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ABSTRACT

Research on the development of numerical techniques to simulate the
space-time evolution of large tokamak plasmas is reported. A non-uniform
spatial mesh technique is employed to allow more accurate calculations
in the boundary of reactor size plasmas. A box integration method is
used to maintain the accuracy of central differencing on the non-uniform
spatial mesh and to preserve both the particle and energy flux. A
variable implicit technique is used for the time expansion. The time-
centered (Crank-Nicholson) technique used in most other models generally
offers greater accuracy but can lead to severe limitations on the time
step. Somewhat more implicit treatments can remove the numerical
Timitations on the timestep without seriously affecting accuracy. The
physical time scales, which can change by several orders of magnitude
from startup to equilibrium, can then be used to continually adjust the
timestep throughout a calculation. Sample calculations are presented
for a near-term tokamak engineering test reactor (TETR) and a conceptual

tokamak power reactor, UWMAK-III.



I. Introduction

A tokamak is an axially symmetric toroidal device in which the
hot plasma is contained by a combination of a strong toroidal magnetic
field and a weaker poloidal magnetic field (Figure 1). The poloidal
field is produced by driving a toroidal current in the plasma which
écts as the secondary of a transformer. The resulting magnetic field
lines have a he]fca] shape and generate a set of nested magnetic flux
surfaces. Particle and energy flow on a magnetic surface is very rapid
since the transport processes are not impeded by the magnetic field.
Transport from one magnetic surface to another is responsible for removing
particles and energy from the system on a much larger time scale.

From magnetohydrodynamic stability analyses, tokamaks have generally
been considered to be limited to Tow values of B (< 5%) where B is the
ratio of the plasma pressure to the magnetic field pressure. The flux
surfaces are nearly concentric with this approximation. Higher values of
B may be allowed if the plasma is elongated vertically or if broader
toroidal current profiles can be frozen into the plasma during startup.
One dimensional plasma transport codes treat the plasma as a cylinder
uniform in the azimuthal and poloidal coordinates.(]) The spatial
variation is in the radial coordinate measured from the minor axis of the
plasma. Vertically elongated plasmas are generally treated as equivalent
circles with geometric effects incorporated into the cross-field
transport coefficients.

The basic particle and energy transport equations are found by
taking moments of the kinetic equation. When a Fokker-Planck collision

operator is used with the toroidal geometry of a tokamak, a "neoclassical”



model for plasma transport is found.(z) Averages over a magnetic

flux surface yield a set of fluid equations with one dimensional
spatial variation. The fluids are electrons, ions, and other ionic
species with Maxwellian distributions in velocity space  giving
characteristic temperatures for each fluid. In addition, Maxwell's
equations can be}added to relate the toroidal current profile and the
poloidal magnetiﬁ field to the plasma electrical conductivity. This set
of equations is more important for a plasma which depends primarily on
ohmic heating than a large ignited neutral beam driven device. A fixed
toroidal current profile is used here since it does not greatly affect
the analysis.

Microinstabilities and the resulting turbulence are expected to
dominate over collisional processes in governing the transport in
tokamaks.(3) For these processes, a certain amount of empirical modeling
is needed for the energy and particle transport coefficients because of
their large uncertainty. The one dimensional particle and energy fluid

transport equations are of the general form:
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where:
Ngs Ny = electron and jon densities
Te’ Ti = electron and ion temperatures
Uae’ Uai = fraction of alpha energy to electrons and ions
Qei = electron-ion rethermalization term
Prad = bremsstrahlung, line, recombination and synchrotron
radiation losses
POhm = ohmic heating
P?NJ’ P}NJ = electron and ion heating sources from neutral beam
injection and/or rf
ch = charge exchange energy loss
S _(r,t) = particle source due to neutral beam injection,pellets
P and ionization of neutrals
Fe’ Iy = electron and ion particle fluxes

Qe’ Qi = electron and ion energy conduction terms
The particle and heat flow terms can be expressed in terms of a

general set of heat and particle transport coefficients as:
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The full set of transport coefficients (D,x) can be incorporated for
"neoclassical" mode]ing.(z) Transport coefficients for microinstabilities
are less well known and a "diagonal" model for particle and energy transport
is typically used. Transport coefficients for the trapped particle micro-
instabilities are used in the calculations in this paper with thé diagonal

model:



(kT ) (7)

The coefficients Di’ Xe and X; are basica11y the same as those given
by Rutherford and DUchs(4) and consist of a summation over several
transport processes which are functions of electron and ion temperatures
‘and densities and the temperature and density gradients. Additional
particle and enefgy balance equations can be added to the above set to
consider thermal components of the alpha particles or other impurities.
The electron density and particle flux are then found from the ionic terms

by requiring charge neutrality:

n. = % Z.n., all ionic speci
o ) ZJ j C species

r =1 17.7T, all ionic species

For a more detailed discussion of the transport equations and the
methods used by various transport codes, see the paper by J. Hogan.(])
The energy source terms from externally injected neutral beams and

fusion alphas (3.52 MeV) are found by solving the problem of a high energy
ion thermalizing on a background fluid of ions and electrons. Instantaneous
thermalization is generally assumed if the thermalization time is short
compared to the characteristic time variation of the densities and
temperatures. Finite thermalization times for high energy alphas are
included in our model as an option to investigate the effects on dynamic
behavior but the numerical results presented here do not incorporate

that option. The thermal components of the alpha particles are also

neglected here to simplify the discussion of the basic numerical treatments.



A fine radial mesh is generally required in the boundary region
for two potentially very important problems: (1) sharp density gradients

(5,6) ang (2) short penetration

due to action of a poloidal divertor
depths of cold neutrals and impurities entering the plasma from the
chamber walls. Strong parallel loss terms along the field lines in the
divertor region between the plasma surface and the wall can lead to
sharp density gradients of a few centimeters at the plasma boundary.(7)
Cold neutrals at the plasma edge can typically have mean free paths of the
order of one centimeter. In both cases, a fine radial mesh is required for a
reasonably accurate numerical treatment of the physical models. Uniform
spatial mesh treatments are able to handle the fine mesh requirements in
simulation of currently operating tokamaks. However, a large tokamak

with a minor radius of 2-4 meters would require an inordinately large

number of radial mesh points for a uniform fine mesh and would consume

more computer time and storage than is justifiable.

In this paper we present the development of numerical techniques
especially suited for solving the above set of fluid transport equations
applied to large tokamak plasmas. A non-uniform spatial mesh is employed
(Section II) to allow for fine mesh treatments in the boundary region of
a reactor size plasma while a coarser mesh is used in the central plasma
region. A box integration method is used to maintain the accuracy of
central differencing on the non-uniform grid while conserving both the
particle and energy fluxes. A variable implicit technique is used for

the time mesh treatment (Section III). The accuracy of a central



differenced (Crank-Nicholson) technique can sometimes be offset by

severe limitations in the time step with associated increases in
calculation time. More implicit treatment can then be used to eliminate
the numerical limitations on the time step without seriously affecting

the time history. The time scales for physical processes, which can
Change by several orders of magnitude from start up to equilibrium, are
used to continuai]y adjust the time step size. These techniqués have been
employed in a computer program which has evolved from an early version

of the Oak Ridge Code. (!’

II. Spatial Mesh Finite Difference Treatment

The basic set of transport equations consist of the three nonlinear coupled
parabolic partial differential equations given in Equations 1-3. A box
integration method is employed to obtain a set of finite difference equations
in space for a non-uniform spatial grid.(s) The equations are integrated over
a cylindrical shell from r - Ar /2 to r + Ar /2 (see Figure 2) where Ar, and
Ar _ designate the mesh size between points i, i+1 and i, i-1, respectively.

The finite difference expressions for the diffusion terms then become:

19 1 T2 1, 041/2  _i-1/2
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— 2
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an - 0)



The energy flow terms are treated in the same manner.
Inside the plasma, the transport coefficients are expected to be continuous
functions of radius 'but possibly have strong radial variation. In this case,

the transport coefficients are evaluated as:

., i it
pitl/2 _ D +ZD (1)

If a step change in the radial transport coefficents is anticipated across the
boundary between the plasma and the divertor zone, they can be evaluated at

the first mesh point inside each zone:

DNi1/2 - DNiI (12)
This differencing method preserves the accuracy of central differencing even for

the non-uniform mesh. It also conserves the particle and heat fluxes since the
differenced expression for the flux leaving region i is the same as the expression
for the flux entering region i + 1.

The non-diffusive terms (volumetric source and loss terms) are assumed to be
constant over the differential region at values given at each mesh point. The
accuracy of this approximation is reduced when a non-uniform mesh is used. Small
variations in mesh size from region to region can reduce the error. The alternative
is to include a linear variation in the terms through the region by incorporating

the values at i + 1 into the volume averaged term at i.

The boundary conditions at the center are that the fluxes vanish:

T Qe Q5 | 0 (13)



At the plasma edge, boundary conditions on the ion density and electron and ion

temperatures are of the form

an _
0m+8'37‘Y
with the usual choices of
B=0 : nla = n(a) (14a)
129
or 'Y=0 'ﬁ"a":"l =-JA"" (]4b)

where a is the plasma minor radius. The expression in (14b) is the form

used for both temperatures and density in the ca]culafions presented here.

The transport coefficients for the trapped particle microinstabi]ities(3)
are fuhctions of the density and temperature gradients through their dependence
on the diamagnetic drift frequency and the temperature drift frequency. For
simulation of both near term and large power producing Tokamak plasmas such

10) this Teads

as the Tokamak Engineering Test Reactor (TETR)(g) and UWMAK-III,(
to oscillations when the mesh size is less than about 5% of the plasma radius
and central differencing is used for the gradient dependence of the transport
coefficients. The oscillations are primarily due to the (1/n-8n/8r)2 dependence
of the dissipative trapped ion mode which dominates the transport. To eliminate
this problem, the density and temperature are fitted by least squares to a power

(4)

series at each timestep in the same manner as is done in the Princeton code.

™M S

n () =3¢ (H2E (15)

o j=1

C

The logarithmic derivatives of density and temperature are then evaluated from
the fitted profiles.

. ry2j-3 1
) nj @773 (16)



The order of the fit can be specified in the range 2 < J <. 10. For Jd =1,
a central difference is used for the gradients.

The effects of ‘various spatial mesh treatments can be discussed independently
of the time treatment by examining equilibrium profiles. To illustrate typical
numerical results, we present sample calculations for two types of large
fokamaks. The Tokamak Engineering Test Reactor (TETR)(Q) is a conceptual
design of an unighited neutral beam driven device utilizing thebtwo component
operating mode(]]) potentially capable of producing a high neutron wall loading for

10) is a conceptual design

materials and blanket engineering tests. UWMAK-III(
for a power producing (2000 Mwe) tokamak. Tables I and II summarize the basic
parameters for simplified physical models of TETR and UWMAK-III respectively.
Boundary conditions are chosen to be consistent with anticipated characteristic
gradients under the action of a poloidal divertor.(7)
Typical equilibrium profiles for the ion density and electron and ion
temperatures are given in Figure 3 for TETR and Figure 4 for UWMAK-III. In
both cases, the density decreases by more than two orders of magnitude from
the center of the plasma to the edge. The addition of a neutral gas recycling
model would produce flatter density profiles typical in currently operating
tokamaks. The temperature profiles are fairly flat in both cases with edge
temperatures in the several keV range. Neutral gas recycle and radiation
cooling effects of impurities lower the edge temperatures when these models are
included. Figure 5 shows the typical radial variation of the electron heat
conduction coefficient for the TETR calculations. The dominant transport
mechanism 1in each region is indicated. The ion heat conduction coefficient,

X and the particle diffusion coefficient, D, have similar profiles. The

transport coefficients in the UWMAK-III calculations are the same order of
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magnitude with similar radial profiles.

Various spatial meshes have been tested with TETR and UWMAK-III parameters.
Sensitivity to the order of the gradient fit, J, for the transport coefficients
has also been examined. The most important question of accuracy of the gradient
fitting is whether the trapped particle modes are sensitive to local values of
the gradients and if so, how much physics is lost in smoothing the gradient
dependence.

The central values of density and temperature are virtually unaffected
by the various mesh sizes and order of gradient fit. The edge values show
the greatest variation due to the sharp gradients imposed by the boundary
conditions. - Tables III and IV show the edge denisty, n(a), converges to

about 2.3 x 1O]2cm_3

in TETR and the edge electron temperature, Te(a)

to about 3.3 keV for all values of J and all sizes of edge mesh Tess than

2 cm. Relatively few mesh points (41) are required for an accurate uniform
mesh treatment of this model.

Tables V and VI show the variation of n(a) and Te(a) for the UWMAK-III
model for several mesh sizes and values of J. n(a) generally decreases and
Te(a) increases as the mesh size is decreased and J is increased. The
finest uniform mesh case (N = 97) has a 4 cm mesh. The non-uniform mesh case
(N=48) employs a 2 cm mesh over the outer 40 cm of plasma radius and gives
10% higher temperatures at r=a than the finest uniform mesh case. Thus, as expected,
the variable radial mesh treatment is more important for UWMAK-III size plasmas

than for TETR parameters. A finer mesh treatment would be even more critical

when divertor and neutral gas recycle models are included.
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III. Time Mesh Treatment

The time dependence of the partic]é and energy balance equations is
treated implicitly By expanding each term in time about t + 6At. Only the
first order terms in At are kept which leads to a linearized set of equations
in density and temperature at the new time. For 6 = 0, the equations reduce
to the Euler method while 6 = .5 1s‘the Crank-Nicholson method and 6 = 1
is pure implicit. Let f be an arbitrary term in one of the equations and

k be an index denoting the timestep, then:

k

f(ni, T , T.) = fk + G{QE— (n.k+l—n¥)
e 1 an. i i
t, 40At
k k
k k
of k+1 k of k+1 k
+ = - — -
57 (T4 T+ 57— (Tg Te)) (17)
i e
k k k
The expressions fk, %E— ’ of and of are re-evaluated at each
n; BTe aTi

timestep.

The transport coefficients are treated explicitly but evaluated at
densities and temperatures extrapolated in time with a type of predictor

treatment. For example,

1] ] 1
D(n,,T_,T.) = D(n,,T_,T,) (18)
1 e 1 e 1
£, FOAL,
k
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' At
n, =nt [1+8 5 (19)
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The characteristic times, 7, are calculated at each timestep for each

variable and radial mesh point. A very small timestep is initially taken

with all v = 0 to start the calculation. Subsequent timesteps are then

Timited to 10% of- the shortest characteristic time for density or temperature

variation at any radial mesh point up to a specified maximum timestep size

as equilibrium is approached. The 10% 1imit on Atk/Tk puts an upper bound

on the variation in the predicted densities and temperatures (Egn. 19).
Because the equations are linearized at each timestep, a simplified

analysis of the numerical treatment can be made. At each timestep, the

equations are put into the form

AxKT g kg

where x represents the density and temperature spatial arrays and k
the timestep index. Numerical stability can be investigated by examining
the eigenvalues of the homogeneous equation.(]z)

For pure diffusion and conduction with no coupling between the density and
temperature equations, it can be shown that all eigenvalues are bounded
in the range [-1,1] if .5 < 6 < 1 and no numerical oscillations arise to
limit the timestep. Unstable oscillations can occur for 8 < .5 if At is
too large. The Crank-Nicholson method gives the most accurate
treatment for linear equations because of the time centered differences.(]z)
The accuracy for a nonlinear equation is more difficult to assess because
of the lack of analytic solutions. The addition of density and temperature
dependent sources and coupling between the density and temperature

equations can decrease the 1imits on At for which no unstable oscillations
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occur. Small radial mesh size coupled with large transport coefficients
can reduce the maximum allowable At for stability much below the physical
time scales for © =‘.5 or even somewhat more implicit methods. An optimum
choice of & would be close to .5 to maintain the advantages of time
centered difference but large enough to avoid numerical oscillations in
a given physical model with an appropriate radial mesh for spatial accuracy.
Calculations have been made on TETR and UWMAK-III parameters to
determine the effect of various values of 6 on CPU time and the time
history of the evolution of the density and temperature profiles. The
calculations are initialized with Tow values of temperature (about 200 eV)
typical of the ohmic heating phase in tokamaks. In TETR, the 150 MW of
neutral beam power heats the plasma to equilibrium in about 300 msec where
a particle confinément time of Tp ~ 35 msec is found. In the UWMAK-III
calculations, 500 MW of injection energy is used for 1.5 sec to heat the

13 3). Heating by the fusion

plasma to ignition at full density (7.9 x 10 “cm_
alphas then brings the plasma to equilibrium at about 5.0 sec where the
particle confinement time is about 350 msec.
Table VII shows the effect of various mesh calculations for TETR on
the maximum timestep for stability with 6 = 0.5 and on the CPU time for
6 = 0.5, 0.6 and 1. An upper limit of 1 msec is imposed on the timestep
in all cases. For the finest mesh cases (1 cm), the timestep has to be limited to
0.5 msec to avoid numerical oscillations with & = 0.5. A1l cases with
6 = 0.6 or 1.0 give numerically stable solutions. The variable mesh case

coupled with 6 = 0.6 or 1.0 give a factor of 4 reduction in CPU time over the

fine mesh, 8 = 0.5 case.
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The savings in CPU time for variable mesh and 6 > 0.5 is more pronounced
in reactbf (UWMAK-TII) calculations. Table VIII shows that fine mesh cases
with & = 0.5 leads to a much more severe limitation on the maximum timestep
with an associated increase in the CPU time for a typical calculation.

An upper Timit of 10 msec on the timestep is based on the particle
confinement time. A1l cases with 6 = 0.6 and 1.0 give numerically stable
solutions with reductions in CPU time up to an order of magnitude over
the variable mesh case with 8 = 0.5.

For a1l TETR and UWMAK-III calculations, no signifibant differences
were noted in the time histories of the temperature and density profiles
using 6 = 0.5, 0.6 and 1.0. The equilibrium reached is independent of 6.
If the effects of various physical models on equilibrium profiles only are
of primary interest, fully implicit calculations can be used to avoid any
numerical oscillations.

IV. Summary and Conclusions

We have developed a series of techniques for computer simulation of
large tokamaks which yield very stable numerical solutions to one-dimensional
transport problems. The basic solving techniques make efficient use of
computer time which is especially important when one desires to carry out
parametric studies which typically require many computer runs. The fine
mesh treatment allows a better analysis of the important region between
the plasma and the chamber wall. A slab model for neutrals which includes
reflection of neutrals at the wall and sputtering of wall material has been
included in the computer program. The divertor model of Mense(7) is incorporated

to permit more thorough parameter studies.
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Improved models for line and recombination radiation for various high
Z impurities have recently been added based on experimental measurements.
An improved model for synchrotron radiation is being studied. Work is |
continuing on an RF heating package to evaluate various techniques for
heating the plasma to ignition. Other aspects of tokamak modeling already
added to the basic fluid treatment are: a pencil beam model including
beam/plasma fusions, an alpha particle transport model, and finite thermalization
time of the fusion alphas. Overall, the resulting mathematical model is
flexible enough to study a wide range of important physical processes
anticipated for large tokamak plasmas.
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FIGURE TITLES

Schematic diagram of the major components of a tokamak with the
helical path of a magnetic field line indicated in the lower
portion of the figure. (Figure courtesy of PPPL).

Non uniform radial mesh at grid point i and radius r indicating

the radial region associated with grid point i in the box

- integration (r - Ar_ /2, r + Ar, /2).

Typical equilibrium radial profiles of ion density and electron

and ion temperatures in TETR test case.

Typical equilibrium radial profiles of ion density and electron and
ion temperatures in UWMAK-III test case.

Typical equilibrium radial profile of the electron heat conduction
coefficient in TETR test case with the dominant transport term

indicated in each radial region.
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Table I

Parameters for TETR

B¢ =419 T ~ toroidal magnetic field on plasma axis

Ro =3.24m - major radius of torus

a =.60m - minor radius of plasma in midplane

qupf = .80 m - effective minor radius far circular plasma
I¢ = 2.52 x 106 A - toroidal plasma current

E0 = 150 keV - deuterium beam injection energy

PB = 150 MW - injected neutral beam power

Boundary conditions at plasma surface:

A = .05m
n

Ar =.10m
Te

AT =.10m

Physical Model:
No neutral gas recycle, impurities or thermal alphas
Instantaneous thermalization of fusion alphas

Dissipative trapped particle model for transport coefficients
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Table II
Parameters for UWMAK-III

B¢ =4,05 T - toroidal magnetic field on plasma axis

RO = 8.10m - major radius of torus

a = 2.70m - minor radius of plasma in midplane

P = 3.84 m - effective minor radius for circular plasma
I¢ = 15.8 x 106 A - toroidal plasma current

Boundary conditions at plasma surface:

=.10m

An
AT 20 m
e
Ty
Physical Model:

= .50m

No neutral gas recycle, impurities or thermal alphas
Instantaneous thermalization of fusion alphas

Dissipative trapped particle model for transport coefficients
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Table III
Plasma Density at the Plasma Edge (cm'3) for TETR for Various Spatial Meshes (N)

and Order of Least Squares Fitting (J) to Gradients in Transport Coefficients.

J | Central
N 3 5 7 Difference
1@ 29x102 2.8x102 - 4.2 x 10'°
28 25x10%  2.4x102  2.4x10'2 2.7 4 1012
a® 23x10%  23x102 2.4 ¢ 101 (c)
g1l 22x10% 235102 2.4 4 10'2 (c)
3500 23%10% 225102 2.3 4 10'2 -

(a) uniform spatial mesh
(b) nonuniform spatial mesh decreasing to 1 cm at plasma edge

(c) numerically unstable
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' Table IV

Electron Temperature at Plasma Edge (keV) for TETR for Various Spatial

Meshes (N) and Order of Least Squares Fitting (J) to Gradients in Transport

Coefficients.
J Central
N 3 5 7 Difference
11(a) 2.5 2.5 - 2.6
21(2) 2.9 2.9 2.9 2.9
4 (2) 3.2 3.2 3.2 (c)
g7 (2) 3.3 3.3 3.4 (c)
35(P) 3.3 3.3 3.3 .

(a) uniform spatial mesh
(b) nonuniform spatial mesh decreasing to 1 cm at plasma edge

(c) numerically unstable
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Table V

Plasma Density at the Plasma Edge (cm'3) for UWMAK-III for Various Spatial

Meshes (N) and Orqer of Least Squares Fitting (J) to Gradients in Transport

Coefficients.

\\\j l Central

N 3 5 7 Difference
1790 106 x 1012 90 x 1002 .89 x 1012 1.22 x 1017
3@ 1oax10%  g2x 10 79 x 102 (c)
29 108 x 102 g1 x10'2 .76 x 1012 (c)
651 1.05x10'2 g0 x10'2 .75 x 1012 (c)
7@ | 103 %102 78 x10'2 .72 x 1012 (c)
48(b) 95 x 1002 .78 x 102 .73 x 102 ;

(a) uniform spatial mesh
(b) nonuniform spatial mesh decreasing to 2 cm at plasma esge

(c) numerically unstable
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Table VI

Electron Temperature at the Plasma Edge (keV) for UWMAK-III for Various Spatial

Meshes (N) and Order of Least Squares Fitting (J) to Gradients in Transport

Coefficients.

\\<i Central
N- 3 5 7 Difference
172) 3.50 3.56 3.58 3.67
33(3) 4.46 4.49 4.51 . (c)
49(2) 4.92 4.93 4.94 (c)
65(2) 5.19 5.18 5.20 (c)
97(2) 5.41 5.39 5.40  (c)
48(b) 5.76 5.81 5.83 ;

(a) uniform spatial mesh
(b) nonuniform spatial mesh decreasing to 2 cm at plasma edge

(c) numerically unstable
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Table VII

Spatial Mesh at the Plasma Edge, Maximum Timestep for 6

.5 and Computer

Time for Sample Runs with 6 = .5, .6 and 1 vs. Various Spatial Meshes for

a 400 msec TETR Calculation

N
Spatial min At (sec) CPU Time (min.)(a)
Mesh Ar max
Points (cm) 8=.5 6=.5 o=, 6=1
77(b) 8 p(d) a2 2 .12
21(b) 4 p(d) 21 21 .2
41(b) 2 p(d) 41 .4 4
81(b) 1 ste) 1.37 .90 .86
35(c) 1 5(€) .56 .37 .35
(a) for runs on the MFE CDC7600 computer system
(b) uniform spatial mesh
(c) nonuniform spatial mesh decreasing to plasma edge
(d) At limited by physical time scale .5 < 6 < ]
(e) At limited by onset of numerical oscillations for 6 = .5
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: Table VIII
Spatial Mesh at the Plasma Edge, Maximum Timestep for 6=.5 and Computer Time
for Sample Runs with 6 = .5, .6 and 1 vs. Various Spatial Meshes for a 7.5

éecond UWMAK-III Calculation.

Mesh gpatia] min Ar Atmax(msec) CPU time (min‘)(ay
Points (cm) 6=.5 9=.5 6=.6 6 =1
170) | o 10(d) .26 26 .26
33(0) 12 70(d) 49 49 .49
49(b) 8 5(e) 1.35 75 .75
65(P) 6 5(€) 214 1.02  1.00
97(b) 4 2.58) | 487 162 1.57
48(c) 2 p(e) 6.06 .73 .72

(a) for runs on the MFE CDC7600 computer system

(b) uniform spatial mesh

(c) nonuniform spatial mesh decreasing to plasma edge
(d) At 1imited by physical time scales .5<¢6<]

(e) At Tlimited by onset of numerical oscillations for 6=.5





