

PL3 - A 3-Dimensional Plotting Program

N. Ghoniem and E. Anderson

June 1977

UWFDM-211

FUSION TECHNOLOGY INSTITUTE UNIVERSITY OF WISCONSIN MADISON WISCONSIN

PL3 - A 3-Dimensional Plotting Program

N. Ghoniem and E. Anderson

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

June 1977

UWFDM-211

PL3D: A Computer Program for 3-Dimensional and Contour Plotting

- N. Ghoniem
- E. Anderson*

June 1977

UWFDM-211

Fusion Technology Program Nuclear Engineering Department University of Wisconsin Madison, Wisconsin 53706

*Computer Science Department, University of Wisconsin

Table of Contents

																	Page
1.	General Description	•		•				•					•			•	2
2.	Program Variables	•	•					•		•	•					•	3
3.	Subroutines	•			•					•					•		7
4.	PL3D User's Guide	•			•	•				•				•			19
5.	Example Problem	•	•						•			•					24
6.	Listing of PL3D									•							30

Abstract

PL3D is a UNIVAC 1110 FORTRAN V based Computer Code. It is developed to produce 3-dimensional and Contour plots from the output of the Computer Code TRANSWELL. This is accomplished using the MACC and CALCOMP plotting packages for the CALCOMP plotters. Interactive usage of the Code facilitates the choice of the desired plots. The main programming considerations have been clarity and versatility.

I. General Description

The PL3D Computer program is constructed mainly as a post processor for the TRANSWELL Computer Code. $^{(1)}$ This is a plotting routine that utilizes the MACC plotting packages, especially $SURGEN^{(2)}$ and $CONTR^{(3)}$ to display information from TRANSWELL as 3 dimensional and as contour plates. Interactive selection of plots with the choice of titles, angles, variables and scaling vectors are features of PL3D. The program can be equally used, with slight modifications, to furnish the same facilities to any Computer Code that generated data in a binary form, as will be described.

The data channel from TRANSWELL to PL3D is a FORTRAN binary file called unit 4. The PL3D program allows the user to select from up to 15 Z-variables* and many different combinations of X and Y values for each Z selection. After the user has finished with one Z-variable he may then go on to another. For each selection of X, Y and Z variables, an appropriate set of labels may be entered interactively. After the surface and labels have been chosen the user may select the angles that determine a view of the surface, this view is then displayed on the graphics terminal for the user to include or exclude from his plotting set. An example of such a plot for swelling in stainless steel is shown in figure 8 later in this report.

Generally the output format from TRANSWELL (or equivalent) is as follows:

- (1) A block of X and Y axes variables.
- (2) A 15 x 100 array of Z values.

For each surface, PL3D reads the entire data file, picking out the desired numbers. This method of data handling slightly sacrifices efficiency but it enables PL3D to be adapted easily to other Computer Systems.

^{*}Actually there are 53 variables that can be selected but only 15 at any one time.

Obviously, the full plotting potential of each TRANSWELL run will not be realized at one terminal setting. To avoid the loss of these unrealized potential plots without incurring tremendous file charges, the data files are stored on a tape, via the <u>TAPE UTILITIES ROUTINES</u> for later use.

A general flow diagram of the interrelationships between PL3D, TRANSWELL Computer Code, Mass Storage System and Operating system is shown in Figure 1.

II. Program Variables

II-a. Cross Variables with TRANSWELL

The following variables are read from unit number 4 (on which TRANSWELL or equivalent code output is written) in one binary block:

- 1. TEMP; Irradiation Temperature, °K
- 2. PRØD; Point defect production rate; dpa/sec
- DØSE; Total irradiation dose, dpa
- 4. TP; Pulse period (In case of pulsed irradiation), sec
- 5. XNV; Void density, cm^{-3}
- 6. XNIL; Interstitial loop density, cm^{-3}
- 7. BETA; $\frac{1}{kT}$, where k is Bolzman's constant and T is the temperature, ev⁻¹
- 8. TIME; Actual irradiation time; sec
- 9. TØUT; Output irradiation time (see reference (1)), sec
- 10. CASC; Collision cascade efficiency
- 11. RØDE; Deformation produced dislocation density, cm^{-2}
- 12. $R\emptyset DO$; Total initial dislocation density, cm^{-2}
- 13. RVLO; Initial vacancy loop radius, cm

Figure 1 - Schematic of PL3D Computer Program Operation

- 14. GAS, Gas content of an average void; atoms/void
- 15. EVF, Vacancy formation energy; eV
- 16. EIF, Interstitial formation energy; eV
- 17. DVE, Vacancy diffusion coefficient preexponential; cm²/sec
- 18. DIE, Interstitial diffusion coefficient preexponential; cm²/sec
- 19. EVM, Vacancy migration energy; eV
- 20. EIM, Interstitial migration energy; eV
- 21. BU, Burger's vector; cm
- 22. GAMA, Surface energy; eV/cm²
- 23. ZV, Dislocation-vacancy bias factor
- 24. ZI, Dislocation-interstitial bias factor
- 25. OMEGA, Atomic volume; cm^3
- 26. STACK, Stacking-fault energy; eV/cm²
- 27. SHEAR, Shear modulus; ergs/cm³
- 28. XNEW, Poisson's ratio
- 29. SIGMA, Applies stress; eV/cm³
- 30. RVGAS, Void equilibrium radius; cm
- 31. GASO, Initial void gas content; atoms/void
- 32. RELI, Relative Interstitial relaxation volume
- 33. PRGAS, Gas generation rate; at/at/sec
- 34. CV, Vacancy concentration; at/at
- 35. CI, Interstitial concentration; at/at
- 36. FLUXV, Vacancy flux; cm²/sec
- 37. FLUXI, Interstitial flux; cm²/sec
- 38. XLAMI, Interstitial time constant; sec⁻¹
- 39. XLAMV, Vacancy time constant, sec-1

The next set of variables are read also from unit 4 in one binary block. The desired Z-variable values for plotting are selected from the array,

AA (15,100) A Real* 8 array is used to hold the double precision input from TRANSWELL (or equivalent).

II-b. Local Variables

A(50) -- Real array to collect the surface to be plotted.

MASK(400,11) -- Real array to be used by MACC graphics package (SURGEN) to calculate the masking of portions of overlapping lines. This array is equivalenced to AA in order to save space.

XMAX, XMIN -- Reals used to contain the max and min values of the X-scale.

Y3D(20) -- Real array used to accumulate the values of the Y-axes.

ZMAX -- Integer initialized to "MAX" which instructs graphics package to search for the surface maximum.

AXES, ORIENT, XYGRID -- Reals used to receive the values of the graphics package pseudo-functions AXVALS, GRID3D, XYVALS respectively.

NROWS, LIMIT -- Integers which contain the number of valid rows and columns in array A (the surface to be plotted). These values are set in subroutine RDARR.

PLANE -- Integer initialized to "NONE" to instruct SURGEN not to generate a reference plane.

LINE (2) -- An interger array initialized to (1,1) which instructs SURGEN to generate every line in both the X and Y directions.

XLABEL(5), YLABEL(5), ZLABEL(5) -- Integer arrays to hold the titles for the X, Y and Z axes respectively.

- TITLE(10) -- Integer array used to hold the 3-D plot title.
- CTITLE(5) -- Integer array used to hold the title for the contour plot.

III. Subroutines

III-1. MAIN

This portion drives the rest of the system. Initialization of the MACC graphics package is the first thing done. Then the main production cycle is entered. This cycle consists of the following parts.

- (1) Read in a new surface to plot, or terminate execution on @EOF.
- (2) Read in the labels.
- (3) Calculate the various max and min values.
- (4) Complete the minor plot cycle.
- (5) Handle the contour plot.
- (6) Erase the screen and go to (1).

The minor plot cycle consists of the following:

- Read in the plotting angles (phi and theta).
 or Exit the minor plotting cycle (on @EOF).
- (2) Generate the surface on the terminal.
- (3) If so instructed, send the surface to the plotter.
- (4) Go to (1).

A flow diagram of PL3D manifesting the previous logic is shown in Figure 2.

III-2. RDARR

Read Array. This subroutine reads the data file that was created by TRANSWELL and extracts the selected data. The data selection specifications are made available to the routine thru the DAT3D namelist input. This routine

also is able to log scale the selected data upon command. A flow diagram of this subroutine is shown in Figure 3.

Called from: Main routine

Calls : N.A.

III-3. MMXS

Max, Min, Axes, Orient. This routine finds the max and min for the two independent variables and the min for the dependent variable. It also sets the axes specifications and the orientation specifications. A flow diagram of this subroutine is shown in Figure 4.

Called from: MAIN routine

Calls to : AXES, ØRIENT (graphics package pseudo-functions)

III-4. RDLBS

Read Labels. This routine supervises the reading of labels for plot and axes titles. A flow diagram of RDLBS is shown in Figure 5.

Called from: MAIN routine

Calls to: RDLB

III-5. RDLB

Read Label. This routine does the actual reading of the label. Currently 24 character labels are used. These 24 characters are the first 24 columns of the input line.

Called from: RDLBLS

Calls to: N.A.

III-6. PLTPTR

Plot Plotter. This routine has two entrys; PLTPTR & PLTTRM. PLTTRM sets up the window for and makes the call to SURGEN that makes a 3-D plot

Figure (3). Flow Diagram of Subroutine RDARR.

Figure (4). A Flow Diagram of Subroutine MMXS.

on the terminal for preview purposes. PLTPTR sets up the window for and makes the call to SURGEN that sends the selected 3-D plot to the plot-file. A flow diagram of PLTPTR with the entry point is shown in Figure 6.

Called from: MAIN routine

Calls to: DEVSET, SURGEN, PURGBF (all graphics package routine).

III-7. CNTPTR

Contour Plot to Plotter. This routine has two entry points; CNTPTR & CNTTRM. These two entrys act the same as PLTTRM except that they create contour plots instead of 3-D plots. A flow diagram is shown in Figure 7.

Called from: MAIN routine

Calls to: DEVSET, CØNTR, PURGBF (all graphics package routines).

III-8. MACC Subroutines Used

a. DEVSET (4)

It provides a selection of graphic output devices which may be a plotter or a graphics terminal. The call is as follows

CALL DEVSET (IDEVIC)

where,

IDEVIC - Hollerith or equivalent INTEGER value to select output device: IDEVIC = 5HPLTTR or 1; graphic output goes to plotter. This is the default value for a batch run or a standard run.

IDEVIC = 6HGRAPHIC or 2; graphic output goes to the PEP-801 terminal.

This is the default value for a timesharing run.

IDEVIC = 5; graphic output goes to the TEKTRONIX terminal.

b. PURGBF (4)

This subroutine empties the terminal output buffer. If the buffer length

Figure (6). FLØW DIAGRAM ØF SUBRØUTINE PLTPTR

Figure (7). Flow Diagram of Subroutine CNTPTR

set by GSPSET or BUFSET is not 0, graphic output is transmitted only when the buffer gets full or when PURGBF is called; PURGBF therefore insures that displayed intems have been trasmitted even if the buffer was only partially full. The subroutine has no arguments and is called as:

CALL PURGBF

c. SURGEN⁽²⁾

This is a FØRTRAN Callable subroutine which generates a three-dimensional surface plot either from a rectangular grid of data or from the values of user-supplied function. The plot assumes that for any given (X,Y) location there is only one surface value. SURGEN can create a surface with lines parallel to the X-axis, to the Y-axis or to both axes, the latter of which produces a cross-hatched figure.

A brief description of the subroutine argument is given here, while the interested reader is referred to the original document. (2) Calling Sequence:

CALL SURGEN (A, NRDIMA, NROWS, NCOLS, ORIENT, PHI, THETA, XSIZE, YSIZE, XORY, NLINE, PLANE, AXES, MASK, TITLE)

In brief, a call to SURGEN requires specification of:

- A a two-dimensional array or a user-supplied function from which the data values to be projected are obtained.
- NRDIMA row dimension of the array or an indicator specifying that A is a function.
- NROWS number of rows in the array, or number of X points to be calculated by the function.
- NCOLS number of columns in the array, or number of Y points to be calculated by the function.

ORIENT - an indicator for orientation of the array.

PHI - a rotation angle about the Z-axis.

THETA - a rotation angle about the X-axis

XSIZE - page size in the X-direction

YSIZE - page size in the Y-direction

XORY - indicator whether lines parallel to the X-axis, to the Y-axis, or to both axes are to be drawn.

NLINE - indicator for specifying which rows or columns out of the array or function are to be drawn.

PLANE - indicator if reference plane or frame is desired.

AXES - indicator for either suppressing or plotting any of these three axes and their labels.

MASK - scratch array for the hidden line mask.

TITLE - title for the three-dimensional surface.

The orginal axes system, XYZ, is assumed to be oriented as follows:

Z runs up and down the paper, X runs horizontal with the positive X pointing to your right and positive Y goes into the paper, while negative Y comes straight out of the paper. The resultant projection is based on two rotation angles which were explained before.

d. CØNTR⁽³⁾

CØNTR is a FØRTRAN V Callable subroutine which produces a contour plot on the CalComp plotter of a rectangular grid of data or of the values of a user supplied function.

The contour plot drawn is based on a pair of rectangular Cartesian axes. The axes themselves may or may not actually be plotted. The subroutine is designed to minimize the user's programming efforts. A brief description of the calling sequence is given below:

Calling Sequences for CONTR and CONTRA:

The calling sequences for producing a contour plot are identical for both plotter and line printer versions. Only the subroutine names are different. This feature is designed to facilitate switching between out-put media.

Plotter Version

CALL CONTR (VALUES, NRDIM, NROWS, NCOLS, ZLVES, ZLEVID, ZMISS, XYGRID, IGRID, IXLABL, IYLABL, ITITLE, PGWID, PGHITE)

Line Printer Version

CALL CONTRA (VALUES, NRDIM, NROWS, NCOLS, ZLEVS, ZLEVID, ZMISS, XYGRID, IGRID, IXLABL, IYLABL, ITITLE, PGWID, PGHITE)

In brief, a call to CONTR OR CONTRA requires specification of:

VALUES - A 2-dimensional array or a user-supplied function from which the data values to be contoured are obtained.

NRDIM - row dimension of the array or any indicator specifying that VALUES is a function.

NROWS - number of rows in the array.

NCOLS - number of columns in the array.

ZLEVS - control for establishing the contour levels.

ZLEVID - control for identifying the contour levels on the plot.

ZMISS - indicator for missing data.

XYGRID - control for the orientation of the grid on which the contour is plotted.

IGRID - control designating either suppression or plotting of the grid axes.

IXLABL - label for X-axis.

IYLABL - label for Y-axis.

ITITLE - title for the contour plot.

PGWID - page width.

PGHITE - page height.

IV. PL3D User's Guide

IV-A. Implementing the PL3D Code

PL3D Computer Code was developed on a UNIVAC 1110 using the FØRTRAN V Compiler. It contains approximately 323 cards and needs approximately 58000 decimal words on a UNIVAC 1110 computer.

The 3-dimensional and contour plotting were kept separate from the TRANSWELL code for the following reasons:

- (1) Plotting Routines occupy a large \underline{CORE} space which increase the charges and handling difficulties.
- (2) Every time the plotting is changed the large Code (e.g. TRANSWELL) must be changed and remapped.
- (3) Any changes in the large Code (TRANSWELL) would mean mapping of all Plotting Routines.
- (4) Finding a good plot is sometimes an iterative process. If plotting is a part of the Code, the entire Code must be rerun to produce the same data (i.e. to get a different view of the same data) for each iteration.
 - (5) Plotting Routines are not transportable.

IV-B. Using the PL3D Code

There are three steps involved in setting up a PL3D Run: First, setting up the data file; second, initializing the plotter and third, interacting with PL3D.

(1) The Data File

Suppose TRANSWELL (or equivalent) has dumped its binary data into a file named PL*DATA, then the following sequence of EXEC 8 Commands will prepare this file for use by PL3D.

@USE 4, PL*DATA.

@ASG,AX 4.

The reason for this is that PL3D takes its binary input from logical unit 4. PL3D takes care of all file reading and rewinding internally.

(2) The Plotter

Use of the CalComp plotter at MACC requires a call to the @GSP processor preceding the execution of the plot producer. For all the graphic details of MACC's plotting package, the plotting manuals should be consulted. However, the following example should demonstrate a "standard" or "normal" run.

@GSP,P

PLØTTER PEN/LIQ

@XQT PLØT*3D.PL3D

The last EXEC 8 Control Card starts the execution of the absolute element (PL3D) in the public file (PLØT*3D.).

(3) Plot Selection

Plot selection is a two-question process. First, the user is asked to select a PHI-THETA angular pair. The view of the surface determined by this pair is then displayed on the terminal, and the user is asked the second question - whether to plot this view or not?. If one decides to choose a particular plot, it is immediately sent to the CalComp plotter file for later plotting. Then the question about the angular pair is repeated. again. To transfer to another variable for plotting, the user types in an @EOF.

At this point, a contour plot of the surface is sent to the CalComp plot file, and the NAMELIST input is again encountered. An @EOF entered here gracefully terminates the execution of PL3D.

IV-C. NAMELIST Variables and INPUT Description

The program contains only one namelist; DAT3D. The numeric input is read in via the NAMELIST first, then followed by alphanumeric input, numeric input and alphanumeric input as described below;

i. NAMELIST/DAT3D/Variables

(1) IXWANT Default = 1

Integer determining whether one wants time or dose to be the x-variable. For IXWANT = 1, the x-variable is the dose in DPA, while for IXWANT = 2 the x-variable is the irradiation time in seconds.

(2) IYWANT Default = 1

Integer determining the y-variable with the following values:

IYWANT = 1; for the temperature in °K

IYWANT = 2; for the log of point defect production rate
 in at/at/sec.

IYWANT = 3; for vacancy migration energy in eV.

IYWANT = 4; for interstitial migration energy in eV.

IYWANT = 5; for vacancy formation energy in eV.

IYWANT = 6; for surface energy in $ergs/cm^2$.

IYWANT = 7; for applied stress in eV/cm^3 .

IYWANT = 8; for initial void gas content

IYWANT = 9; for the log of gas production rate in at/at/sec.

(3) NSKIP Default = 4

Integer determining the number of rows skipped (x-axis) before a line is plotted.

(4) IVAR Default = N.A.

Integer determining the variable plotted on the z=axis. It is the serial number of the variable in a 15×100 array of points. IVAR assumes a value from 1 to 15.

(5) TRMNL Default = 5; "TEKTRONIX"

Integer determining the terminal available for output plots. The default terminal is the TEKTRONIX type. For others, consult subroutine DEVSET.

- (6) XSIZE Default = 11"

 Real determining the horizontal length of plot in inches.
- (7) YSIZE Default = 8.5"

 Real determining the vertical length of plot in inches.
- (8) XSTART Default = 1
 Integer determining the number of rows (on x-axis) to
 be skipped before plotting the first y-curve (i.e. a simple
 translation of origin on the x-axis).

ii. Alphanumeric Input

Here one needs 5 card images of input:

- (1) SC; an A4 format variable determining the Z-variable scale.

 It assumes the values: LØGb or NØTb, where b is a blank.
- (2) INST; an A6 format variable determining whether one wants new titles or not. It assumes the values: YESbbb or Nbbbbb.
- (3) XLABEL(5); a 5A6 format string of alphanumeric variables for the x-axis label.
- (4) YLABEL(5); a 5A6 format string of alphanumeric variables for the y-axis label.
- (5) TITLE(0); a 10A6 format string of alphanumeric variables for the figure caption. TITLE(7) is reserved for the value of angle ϕ and TITLE(9) is reserved for angle θ .

iii. Numeric Input

One card is needed for the values of φ and $\theta;$ the angles rotating around z-axis and x-axis respectively. The input is free format anywhere on the card.

iv. Alphanumeric Input

This is the last card in one plotting cycle. It reads the variable INST with A6 format. It assumes the values: PLØTbb or NØtbbb, to get a CalComp plotter plot or not respectively.

V. Example Problem

The following example illustrates a "dialogue" example between a user and the $\overline{\text{TEKTRONIX}}$ terminal. It is assumed that the numeric data from TRANSWELL exists on file PL*DATA. We will also suppose that the swelling of stainless steel is the z-variable to be plotted against dose-temperature axes. The sequence number of swelling is assumed to be IVAR = 13. U stands for user and T for terminal.

U : UWGT

T : MACC 33, 15 TTY U02008

U : @RUN, 11162, 9000151622, \$20.00, 1000

T : RUNID: Y57021 DATE: 082577 Time 094947

T : PASSWORD PLEASE

TU : XXXXXX

T : CONTINUE

U :@USE 4., PL*DATA.

T : READY

U :@ASG, AX 4.

T : READY

U:@GSP, P

T : GRAPHICS SYSTEM PROCESSOR V67

U : PLOTTER PEN/LIQ

U :@XQT PLØT*3D.PL3D

T : READ IN NAMELIST DAT3D:

- (1) IXWANT --- X VARIABLE
- (2) IYWANT --- Y VARIABLE
- (3) NSKIP --- SKIP N ROWS
- (4) IVAR --- VARIABLE TO PLOT
- (5) TRMNL --- DFLT= TKTTNX=5
- (6) XSIZE --- HOT LNGTH OF PLT IN INCHS
- (7) YSIZE --- VERT LNGTH DFLT 11x8.5
- (8) XSTART --- START THE X'S ON THIS COL

U : \$DAT3D IVAR = 13, \$END

Τ

TYPE in ALPHANUMERICS FØR - - -

NEW X & Y 3D TITLES ?? - N FØR NØ

U : YES

T : TIME RELATED AXIS TITLE

U : DØSE (DPA)

T : Y-AXIS

U : TEMP (K)

T : 3-D PLØT TITLE

U : ION IRRAD SS (EPS = 0.001)

T : Z-AXIS

U : SWELLING %

T : ENTER THE ANGLES PHI, THETA

U : 45 20

T : PLØT AS IN FIGURE (8)

T : PLØT ØR NØT?

U : PLØT

T : ENTER THE ANGLES PHI, THETA

U: 225 15

T : PLØT AS IN FIGURE (9)

T : PLØT OR NØT

U : PLØT

T : ENTER THE ANGLES PHI, THETA

U: @EØF

T : READ IN NAMELIST DAT3D:

- (1) IXWANT --- X VARIABLE
- (2) IYWANT --- Y VAR
- (3) NSKIP --- SKIP N ROWS
- (4) IVAR --- VARIABLE TO PLOT
- (5) TRMNL --- DFLT= TKTRNX=5
- (6) XSIZE --- HOR LNGTH of PLT IN INCHS
- (7) YSIZE --- VERT LNGTH DFLT 11x8.5"
- (8) XSTART --- START the X'S ON THIS COL

U : @EØF

T : STØP DØNE

U: @FIN

It is to be noted that Figure 10 is obtained from the CalComp plotter directly. A complete listing of PL3D is given in the Appendix.

Figure (9)

References

- 1. N. Ghoniem and G. Kulcinski, TRANSWELL (Ver. I): A Computer Code for Metal Swelling and Creep Under Transient, Pulsed or Steady State Irradiation Conditions, Univ. of Wisconsin Fusion Design Memo, UWFDM-181 (1976).
- 2. K. Dwelle, SURGEN: Three-Dimensional Surface Generator, Graphics Routines Series, User Manual for UNIVAC 1110 Series Computer, (1976).
- 3. K. Dwelle and T. Wolfe, CONTR and CONTRA, Contour Graphing Routines, Graphics Routines Series, Reference Manual for the 1110, (1974).
- 4. Graphics Handbook, User Manual for UNIVAC 1100 Series Computers, (1976).

Appendix: Listing of PL3D

```
C
1
 2
         C
                             AA(15,100)
 3
                 REAL*8
                                XMINYXMAX
 4
                 REAL*4
                          TEMP, PROD, DOSE, TP, XNV, XNIL, BETA,
 5
                 REAL*8
                  TIME, TOUT, CASC, RODE, RODO, RVLO, RILO, RVO, GAS,
 ó
                  EVF, EIF, DVE, DIE, EVM, EIM, BU, GAMA, ZV, ZI, OMEGA,
 7
                  STACK, SHEAR, XNEW, SIGMA, RVGAS, GASO, RELI, PRGAS,
 8
                  CV,CI,FLUXV,FLUXI,XLAMI,XLAMV,EMIT
 9
                              AXES, ORIENT, XYGRID
                 REAL *4
10
         \mathbf{C}
11
                 REAL*4 A(100,50)
12
                 REAL*4 MASK(400,11)
1.3
                 EQUIVALENCE (AA, MASK)
14
                                                                  PHI=/y/ /y/THETA=/y/ /y
                                                     y' $/$'y'
                 INTEGER TITLE(10)/4*1
15
                        1$$1/
16
                             NROWS,LIMIT,PLANE/'NONE'/
                 INTEGER
17
                                XSTART/1/
                 INTEGER
18
                 INTEGER NLINE(2)/1,1/
19
                            Y3D(20)
                 REAL*4
20
                 REAL*4 PHI/45./ THETA/45./ XSIZE/11./ YSIZE/8.5/
21
                             ZMAX/'MAX'/
                  INTEGER
22
                                                       y /
                                                          $$
                            XLABEL(5)/4*'
23
                  INTEGER
                                                     y' $$'/
                         YLABEL(5)/ 4*'
24
                                                           , 1 $ $
                          ZLABEL(5)/
                                            4×1
25
                                                      191881/
                                           4×′
                          CTITLE(5)/
26
                              IVAR, IXWANT/1/, IYWANT/1/, NSKIP/4/
                                                                         TRMNL/5/
27
                  INTEGER
                 NAMELIST /DAT3D/ IXWANT, IYWANT, NSKIP, XSIZE, YSIZE, TRMNL, IVAR,
28
                            XSTART
29
         \mathbb{C}
30
         C
31
                  CALL INITPL(DUMMY,10.8)
32
                  CALL BUFSET (120)
33
         C
34
         \mathbb{C}
                  *****
35
         \mathbb{C}
36
         C
37
         \mathbb{C}
38
                  CONTINUE
          23
39
40
          C
          \mathbf{C}
41
                   READ IN THE DATA
42
          \mathbf{C}
                  CALL RDARR
43
          \mathbb{C}
14
                  READ IN THE LABELS
          C
45
                  CALL RDLBLS
46
47
          \mathbb{C}
                  MAX MIN , SET AXES ECT
48
          C
                  CALL MMXS
49
                  CONTINUE
          44
50
51
          C
 52
                  PRINT 1
                  FORMAT(' ','ENTER THE ANGLES PHI, THETA')
 53
          1.
                  READ(-, -, END=97) PHI, THETA
 54
          \mathbb{C}
 55
                         PLTTRM
                  CALL
 56
          \mathbb{C}
 57
                  PRINT 12
 58
                  FORMAT(' ',/,' ','PLOT OR NOT?')
 59
          12
                  READ 13, INST
 60
                  FORMAT(A6)
          13
 61
                  IF (INST .EQ. 'PLOT') CALL PLTPTR
 62
```

```
63
                 GO TO 44
 64
          C
 65
          \mathbf{C}
 66
          C
 67
          97
                 CONTINUE
 86
 69
         C
                 DO THE CONTOUR PLOT
 70
         C
                  CALL CNTTRM
 71
         \mathbb{C}
 72
                  PRINT 12
                  READ 13, INST
 73
         \mathbb{C}
 74
         \mathbb{C}
                  IF (INST .EQ. 'PLOT') CALL CNTFTR
 75
                 CALL CNTFTR
 76
 77
         C
                 START OVER
 78
                 CALL DEVSET(TRMNL)
 79
                 CALL ERASGT
 80
                 GO TO 23
 81
 82
         **********
 83
         C
 84
         C
 85
         C
 86
                            SUBROUTINE
                                        RDARR
         C
 87
         C
 88
                 FIND OUT WHICH VARIABLE TO PLOT AND READ IN THE DATA
 89
         C
 90
         1111
                 CONTINUE
 91
                 PRINT 1212
 92
          1212
                 FORMAT(1
                                    19/91
                                              READ IN NAMELIST DAT3D : '>/
 93
                                   1) IXWANT
                                                      X VARIABLE()/
 94
                                   2) IYWANT
                                                      Y VAR'y/
                                              .... ....
 95
                                   3)NSKIP
                                                    SKIP N ROWS'y/
 96
                                                    VARIABLE TO PLOT'y/
                                   4) IVAR
 97
                                                     DFL.T=
                                                                TKTRNX=5/y/
                                   5) TRMNL
 98
                                                   HOR LNGTH OF PLT IN INCHS',/
                                   6)XSIZE
 99
                                   7)YSIZE
                                                   VERT LNGTH DFLT
                                                                      11X8.5/y/
                                                       START THE X''S ON THIS COL')
100
                                   8)XSTART
101
                 READ (5,DAT3D,ERR=800,END=98)
         C
102
103
                 FRINT 1313
104
          1313
                 FORMAT('
                                       LOG OR NOT?(y//)
105
                 READ(5,1314)SC
106
          1314 FORMAT(A4)
                            THE ARRAY
107
         C
                 READ IN
108
         C
109
                 XMIN=1.E30
110
                 LIMIT=(100-XSTART)/NSKIP - 1
111
         \mathbf{C}
112
                 DO 100 NROWS=1,51
         \mathbb{C}
113
                 REALIZE NROWS
114
                 NR=NROWS
```

```
115
           \mathbb{C}
116
                   READ(4, ERR=803, END=99) AA
117
                   READ(4, ERR=803)
                                       TEMP, PROD, DOSE, TP, XNV, XNIL, BETA,
118
                    TIME, TOUT, CASC, RODE, RODO, RVLO, RILO, RVO, GAS,
119
                    EVF, EIF, DVE, DIE, EVM, EIM, BU, GAMA, ZV, ZI, OMEGA,
120
                    STACK, SHEAR, XNEW, SIGMA, RVGAS, GASO, RELI, PRGAS,
121
                    CV, CI, FLUXV, FLUXI, XLAMI, XLAMV, EMIT
122
           \mathbf{c}
123
           \mathbf{C}
124
                   IF(IYWANT.EQ.1)
                                        Y3D(NROWS)=TEMP
125
                   IF(IYWANT.EQ.2)Y3D(NROWS)=ALOG10(PROD)
126
                   IF(IYWANT.EQ.3)Y3D(NROWS)=EVM
127
                   IF(IYWANT.EQ.4)Y3D(NROWS)=EIM
128
                   IF(IYWANT.EQ.5)Y3D(NROWS)=EVF
129
                   IF(IYWANT.EQ.6)Y3D(NROWS)=GAMA/6.2415E11
130
                   IF(IYWANT.EQ.7)Y3D(NROWS)=SIGMA
131
                   IF(IYWANT, EQ.8)Y3D(NROWS) =GASO
132
                   IF(IYWANT.EQ.9)Y3D(NROWS)=ALOG10(PRGAS)
133
           \mathbf{C}
134
                   A(1,NROWS)=AA(IVAR,XSTART)
135
                   IF(SC.EQ.'LOG') A(1,NROWS)=ALOG10(AA(IVAR,XSTART))
136
          C
137
                   DO 200 JJ=1,LIMIT
138
                   JJJ=NSKIF*JJ + XSTART
139
                   JJI=JJ+1
140
                   A(JJI,NROWS)=AA(IVAR,JJJ)
141
                   IF(SC.EQ.'LOG')A(JJI,NROWS)=ALOG10(AA(IVAR,JJJ))
142
          200
                  CONTINUE
143
          \Gamma
144
          100
                  CONTINUE
145
          \mathbf{C}
146
          \mathbb{C}
                  ERROR CONDITION
147
          C
                   STOP GT SOR
148
          \mathbb{C}
149
          99
                  CONTINUE
150
                  NROWS=NR-1
151
          C
                  RESET LIMIT FOR USE IN SURGEN CALL
152
                  LIMIT=LIMIT+1
153
          \mathbf{C}
154
                  REWIND 4
155
          C
156
          C
157
                  RETURN
158
            803 PRINT 804
159
            804
                  `FORMAT(///,/
                                    ERROR IN THE (A) MATRIX.../)
160
                  GO TO 99
161
          98
                  STOP DONE
162
            800
                  PRINT
                          801
163
            801
                  FORMAT( /
                                     19/91
                                                   ERROR IN NAMELIST -- TRY AGAIN()/)
164
                  GO TO 1111
165
          \mathbb{C}
166
          \mathbf{C}
```

```
57
             \mathbb{C}
                      *****
  468
             C
  169
             \mathbf{C}
  170
                                        SUBROUTINE MMXS
  171
             \mathbb{C}
                     DEFINE THE MAX MIN AND SET THE AXES
 172
             C
 173
             \mathbf{C}
 174
             C
 175
                      YMIN=Y3D(1)
 176
                     YMAX=Y3D(NROWS)
 177
            \mathbf{c}
 178
                     XMAX=DOSE
 179
                     IF (IXWANT .EQ. 2) XMAX=TOUT
 180
                     XMIN=DOSE/100.*(XSTART-1)
 181
            C
 182
                     ZMIN=A(1,1)
 183
            C
 184
            \mathbf{C}
 185
                     AXES=AXVALS
 186

    ( XMIN, XMAX, 'AUTO', XLABEL,

 187
                       YMIN, YMAX, 'AUTO', YLABEL,
 188
                       'MIN',ZMAX,'AUTO',ZLABEL)
189
            C
190
            C
191
                    ORIENT=GRID3D
192
                        ('X≕ROWS',
                                        'LOWER',
                                                      'EQUAL',
                                                                     'EQUAL')
193
           \mathbf{C}
194
195
           C
                    CONTOUR VALUES
196
                    XYGRID=XYVALS(YMIN, YMAX, XMIN, XMAX)
197
                    RETURN
198
           \mathbb{C}
199
           \mathbf{C}
200
           C
                    *****
201
           \mathbf{C}
202
           C
203
           C
204
                                SUBROUTINE PLTPTR
205
           \mathbb{C}
206
           \mathbb{C}
                    PLOT THE PLOT ON THE CHOSEN DEVICE
207
                    CALL DEVSET('PLTTR')
208
                    XSZ=XSIZE
209
                    YSZ=YSIZE
210
                    GO TO 45
211
           C
212
                    ENTRY PLTTRM
213
                    CALL DEVSET(TRMNL)
214
                    XSZ=8.
215
                    YSZ=6.
216
           \mathbf{c}
```

```
C
217
          \mathbf{C}
218
                   CONTINUE
219
          45
          \mathbb{C}
220
                   ENCODE(TITLE(7),300) PHI
221
                   ENCODE(TITLE(9),300) THETA
222
                   FORMAT(F5.1)
           300
223
                   CALL SURGEN
224
                     (A,100,LIMIT,NROWS,
225
                       ORIENT, PHI, THETA,
226
                        XSZ,YSZ,'CROSS',
227
                        NLINE, PLANE, AXES,
228
                        MASK, TITLE)
229
           C
230
                   CALL PURGBF
231
           \mathbb{C}
232
                   RETURN
233
           C
 234
235
           \mathbb{C}
                    *****
           C
 236
           \mathbb{C}
 237
           C
 238
                                 SUBROUTINE RDLBLS
 239
           C
 240
                               THE LABELS
                    READ IN
           \mathbb{C}
 241
           C
 242
                    PRINT 1
                                           TYPE IN ALPHANUMERICS FOR ---')
 243
                    FORMAT(' '*/*' '*
            1.
 244
            \mathbb{C}
 245
                    PRINT 100
 246
                                NEW X&Y&3DTITLES?? - N FOR NO')
                    FORMAT(/
            100
 247
                    READ 200, INST
 248
                    FORMAT (A6)
            200
 249
 250
                    IF (INST .EQ. 'N') GO TO 10
 251
 252
 253
                     PRINT 2
  254
                    FORMAT( / / / TIME RELATED AXIS TITLE /)
            2
  255
                     CALL RDLB(XLABEL)
  256
            C
  257
                     PRINT 3
  258
                     FORMAT (' ', 'Y-AXIS')
            3
  259
                     CALL RDLB(YLABEL)
  260
             \mathbb{C}
  261
                     PRINT 5
  262
                     FORMAT (' ','3-D PLOT TITLE')
             5
  263
                     CALL RDLB(TITLE)
  264
             \mathbb{C}
  265
                     CONTINUE
             10
  266
                     PRINT 4
  267
                     FORMAT(/ /,/Z-AXIS/)
  268
             4
                     CALL RDLB(ZLABEL)
  269
  270
```

```
271
            \mathbb{C}
                     PRINT 6
 272
                     FORMAT (' ','CONTOUR PLOT TITLE')
            C6
 273
           C
                     CALL RDLB(CTITLE)
274
           C
275
                    DO 2000 INST=1,4
276
                    CTITLE(INST)=ZLABEL(INST)
277
           2000
                     CONTINUE
278
279
280
                    RETURN
281
           C
282
           C
                    *****
283
           C
284
           \mathbf{C}
285
                              SUBROUTINE RDLB(ILAB)
286
                    INTEGER ILAB(4)
287
           C
288
           \mathbb{C}
                    READ IN A LABEL
289
           C
290
                    READ 3, ILAB
291
           3
                    FORMAT(4A6)
292
           \mathbb{C}
293
                    RETURN
294
           \mathbf{C}
295
           \mathbf{c}
296
           \mathbb{C}
                    *****
297
           \mathbb{C}
298
                               SUBROUTINE CNTFTR
299
           \mathbf{C}
                    MAKE A CONTOUR PLOT
300
301
                    CALL DEVSET('PLTTR')
302
                    GO TO 45
303
304
                   ENTRY CNTTRM
305
                   CALL DEVSET(TRMNL)
306
           45
307
                   CONTINUE
308
309
                   CALL CONTRO
310
                   A,100,LIMIT,NROWS,
311
                     'LINEAR','STD','OFF',
312
                      XYGRID, 'NORMAL',
313
                      YLABEL, XLABEL, CTITLE,
314
                      'FULL','TRNSP')
315
316
                   CALL PURGBE
317
                   RETURN
318
319
320
           \mathbb{C}
                   *********
321
           \mathbb{C}
322
           \mathbb{C}
323
                   END
```