with pitch being the most restrictive
motion. An analytic expression was derived for the perturbed target
irradiance under a small pitch angle tilt, based on a new

calculation of the caustic curve. This calculation also yielded

a simple criterion for the caustic to intersect the target surface.
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The question naturally arises as to the choice of a practical
design Timit for the tilt error in an actual laser fusion reactor,

10 .14 anTaRes. !

rather than experimental facilities such as SHIVA
The final turning mirrors in SHIVA are controlled to within + 1 urad,
while the ANTARES mirrors are held to within + 10 urad. The
principal reason for the smaller tolerance for SHIVA is that it
was originally intended to provide uniform illumination (now
defunct). The larger value allows less stringent optical tolerances
with considerable savings in cost. The present study shows that
tilt errors of + 10 urad do not severely affect target irradiance,
except for very long (~ 100 m) focal length systems.]2 A more
detailed study of a conceptual laser fusion reactor will be presented
e1sewhere.]3

Finally, we would 1ike to emphasize the crucial role of the
initial beam profile in shaping target irradiance. A flat top beam
profile, typical of saturated Taser amplification, produces the maxi-
mal asymmetry, while a radially decreasing profile, characteristic
of an unsaturated laser medium, can have a strong smoothing effect.
Gas phase lasers can operate near saturation, but glass rod/slab lasers
must run at lower intensities in order to avoid self-focusing damage.
In a commercial reactor one would naturally seek to operate as near
saturation as possible to ensure high system efficiency. Thus, tilt

error control will be of paramount importance in the design of a laser

fusion reactor.
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Appendix: Caustic for Tilted Paraboloid

Consider the paraboloid
R? = daz (A1)

with rays incident at angle &¢ with the axis of symmetry, as depicted

in Fig. A1. (We have now taken the origin to be the vertex of the

paraboloid).

o \ & 3

Figure A1
The caustic is formed by the intersections of the reflected rays

¥, with either & or R taken as variable parameter and 8¢ fixed. The
reflected ray 1is given by

R - R0 =~ (z - zo) tan (¢ + 8¢) , (A2)

where R0 and z, are the coordinates of the ray-mirror intersection
point. Using R, = 2a tan(¢o/2), we find
F(R,z,0,8¢) = R - 2 tan(¢/2) + (z - tan2(¢/2)) tan (¢ + 8¢) = 0, (A3)

where a has been scaled out. The envelope equation is?

oF _ 0

%= 0 ' (Ad)
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which yields

2

cos“(9/2) (z - tan¥(¢/2))=cos?(6 + 60) [1 + tan(s/2) tan(s + 66)] (A5)

R =2 tan(¢/2)-(z - tan2(¢/2)) tan (¢ + 8¢) . (A6)

The caustic may be obtained by eliminating ¢ between Eqs. (A5)
and (A6). As a check note that the trivial solution R = 0, z = 1
results for 8¢ = 0. The general solution has been obtained by
Sta]zer.9 The result may be written

27t(Az - Rt)? )2

= (R + zt) (R - 8t + tAz)® , (A7)

where Az = z - 1 and t = tan(8¢). However, since 8¢ << & is always
well satisfied in laser fusion applications, we may Taylor expand

(A6) and (A7) to obtain

~ 2(1 - 2cos¢)

RE=9= coso 5 (A8)
Az = - 251?%(1 :o§;§§¢) 56 . (A9)

Eliminating ¢ between (A8) and (A9) yields
pz=-B(s ) (1+R)/2, (A10)

where 8¢ has been scaled out. This expression agrees with Stalzer's
result (A7) in the limit 8¢ ~ 0. Eq. (A10) is plotted in dimension-

Tess form in Fig. A2. The Teft hand portion is due to rays re-
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8X +120°

FIGURE A2
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flected from the upper portion of the mirror depicted in Fig. Al
and the right hand portion is produced by the lower half
(if a complete mirror is present).

In applying these results to the design of a laser fusion
illumination system, one would seek to keep ad¢ sufficiently
small that the caustic would fall entirely inside the
(spherical) target. Figure A3 shows the caustics produced
by tilt errors of + 25 urad for a paraboloid with paraxial focal
length a = 5m, superimposed on a target 1 mm in radius (with &¢
doubled because we are tilting the mirror rather than the beam).
While the caustic is entirely interior to this pellet for
all turning angles of interest (¢ 5_900), a hot spot would be
produced on a smaller target wherever the caustic intersects
the surface.

The caustic Eq. (A10) takes a simple and useful form in

polar coordinates (%,x) as illustrated in Fig. A2. We find

3

% = adp sec” (¢/2) (A11)

X=%¢_sz_, (A12)
so that the caustic becomes

2= adp sec® ($+ 7). (A13)
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a=5m R.=1mm 8¢ =25urad

R(mm)

FIGURE A3

It has been shown by E.J. Guay]4 that the caustic for arbitrarily large

tilt angle may be obtained by replacing &8¢ with sin 8¢ in Eq. (A13). Finally
we note that if the mirror is tilted instead of the beam, 8¢ must be

replaced by 26¢ in Eqs. (A11) and (A13).
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FIGURE CAPTIONS
Parabolic mirror imaging geometry. A circular beam is shown
incident from the right, parallel to the mirror symmetry
axis 007 The effective focal length of the off-axis mirror
is s at the principal ray height Ro' In practice the
parameter a is determined by L and the turning angle do
The effective off-axis f/no, depends on ro and the beam radius
pg» independent of 9o

Image of a circular beam, in a plane normal to ?0 at distance

r; < r, from focus 0', pi and p; are the 1imits of the image
contour in the median plane.

Transformation to beam-centered coordinates. The z axis has
been rotated through the angle % in the median plane. The
new z axis Z coincides with the beam axis along ?o’ while the
y axis is unchanged.

Image contour for large f/no. To lowest order in e the image
is a circle of radius €, with the beam axis shifted by an
amount AZ in the -¢ direction.

Irradiance profiles for a flat beam profile and focal length
ro = 5 pg. Profiles are shown for turning angles ¢ = 450,
90° and 135° in the median plane.

Irradiance profiles for a Gaussian beam falling off by one e-
folding.

Irradiance profiles for a Gaussian beam falling off by two

e-foldings.
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Fig. 8. Geometry of a ray when the parabolic mirror is tilted through &¢
in the median plane (rotation about the‘ym axis). Perturbed
quantities are denoted by primes.

Fig. 9. Tilt error criterion. The location of the perturbed ray is
limited to the angle dmax measured from the target center,

Fig. 10. Tilt error geometry for rotation of the mirror through
8z about the z axis, coincident with the beam axis (rol11).

Fig. 11. Tilt error geometry for rotation of the mirror through
én about the x_ axis (yaw).

Fig. 12. Details of rotation about x axis. The normal ; Ties in the

X plane, while the perturbed normal n' 1ies in the

m™Zm

xm—z; plane.

Fig. 13. Normalized roll, pitch, and yaw tolerances as a function of
turning angle g

Fig. 14. Perturbed target irradiance geometry. Two neighboring rays
intersect at point 0", which 1ies on the caustic. Points
on the caustic are given in polar coordinates (%,x), as
described in the Appendix.

Fig. 15. Perturbed target irradiance for turning angle ¢ ~ 45° and
small tilt errors. Note that the range of B decreases
with increasing 8¢. Flat beam profiles are assumed; a
Gaussian profile (o = 2) is used in one case to show its

strong smoothing effect, The unperturbed irradiance Iy varies

by 18% for a flat beam profi]e;
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Perturbed target irradiance for turning angle g = 90°

and small tilt errors. In this case IT varies by 49%.
Perturbed target irradiance in the vicinity of the caustic,
with by = 90° and 8§¢* = 35.4 pyrad. The discontinuities are
due to overlapping ray bundles. The spikes at Bmax would

be strongly modified by diffraction.
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Mirror-target geometry with incident ray at a small
angle &8¢ with the mirror axis. This convention is
chosen to agree with the literature on caustics.

Full caustic curve for a paraboloidal mirror.

Caustic for paraboloidal mirror superimposed upon a 1 mm
radius target. The two separate branches correspond

to positive and negative tilts using the upper half-
mirror alone. Note that since the latus rectum is

held constant here, the focal length will vary with ¢.
In the numerical examples in Sec. V, rs is held constant

and a varied.





