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Abstract

The effect of different choices of the number of experiments
(batches) and their size in Monte Carlo simulations of fusion
reactor blankets is studied. The error estimation method is
exposed, the standard blanket model is used and results are
compared to a Discrete Ordinates calculation. Since most of
the Monte Carlo results contain the Discrete Ordinates results
within two standard deviations, use of the 95% confidence
interval is recommended over the currently used 68% interval
for such applications. As the experiment sizes or their number
increase, the error range decreases with fluctuations, and
convergence occurs.Foralarge number of histories, the size of
the error becomes sensitive only to the total number of histories
used. A minimum size for the number of experiments is recommended
as twenty, with the size of each experiment chosen to sample the
source adequately. For the problem treated, a choice of ten for
the ratio of the number of histories per experiment to the number
of experiments was adequate. It is recommended that existing
Monte Carlo codes be modified so as to show fluctuations and
convergence of the results as larger numbers of histories are
used, to implement tests of normality for an experiment size of
twenty, and to derive normality tests for larger numbers of

experiments.
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1. Introduction and Background

The effect of choices of the number of experiments and their
sizes in Monte Carlo simulations of fusion reactor blankets is
studied. Reliable and safe designs of fission, fusion, and hybrid
nuclear reactor systems necessitate dependable tri-dimensional
simulations. Monte Carlo is the only available practical possibility
for that type of calculation. It can also include time dependence
and detailed cross section representation when needed. Under the
title "Design Error Blamed for Mutsu Debacle", the Journal "Nuclear

(1)

News" reports: "Radiation leakage on the NS Mutsu reached 10
million times its design value, because the designers overlooked
fast-neutron leakage over the primary shield, concludes a final
report by the committee that investigated the ship's radiation
shielding. The Committee report said neutron leakage at the
upper part of the containment vessel was through a gap between
the pressure gap and the upper primary shield ... gamma-rays
detected on the upper deck above the reactor were primarily
capture gamma rays produced when neutrons from the leakage

point were absorbed in the lead secondary shield. The main
primary shielding, however, operated satisfactorily." The
reactor has been dismantled. Tri-dimensional design methods
could have easily predicted the leakage and suggested corrective
actions, but unfortunately were not used.

Analog and albedo Monte Carlo are the major methods available

(2)
(3)

for the treatment of voids and penetrations in reactor systems.
The albedo data themselves are mostly generated by Monte Carlo.

Bi-dimensional Discrete Ordinates coupled to tri-dimensional Monte

Carlo has been used at the Oak Ridge National Laboratory.(4) At

(4)

Bettis Laboratory, Monte Carlo is used mostly for methods testing.
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At the Los Alamos and Livermore Laboratories, Monte Carlo
is used for problems with difficult geometries and those that
need detailed cross sections representation. Whitesides(4)
reports that "Monte Carlo is used to check the accuracy of the
Discrete Ordinates calculations. In criticality calculations,
for the same geometry and the same cross sections, Monte Carlo
does as well as any other method." Rief and Kschwendt(]4)
report in their work on criticality that ". . . the Monte Carlo
results generally agree with experimental values better than
the SN results."

In fusion reactor studies, Monte Carlo is finding a wide
field of application. In the USSR, Gur'ev et a].(g), report
using Monte Carlo to solve the transport equation for the
first neutron generation, then using the Pl-approximation for
the Tater generations. Their gamma-ray calculations were also
carried out by Monte Car]o.(g) For the Livermore fusion design

(10) (8)

work, Monte Carlo is being used for both mirror and laser

(11)

fusion systems calculations. Steiner used Monte Carlo as
a standard for assessing the effect of using different quadrature
orders in Discrete Ordinates calculations on tritium breeding

(12)

estimates for a standard blanket model. Chapin used Monte

Carlo to treat a hexagonal toroid blanket model. Abdou, Milton,

Jung and Ge]bard(]3)

used Monte Carlo in a cylindrical model
to study the effects of vacuum pumping and beam penetrations
in an experimental tokamak power reactor design. Ragheb and
Maynard(s’s) used Monte Carlo for three-dimensional cell calcula-

tions, and for three-dimensional parametric studies for a gas-
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cooled solid blanket design. Ragheb, Cheng and Conn(7) used
Monte Carlo in a laser reactor design with a Tithium oxide
blanket. Monte Carlo is expected to find wider application in
the future in both magnetic and inertial confinement system
designs: scoping studies, cell calculations, treatment of
penetrations for radio frequency heating, neutral beams, electron
beams, Taser beams and divertor slots. Also for shielding of
optical transport, pellet injection, cryogenic pellet fabrication
and injection, magnets and field shaping systems. These studies
include estimation of breeding, heat generation, induced
activation, radiation damage, and shielding requirements.
Particle transport methods are sensitive to calculational
parameter choices and a suitable choice of these parameters is
important for reliable and meaningful results. For Discrete
Ordinates calculations the final results will depend among
other things on the choice of the Legendre expansion order
of the anisotropic scattering, the angular quadrature order,
the number of mesh intervals, and the number of energy groups.
Table 1 shows how Discrete Ordinates calculations are sensitive
to the angular quadrature used. This table is taken from a
work by Steiner(]]) in which he studied that effect and compared
his results to a reference Monte Carlo calculation, since Monte
Carlo is free from the effect of angular quadrature found in
Discrete Ordinates methods. Monte Carlo results share the
sensitivity to the Legendre expansion order and the number of
energy groups with Discrete Ordinates, but then have their own

parameters which affect the final results. Ragheb, Gohar and



Table 1. Comparison of Monte Carlo and Discrete Ordinate Results

For Tritium Production Per Source Neutron.

The Standard Blanket Case.Jr
P,-S P,-S P,-S P,-S Monte Carlo
Region 3 74 38 3 712 3716
T7: Tritium Production From L17
4 0.0806 0.0780 0.0762 0.0763 0.0752+0.0009
6 0.2812 0.2818 0.2857 0.2858 0.2847+0.0023
7 0.1098 0.1149 0.1168 0.1165 0.1153+0.0017
8 0.0458 0.0467 0.0472 0.0471 0.0472+0.0011
10 0.0009 0.0008 0.0008 0.0008 0.0009+0.0001
T7 Totals 0.5183 0.5222 0.5267 0.5265 0.5233+0.0032
T6: Tritium Production From L16
7
4 0.0480 é 0.0476 0.0471 0.0472 0.0467+0.0004
6 0.2912 0.2895 0.2883 0.2884 0.2880+0.0013
7 0.2364 0.2371 0.2370 0.2369 0.2369+0.0010
8 0.2944 0.2957 0.2960 0.2959 0.2946+0.0020
10 0.0634 0.0639 0.0640 0.0640 0.0655+0.0012
T6 Totals 0.9334 0.9338 0.9324 0.9324 0.9317+0.0028
(T6+T7) Totals 1.45170 i 1.44558 1.4591 1.4589 1.4550 +0.004252

p. Steiner, "Analysis of a benchmark calculation of tritium breeding in a
fusion reactor blanket: The United States contribution," ORNL-TM-4177,
April, 1973.
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Maynard(7) studied the effect of particle histories termination
parameters on Monte Carlo estimates in Fusion Reactor Blanket
studies. They are concerned with scoping studies where a
relatively small number of particle histories are used. They
addressed themselves to Russian Roulette as a means of terminating
particle histories and not as an importance sampling method.

They recommended, for moderate numbers of histories, the use

of the highest possible survival probability and lowest Russian
Roulette triggering weight to avoid possible biases in the
results. In their study, they fixed the experiment size at

1000 histories and the total number of experiments at 20, and
pointed out that different choices of these two parameters may
have an effect on the calculational results. The purpose of

that work is to study the effect of the choices of these two
parameters on the tritium breeding estimates using Steiner's(]])
standard blanket model. The purpose of the investigation is also
to study the behavior of the solution as the number of treated
particles increases, and to recommend procedures for making
suitable choices of these parameters.

In the following, we deduce a generalized formula for the
estimation of the variance of Monte Carlo simulation estimates.
The formulae used in some Monte Carlo codes: MCN,(]S) MORSE,(16’]7)
and TARTNP,(18) are discussed and some errors in the documentation
of the latter two codes regarding these formulae, according to
our derivation, are pointed out, for the prospective user. OQur
physical model for the investigation: the standard fusion

blanket model of Steiner(]l) is described, as well as the Monte



Carlo estimator employed. Results of empirical calculations for
estimates of tritjum breeding as a function of the number of
experiments (also called by some authors: batches, statistical
aggregates, or samples) and as function of the number of
histories in each experiment are discussed. A set of empirical
recommendations for similar calculations, and for further work
and modification to the presently used Monte Carlo codes, are

proposed.

2. Formulae for Estimating the Variance of Monte Carlo Estimates

In a Monte Carlo neutron or gamma ray calculation, one
generates a number of random walks for n particles. Each particle
is assigned a weight w which changes along the history depending upon
the Markov chain random walk model, and the problem collision and transport
kernels. Sampling from a normalized source distribution, the
original weight is chosen as Wy = 1, and that value decreases
if the random walk subjects the particle to scattering or absorption
reactions, and increases for particle generation reactions such
as (n, 2n) and fission reactions. Particle histories are terminated
when the weight decreases below a value assigned by the user,
by a Russian Roulette procedure. Estimates of quantities of
interest may be obtained by summing the weights in specified
regions of interest or at certain points, and using different
estimators as weighting functions for these summations.
Assume over a region of interest, a certain estimator
yields contribution Y; for the i-th random walk. The Monte Carlo
code MCN(]5) uses the following method. The sample mean is
defined as: n
y=11 vq (1)
izl



and the sample variance of y is taken as:

n LT 2
5%(y) = nJ-TLZ (yi-Y)Z] - i ["‘n - yz]

- o[- 7] (2)

To estimate the error of the sample mean, use is made of:

2280 .1 [Z 7]

(15)

Because n is usually large, the code MCN uses the following formula for the

standard deviation of the sample mean:

|2 - Ve
n

which is then interpreted to mean that there is a 68.3% chance that the error
is no Targer than the value listed, by use of the Central Limit Theorem.
According to Burrows and MacMi11an,(]9) this method suffers from the
disadvantage that: lacking knowledge of the probability distribution of the
yi's, one has no basis for setting confidence 1imits on u; the true answer,
from oy If, however, one divides the whole sample of n particles into N

experiments, (also called by some authors: batches, statistical aggregates,

groups, or simply samples) such that:

where: n, is the number of histories treated in the i-th experiment;
(these need not be equal)
by the Central Limit Theorem, the distribution of the estimates over the N

experiments is asympotically normal for large N, and one can compute confidence

limits for qu.



Let us define: Xij as the score by a given estimator over the i-th
experiment at its j-th history.

. Xij
and: Xij Total weight of source particles (5)

[f we are sampling a normalized source, each source particle will be
assigned a unit weight, and the total weight of source particles will just

be equal to the total number of treated histories; thus, in that case:

X..
ij n

N
=_ 1 (6)
X == ) X
N jop 1
%
where: X =-% 7 Xij (7)
i J:]

Similarly to equation (2) but noting that we are considering the variance

over the N experiments, rather than over the total number of histories n,

N 2 ? ‘
2 () 2 ] _2.] 2 _1( ]
=g 1 -9 "!\TL T N(1.=]x1'>:|

i=1

ne~S—12

and assuming N is sufficiently large to yield a normal (gaussian) distribution,

an estimate of the sample variance can be obtained as:
N N
: 1 2 1 2
g (X N a (X) _N-][ 151 X_i N 121 xi) ] (8)

From the laws of large numbers, the variance of the mean js:

~2
2 _ g (x) .
OS'( = N thus:

-]

1/ (9)
oLl -4 ] | |



n. 9
] Z1X
X, == ) X..
Ton; j=1 13
where: X4
Xij = —ﬁJ3 for unit weight source particles
N
n is the total number of treated histories n = ) ny
i=1

ny is the number of histories in the i-th experiment;

N is the number of experiments

xij is the score at the ith experiment at its j-th history.
Our derived equation 9 should be used when a simulation is divided into a number
of experiments or batches for error estimation purposes. Since many Monte
Carlo codes have different working formulae for that type of calculation, let
us try to derive them using our equation 9 to check their validity and establish
their limitations. For the special case in which all the experiments sizes

are equal: ny = constant, we have from equation 4:

N
n=] o=, (10)

One can then rewrite equation 9 as (using equation 10):

2 4
_ N 2 n". 2
2 _ 1 i 1 i
q)’(“N—][—n11Z]X1_ 2""‘(2") ]
n;
| N (N 2
_ 1 1 1 )
- 27 [+ 1 AL ] an

which is the working formula for the MORSE {17,18) Monte Carlo code (page 201

of Reference 17). Since this formula derives from our formula 9 for the special
case n; = constant, the statement in the MORSE code documentation: " ......
calculates variances and fractional standard deviations (f.s.d.) for batch

statistics allowing for unequally weighted batches" is in error. In our numerical

calculations we used ny = constant, in which case the formula used in the MORSE
code is still valid. Our formula 9 is the one valid for unequally sized experiments,

but equally weighted (by %0 for the estimation of the mean X.



Suppose we defined:

X

so that we have: 1 "y , 1 1
X,=__z X, ="'_ZX"=”X'~

B i J=1

which means that our scores are not divided by the total weight of source

(12)

particles. We may want to postpone dividing by that total weight to the end
of the calculation to save some computer operations, or if we intend to decide
the total number of histories n sequentially as the calculation proceeds, and
not at its starting point. In that case using equation 12, the estimate of

the mean becomes:

-

i

N
1 -
" Wn 1Z=] ot (&)

and the variance of the mean becomes, by using equation (9):
2 -

. X 2
% = Ty [gﬂ (+) -"T]r@:] 1) ]

x1

1/2
N 2 N 2
. 1 {0 . 1 : ’
Thus: (I)—( = ;‘—3 N(N_]) %-‘:.l (Xi ) "N (.IZ:] Xi) ] 2 (9)

which corrects the working equation of the code TARTNP (18), page 15,reported in

jts documentation as:

N N
_ 1, ] N2 1 ~\2 | 172
% " Tn " N(N-T) [1Z=1<X1') 'N(1Z=] Xi) ]

Our derivation shows that what is defined as the standard deviation of the mean

for a single history, on,is nothing but the standard deviation of the mean o
X

itself. The additional factor 1 Jjust depends on how the scores are gathered,
n

j.e. on how we define our Xijls’

The use of equation 9 allows the assignment of confidence intervals based
on the assumption of normality. Burrows and Macmillan (19) described a test of
normality to be applied to the experimental averages of X; OF Xi, introduced
by Shapiro and Wilks(]g) which appiied only for the case of N=20 experiments.
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We use the multiple experiments approach in our investigation and study

the effect of different numbers of experiments N, and the experiments size n,

on Monte Carlo estimates of tritjum breeding in fusion reactor blanket studies.

3. Physical Model for the Investigation.

Our aim is to study the effects of different choices of N, the number
of experiments, and of nys the sizes of the experiments on Monte Carlo estimates
of means and variances in fusjon reactor blanket studies. In the Titerature,
we were unable to find theoretical recommendatijons on how to choose N and n,
for a total number of histories n in equation 9, for reljable and meaningful
results; so we resorted to an empirical approach. The "Standard Blanket model®
of Steiner(]]) is adopted as the physical model for the investigation. This
is shown in Figure 1. We compare our Monte Carlo results to a Discrete
Ordinates calculation using a S4 quadrature.

The geometry is a one-dimensional cylindrical geometry. The fusion-
neutron source was taken as an isotropic source of 14-Mey neutrons uniformly
distributed in the plasma region of the blanket model. In the Monte Carlo
simulation the infinite cylinder was represented by a cylinder of 2000 cm
Tength with top and bottom as completely reflecting boundaries. The first
wall consists of three regions, the first and third being of piobjum structure,
and the second one consisting of a mixture of niobjum structure and 1ithjum
coolant. This is followed by a mixture of Nb and Li representing the blanket
region, which in turn is subdiyided into three subregions. The blanket
is followed by a carbon reflector, then by a scrapeoff region of homogenized
Nb structure and Li coolant. No magnet shield is included.

The collision density fluence estimator for reaction Z averaged over

geometry region v is used as:

NV-\

;
W,
¢ 20 (L i
z 6 zpy(E j=1 Reactions (13)

F .
v - n Source particle
=1 ZTV(Ei)
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Table 2 Nuclides Number Densities for the Material

Mixtures of the Standard Blanket Model

Medium Region Constituents Number Density
1000 1 Isotropic neutron -—-
source
1000 2 Inner Vacuum -
1 3, 5 Niobium 0.055560 atoms/b. cm
2 4,6,7,8,10( Niobium 0.003334 atoms/b. cm
Lithium-6 0.003234 atoms/b. cm
Lithium-7 0.040380 atoms/b. cm
3 9 Carbon 0.080040 atoms/b. cm
0 11 Outer VYacuum -—-
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where: W, : weight of the j-th particle of energy Ei scattering in region v.
Ny .: number of particles of energy Ei scattering in region v,
n : is the total weight of source particle = total number of histories,
for unit weight source particles.
G : is the number of treated groups.
ZTV(ET) : total macroscopic cross section for groups Ei in regijon v.
) ; (Ei): is the macroscopic reaction cross section for reaction z in
v

region v for groups E..
Note that the estimatgr of equation 1% corresponds to the x;s in equation 9.
Version IV of ENDF/B 0 was used as the reference for cross sections data.

These were processed into a broad-group energy structure consisting of 46 neutron
groups and one thermal group.

The 46 group reaction rates of interest are the tritium breeding reactions:

Li-6(n,a) T
Li-7(nyn7a) T
both for the "hot" and "cold" cases, and the{n,2n) reactions:
Nb (n,2n)
Li-6(n,2n)
Li-7(n,2n)
The nuclides number densities for the different materials are shown in Table 2.

4, Results of Calculations

(16,17,6)

The MORSE code package obtainable from the Radijation Shielding

Information Center was used in the Monte Carlo (M.C.) part of the investigation,

while the anzsy (21)

code was used for the Discrete Ordinates (D.0.) part with
34 quadrature. A P3 Legendre expansion for the angular distributions of the
cross sections was used in both types of calculations. Even though different

quadratures will give different Discrete Ordinates results (See Table 1), we
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assume here our obtained D.0. result to be the truth and compare to it the
M.C. results.

To eliminate the possible bias which can be obtained by the application
of Russian Roulette as a particle termination process for moderate number
of histories, (pointed out to by Ragheb, Gohar and Maynard (22) in a previous

"]0, and as a

work) we chose as a Russian Roulette triggering weight 10

survival probability: 90% in all energy groups and all regions of geometry.
In the first part of the investigation we study the effect of increas-

ing the number of experiments (batches) keeping the size of each experiment

constant and equal to 50 histories. Cases A, B, C, D, E correspond to

5, 10, 20, 40, and 80 experiments each. The results per region are displayed

in Table 3 for the total tritium from L1 6 (T6) and L 17 (T7) production

per source neutron for the hot and cold cases. Table 4 shows the production

from Lj 6 alone, and Table 5 from Lij 7. Results are compared to the D.O.

results in each region. It can be noticed that most D.0. results for the

totals lie within two standard deviations.of the M.C. results even for a small

number of histories, and may even Tie within one standard deyiation; rarely do

they lie within three standard deviations.
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Figure 2 displays the totals over the whole blanket for
16, T7 and (T6 + T7) for different numbers of experiments.
Three standard deviations for the estimates are shown. Even
though the choice of 50 histories per experiment would not
have sampled the source adequately and results in an under-
estimate at small number of histories (250 histories), one
can notice that the D.0 results have been contained within
two standard deviations of the Monte Carlo estimates. With
the increase in the number of experiments to 40 and 80, the
M.C. result approaches the D.0. result and the error margin
narrows significantly.

In the second part of the investigation, we fixed the
number of experiments at twenty and treated four cases in
which the size of each experiment was set at 25, 50, 100
and 200 for cases F, G, H,and I, respectively. Tables 6, 7 and
8 compare the results obtained per region for the total (T6 + T7),
T6, and T7 respectively. As in the last case, most M.C. results
contain the D.0. result within 2 standard deviations.

Figure 3 displays the results for the total tritium
production summed over all regions for different numbers of
experiments sizes. The M.C. results here too contain the D.O.
result within two standard deviations, but show a fluctuation
around it, then converge when a large number of histories is
used. This type of fluctuations and convergence is typical
of Monte Carlo calculations. Figure 4 shows the same type of
behavior for an analog Monte Carlo calculation of the integral:
9 =0} e*dx. The curves of figures 2 and 3 show a similar

behavior in that both converge to the D.0. result at large

numbers of histories; however, whenever fluctuations are
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observed in figure 3, a monotonic approach to the D.0. result
from below is observed in figure 2. For large numbers of
histories (e.g.4000) the final result seems to be dependent on
the total number of histories and not much on the experiment
size or the number of experiments. For 4000 histories, we
obtained a result of 1.496316 + 0.010740 when we used 20
experiments with 200 histories each (Case I),and 1.475316 +
0.071630 (Case E) when 80 experiments were used with 50
histories each: the standard deviation is of the same order.
This is to be compared with the D.0. result of 1.4884
(dependent itself on the angular quadrature). The first M.C.
result contains the D.0. result within one standard deviation,
while the second contains it within two standard deviations.
Table 9 displays the results for the estimates of the
(n,2n) reactions contributions from different reactions in
different regions for cases F, G, H and I, and compares the
M.C. and D.0. results. The total M.C. estimates contain the
D.0. result within one standard deviation. Table 10 shows the
Monte Carlo statistics for the different cases with the total
particle escape probability defined as the total weight of
escaping particles per source neutron. For the same number of
histories (e.g. 4000) a large number of experiments results in

a slightly higher computer cost.
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TABLE 3

The Total Tritium Production Per Source Neutron

for Different Numbers of Experiments

COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

Case A: Number of Experiments: 5
Case B: Number of Experiments: 10 Experiment Size = 50
Case C: Number of Experiments: 20 Survival Probability = 90%
Case D: Number of Experiments: 40 Russian Roulette Triggering
Case E: Number of Experiments: 80 Weight = 10-1
. T6 + T7 16 + 77
Region Case (Cold) (Hot)
4 A 0.112860 + 0.007047 0.112860 + 0.007047
B 0.117330 + 0.005996 0.117330 + 0.005996
C 0.120880 + 0.004661 0.120880 + 0.004661
D 0.117090 + 0.003184 0.117090 + 0.003184
E 0.120470 + 0.002709 0.120470 + 0.002709
D.0. 0.1276 0.1276
6 A 0.569510 + 0.015337 0.569510 + 0.015337
B 0.557760 + 0.014597 0.557760 + 0.014597
C 0.558540 + 0.011249 0.558540 + 0.011249
D 0.558310 + 0.008955 0.558310 + 0.008955
E 0.559210 + 0.006067 0.559210 + 0.006067
D.0. 0.5795 0.5795
7 A 0.343230 + 0.022307 0.343230 + 0.022307
B 0.340400 + 0.015689 0.340400 + 0.015689
C 0.354310 + 0.012957 0.354310 + 0.012957
D 0.354180 + 0.007958 0.354180 + 0.007958
E 0.351960 + 0.004906 0.351960 + 0.004906
D.0. 0.3460 0.3460
8 A 0.324650 + 0.014564 0.351500 + 0.022844
B 0.320540 + 0.011575 0.348700 + 0.015458
C 0.334580 + 0.009164 0.362230 + 0.011323
D 0.329820 + 0.007497 0.350980 + 0.008936
E 0.338450 + 0.006011 0.360510 + 0.006742
D.0. 0.3304 0.370
10 A 0.045036 + 0.010954 0.059111 = 0.01299%
B 0.053050 + 0.010916 0.072949 + 0.011009
C 0.058457 + 0.006374 0.080075 + 0.007962
D 0.060249 + 0.004691 0.083204 + 0.006594
E 0.060159 + 0.003362 0.083166 + 0.004647
D.0. 0.0613 0.0831
TOTALS A 1.395286 + 0.033385 (2 s.d.) 1.436211 + 0.038382 (2 s.d.)
B 1.389080 + 0.025156 (3 s.d.) 1.437139 + 0.029246 (2 s.d.)
C 1.426768 + 0.020994 (1 s.d.) 1.476035 + 0.022533 (1 s.d.)
D 1.419649 + 0.015227 (2 s.d.) 1.463764 + 0.016643 (2 s.d.)
E 1.430249 , 0.010754 (2 s.d.) 1.475316 + 0.011630 (2 s.d.)
D.0. 1.4448 1.4884
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TABLE 4

~ COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

The 6Li(n,at) Reaction for Different Number of Experiments

Case A: Number of Experiments: 5
Case B: Number of Experiments: 10 Experiment Size = 50
Case C: Number of Experiments: 20 Survival Probability = 90%
Case D: Number of Experiments: 40 Russian Roulette Triggering
Case E: Number of Experiments: 80 Weight = 10-10
Region Case T6(Hot) T6(Co1d)
4 A 0.050518 + 0.004889 0.050518 + 0.004889
B 0.053389 + 0.003116 0.053389 + 0.003116
C 0.049744 + 0.002288 0.049744 + 0.002288
D 0.047268 + 0.001613 0.047268 = 0.001613
E 0.047743 + 0.001205 0.047743 + 0.001205
D.0. 0.0480 0.0480
6 A 0.297170 + 0.012844 0.297179 + 0.012844
B 0.288240 + 0.010469 0.288240 + 0.010469
C 0.285470 + 0.007162 0.285470 + 0.007162
D 0.286700 + 0.004880 0.286700 + 0.004880
E 0.286370 + 0.003645 0.286370 + 0.003645
D.0. 0.2921 0.2921
7 A 0.238550 + 0.003273 0.238550 + 0.003273
B 0.229700 + 0.004920 0.229700 + 0.004920
C 0.233650 + 0.006049 0.233650 + 0.006049
D 0.233790 + 0.004568 0.233790 + 0.004568
E 0.230550 + 0.003009 0.230550 + 0.003009
D.0. 0.2351 0.2351
8 A 0.288780 + 0.023873 0.261940 + 0.017498
B 0.301810 + 0.015613 0.273650 + 0.011729
C 0.310050 + 0.010849 0.282390 + 0.008734
D 0.399810 + 0.008116 0.278650 + 0.006520
E 0.308120 + 0.005676 0.286070 + 0.004806
D.0. 0.3079 0.2861
10 A 0.057261 + 0.013767 0.043185 + 0.011615
B 0.071739 = 0.011130 0.051839 + 0.008030
C 0.079330 + 0.009040 0.057712 + 0.006418
D 0.082426 + 0.006630 0.059471 + 0.004727
E 0.082431 + 0.004624 0.059424 + 0.003335
D.0. 0.0823 0.0605
TOTALS A 0.932279 + 0.030968 (2 s.d.) 0.891363 + 0.025311 (2 s.d.)
B 0.944878 + 0.022609 (1 s.d.) 0.896818 + 0.018589 (2 s.d.)
C 0.958244 + 0.017104 (1 s.d.) 0.908966 + 0.014512 (1 s.d.)
D 0.949994 + 0.012534 EZ s.d.; 0.905879 + 0.010590 %2 s.d.g
E 0.955214 + 0.008797 (2 s.d.) 0.910157 + 0.007617 (2 s.d.
D.0. 0.9654 0.9218
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COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

The L17 (n,n”at) Reaction for Different Number of Experiments

Case A: Number of Experiments: 5
Case B: Number of Experiments: 10 Experiment Size = 50
Case C: Number of Experiments: 20 Survival Probability = 90%
Case D: Number of Experiments: 40 Russian Roulette Triggering
Case E: Number of Experiments: 80 Weight = 10-10
Region Case T7(Cold)
4 A 0.062340 + 0.008633
B 0.063940 + 0.005694
C 0.071136 + 0.004332
D 0.069823 + 0.002935
E 0.072727 + 0.002436
D.0. 0.0796
6 A 0.272330 + 0.012770
B 0.269520 + 0.009466
C 0.273070 + 0.007507
D 0.271610 + 0.006217
E 0.272840 + 0.004641
D.0. 0.2874
7 A 0.104680 + 0.021768
B 0.110700 + 0.014669
C 0.120650 + 0.009914
D 0.120330 + 0.006202
E 0.127400 + 0.003942
D.0. 0.1109
8 A 0.062715 + 0.003986
B 0.046890 + 0.005934
C 0.052184 + 0.004324
D 0.051169 + 0.003826
E 0.052384 + 0.002959
D.0. 0.0443
10 A 0.001850 + 0.000950
B 0.001210 + 0.000562
C 0.000745 + 0.000324
D 0.000778 + 0.000310
E 0.000735 + 0.000207
D.0. 0.0008
Totals A 0.503915 + 0.026986 (1 s.d.)
B 0.492260 + 0.019306 (2 s.d.)
C 0.517785 + 0.013864 (1 s.d.)
D 0.513770 + 0.010023 (1 s.d.)
E 0.520086 + 0.007195 (1 s.d.)
D.0. 0.5230
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TABLE 6

COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

The Total Tritium Production Per Source Neutron

for Different

Numbers of Experiment Sizes

Case F: Experiment Size = 25
Case G: Experiment Size = 50 Number of Experiments: 20
Case H: Experiment Size = 100 Survival Probability: 20%
Case I: Experiment Size = 200 Russian Roulette Triggering
Weight = 10-10
Region Case 16 + T7 T6 + T7
(Cold) (Hot)
4 F 0.105960 + 0.007630 0.105960 + 0.007630
G 0.120880 + 0.004661 0.120880 + 0.004661
H 0.120280 + 0.004555 0.120280 + 0.004555
I 0.125000 + 0.002648 0.125000 + 0.002648
D.0. 0.1276 0.1276
6 F 0.572210 + 0.012621 0.572210 + 0.019621
G 0.558540 + 0.011249 0.558540 + 0.011249
H 0.581030 + 0.009279 0.581030 + 0.009279
I 0.585230 + 0.005864 0.585230 + 0.005864
D.0. 0.5795 0.5795
7 F 0.372400 + 0.018884 0.372400 + 0.018884
G 0.354310 + 0.012957 0.354310 + 0.012957
H 0.360890 + 0.005536 0.360890 + 0.005536
I 0.348360 + 0.004156 0.348360 + 0.004156
D. 0. 0.3460 0.3460
8 F 0.324370 + 0.018551 0.347090 + 0.021249
G 0.334580 + 0.009164 0.362230 + 0.011323
H 0.345680 + 0.008262 0.369070 + 0.008710
I 0.333840 + 0.005435 0.353370 + 0.005742
D.0. 0.3304 0.3304
10 F 0.053720 + 0.008462 0.073257 + 0.012016
G 0.058457 + 0.006374 0.080075 + 0.007962
H 0.068933 + 0.004849 0.095771 + 0.007097
1 0.061759 + 0.003254 0.084356 + 0.004868
D. 0. 0.0613 0.0831
TOTALS F 1.428660 * 0.034865 (1 s.d.)1.470917 = 0.034359 (1 s.d.)
G 1.426768 + 0.020994 (1 s.d.)1.476035 * 0.022533 (1 s.d.)
H 1.476813 + 0.016142 (2 s.d.)1.527041 £ 0.016240 (3 s.d.)
I 1.454189 + 0.009940 (1 s.d.)1.496316 * 0.010740 (1 s.d.)
D.0. 1.4448 1.4884
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TABLE

7

COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

The 6Li(n,ggt) Reaction

for Different Experiment Sizes

Case F: Experiment Size = 25
Case G: Experiment Size = 50 Number of Experiments: 20
Case H: Experiment Size = 100 Survival Probability:  90%
Case I: Experiment Size = 200 Russian Roulette Triggering
Weight = 10-10
Region Case T6 (Hot) T6 (Cold)
4 F 0.047129 + 0.003199 0.047129 + 0.003199
G 0.049744 + 0.002288 0.049744 + 0.002288
H 0.046730 + 0.001483 0.046730 + 0.001483
I 0.048081 + 0.000931 0.048081 + 0.000931
D.O0. 0.0480 0.0480
6 F 0.293040 + 0.010025 0.293040 + 0.010025
G 0.285470 + 0.007162 0.285470 + 0.007162
H 0.285810 + 0.004236 0.285810 + 0.004236
1 0.293920 + 0.002648 0.293920 + 0.002648
D. 0. 0.2921 0.2921
7 F 0.244530 + 0.008365 0.244530 + 0.008365
G 0.233650 + 0.006049 0.233650 + 0.006049
H 0.233270 + 0.003457 0.233270 + 0.003457
I 0.231760 + 0.002274 0.231760 + 0.002274
D. 0. 0.2351 0.2351
8 F 0.303380 + 0.012859 0.280660 + 0.016823
G 0.310050 + 0.0710849 0.282390 + 0.008734
H 0.317530 + 0.007198 0.294130 + 0.006594
I 0.304300 + 0.004090 0.284770 + 0.003611
D.O0. 0.3079 0.3079
10 F 0.071602 + 0.011738 0.052065 + 0.008167
G 0.079330 + 0.009040 0.057712 + 0.006418
H 0.094975 + 0.007179 0.068137 + 0.004939
I 0.083691 + 0.004968 0.061094 + 0.003350
D.O0. 0.0823 0.0605
TOTALS F 0.959681 + 0.026700 (1 s.d.)0.917424 + 0.023031 (1 s.d.)
G 0.958244 + 0.017104 (1 s.d.)0.908966 + 0.014512 (1 s.d.)
H 0.978315 + 0.011638 (2 s.d.)0.928077 + 0.009998 (1 s.d.)
I 0.961752 + 0.007380 (1 s.d.)0.919625 + 0.006100 (1 s.d.)
D.O0. 0.9654 0.9218
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TABLE 8

COMPARISON OF MONTE CARLO AND DISCRETE ORDINATES CALCULATIONS BY REGION

The 7Li (n,n “at) Reaction for Different Experiment Sizes

Case F: Experiment Size = 25
Case G: Experiment Size = 50 Number of Experiments: 20
Case H: Experiment Size = 100 Survival Probability: 90%
Case I: Experiment Size = 200 Russian Roulette Triggering
Weight = 10-10
Region Case T7 (Cold)
4 F 0.058826 + 0.006267
¢ 0.0771136 + 0.004332
H 0.075610 + 0.003808
I 0.076916 + 0.002377
D.0. 0.0796
6 F 0.279170 + 0.016918
G 0.273070 + 0.007507
H 0.295220 + 0.007921
I 0.291300 + 0.004932
D. 0. 0.2874
7 F 0.127870 + 0.015199
G 0.120650 + 0.009914
H 0.127620 + 0.005001
1 0.116520 + 0.003310
D.0. 0.1109
8 F 0.043706 + 0.007173
G 0.052184 + 0.004324
H 0.051546 + 0.003717
I 0.049070 + 0.002713
D.0. 0.0443
10 F 0.001655 + 0.001165
G 0.000745 + 0.000324
H 0.000796 + 0.000344
I 0.000665 + 0.000231
D.O0. 0.0008
TOTALS F 0.511227 + 0.024684 (1 s.d.)
G 0.517785 + 0.013864 (1 s.d.)
H 0.550792 + 0.010779 (3 s.d.)
I 0.534541 + 0.006953 (2 s.d.)
D. 0. 0.5230
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5. Conclusions and Recommendations

In the majority of cases the M.C. results contain the D.O.
results within two standard deviations, even for small numbers of
histories. Our empirical results show that convergence to the
mean occurs, and the variance decreases; as the number of
experiments is increased, keeping their size constant, and as
the size of the experiments is increased, keeping their number
constant. For large numbers of histories, the Monte Carlo
estimates in the treated category of problems depends mostly
upon the total number of histories used, and in that case the
size of the estimated standard deviations becomes insensitive
to the number of experiments and their sizes. Comparing the
Monte Carlo results to an 84 Discrete Ordinates calculation for
the same quantities, it is recommended that one use the 95%
confidence interval rather than the 68% interval currently used,
even though many of the M.C. results contain the D.0. results
within one standard deviation. This is particularly recommended,
when small numbers of particles are used, such as in scoping
studies.

It is felt that a minimum of 20 experiments is necessary
for experiment (batch) statistics, to provide a reasonable
assurance of the normality of the means. Let n be the total
number of histories the user is planning or able to use, N
the number of experiments, and n; is the experiment size, kept
constant, such that n = N,n,, We recommend the following

1

procedure: N is set at 20 and n; determined according to

the choice of n, for preliminary calculations. The user must

then check that his n, choice allows sampling of his source
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adequately, and if he has available computer time, increase it
until e.q. ﬁl-: 10; since such a ratio has given us adequate

results (Case I). If more available computer time is available,

ni

the user can then keep the proportion N

> 10 constant by
increasing both n, and N.

Related to the observed fluctuation around the mean and
the convergence, it is recommended that existing Monte Carlo codes
be modified so that output is obtained at regular intervals
during the calculation. Then convergence to the mean as N
increases can be shown for the Monte Carlo results. There is
also a need for 1mp1emeﬁting the available test of normality
for N = 20 in existing codes (e.g. MPRSE), and develop tests which
apply for N>20. For distributions which are approximately normal,
it may be advantageous to reconstruct the distribution from jts

moments, and using the result, construct the appropriate confidence

interval.
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