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Abstract

For survey and scoping studies of reactor blankets by Monte Carlo,
where small numbers of processed particles are considered, the effect
of the particle histories termination parameters by Russian Roulette, on
tritium production estimates, is studied. For such a small number of
histories, slight trends in the results occur depending on the choice of
the particle survival probabilities and the Russian Roulette triggering
weights, and justify the use of the 95% confidence interval, rather than the
68% confidence interval for more reliable results, if no prior analysis is
carried out. If such an analysis for the choice of these parameters is
done, then the 68% confidence interval can still be used. Results from Monte
Carlo for a sample size of 1000 particles are compared in this study
to the results from an S - P3 discrete ordinates calculation with satisfactory
agreement, within two standard deviations.

It is recommended that one use the highest possible (e.g. 90%) survival
probability and the lowest possible (e.g. 10'8) Russian Roulette triggering
weights, so as not to greatly affect the resulting computation time and at the
same fime control any bias in the results.

The collision estimator has been used in the investigation.
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1. Introduction

The current and expected future interest in both conventional and
advanced power reactor systems safety necessitates dependable three-
dimensional studies of fission, fusion and hybrid systems. This is where
the Monte Carlo method finds its natural field of application and is
superior to discrete methods. It also incorporates the possibility of time-
dependent studies, and detailed cross sections representation when needed.
Monte Carlo techniques may be designed to reproduce a physical system in
as much detail as is necessary, and so provide a powerful tool for solving
problems with very few compromises with the physics. Discrete ordinates
is quite powerful for solving time independent two-dimensional problems;
much work has been done in recent years to increase the speed of calculations
and reduce ray effects. Three-dimensional or two-dimensional-time-dependent
discrete calculations are not yet practical. Monte Carlo calculations
on the other hand can include three-dimensional geometries of arbitrary
complexity and also time dependence. Parallel computers are now being
designed for future applications of Monte Carlo, where many particles
can be followed in a simulation instead of the present sequential approach.

The shielding community tends to depend more heavily on discrete
ordinates methods except in cases where the geometry is complex. At ORNL,
discrete ordinates calculations have been coupled to Monte Carlo calculations,
where the former treats the problem in a two-dimensional way, and the latter

12)

treats parts which are three-dimensional in their nature.( At Bettis

Laboratory, Monte Carlo is used mostly for methods testing.(]z) However,



at Los Alamos, Cashwe11(12) reports that: "The reverse is happening; in that

Monte Carlo is being used much more than ever before. A lot of problems

have very difficult geometries, and in addition some people are not willing

to compromise on the treatment of the cross sections." At Livermore also,

some codes use as many as 2000 group cross sections. Whitesides(12)

reports that: "Monte Carlo is used to check the accuracy of the discrete

ordinates calculations. In criticality calculations, for the same geometry

and the same cross sections, Monte Carlo does as well as any other method."
In fusion reactor blanket studies, Ragheb and Maynard(3’4) used

Monte Carlo for three-dimensional cell calculations. They also used it for

(13)

three-dimensional parametric scoping studies. In the USSR, Monte Carlo

(7)

is also used for scoping studies. Steiner used Monte Carlo as a standard
for assessing the effect of using different quadrature orders in discrete
ordinates calculations on tritium breeding estimates, for a standard blanket
model. Chapin(s) uses Monte Carlo to treat a hexagonal toroid blanket model.
Abdou, Milton, Jung and Ge1bard(1]) used Monte Carlo in a cylindrical model
to study the effects of vacuum pumping and beam penetrations in an experimental
tokamak power reactor design.

In magnetic confinement systems, Monte Carlo is expected to find wider
application in the future in the treatment of three-dimensional cell calcu-
lations, and of penetrations for radio frequency heating, neutral beams,

fuel injection, vacuum pumping, divertor slots, and for maintenance and

access. This is necessary to protect the magnets and auxiliary systems from



streaming and scattered components of radiation, which may cause excessive
heating, induced activation, and radiation damage. Also in inertial con-
finement systems, Monte Carlo will be needed to study the three-dimensional
nature of laser or electron beams penetrations, and for protection of the
optical transport, and of the cryogenic pellet fabrication and injection
systems.

With complete reliance in the past on one-dimensional discrete ordinates
methods, for the treatment of fusion reactor blankets, and with Monte Carlo
entering the picture for more sophisticated calculations, discrepancies
between results obtained by Monte Carlo and by discrete ordinates appeared
in the reported results of several authors. Ragheb and Maynard(3) attributed
the difference in results in their work to the different natures of their
discussed one-dimensional and three-dimensional models as regards compositions

and configurations, and excluded the possibility of an error in their modified

version of the Monte Carlo code(]’2’3) employed by a comparative one-dimensional

benchmark calculation using both discrete ordinates and Monte Carlo.

(5)

Chapin considered the one-dimensional case of an infinite cylinder consisting
of a one region blanket composed of homogenized niobium structure and

Tithium with volume fractions of 6% and 94% respectively, and solved it by

Monte Carlo and discrete ordinates. The results of his calculations

for tritium breeding from Li-6 and L1-7 are shown in Table 1. The Monte

Carlo code used in the investigation was the MORSE(]’Z) code with combinatorial

geometry. The ANISN(S) discrete ordinates transport code was also used.

A seven group neutron cross section set was formed by collapsing a 52 group
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set over the benchmark b]anket(7) spectrum. The anisotropic scattering was
represented by a P3 Legendre expansion, and 58 quadrature for the discrete
ordinate calculations. Chapin reports that: "the T7 values agree well for
the inner zones, but are within about two standard deviations for the outer
zones. The total rates in the six zones and in the entire blanket are in
closest agreement for T6, and differ by less than 5% for T7. These
differences might arise from several factors, such as the small number of
cross section groups, the Legendre expansion order of the anisotropic
scattering, the angular quadrature order, or the number of mesh intervals
used in the vacuum zone for the ANISN calculation." Even though there is a
good agreement between the Monte Carlo and discrete ordinate results, one
notices that the total (T6 + T7) D.0. (discrete ordinates) result does not
lie within one s.d. (standard deviation) of the M.C. (Monte Carlo) result,
the total T7 from D.0. within 3 s.d., the T7 in zones 1-6 within 2 s.d., and
the T6 in zones 1-6 within 2 s.d. The M.C. result for T7 is larger than the
D.0. result in the first 6 zones, but lower over the whole blanket, and
for T6 it is lower in the first 6 zones, but larger over the whole blanket.
Monte Carlo being free from the effect of the angular quadrature used
in discrete ordinates ca1cu1at10ns.$teiner(7) used a Monte Carlo calculation
with a Targe number of histories for the standard blanket model as a basis
to assess different SN results. Results of his calculations are displayed
in Table 2. He concludes: "For the assumed blanket geometry, the 54 approxima-

tion gives a system tritium breeding value which is within .0.5% of the
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Monte Carlo system value. Thus, the 54 approximation is adequate for

survey calculations on system tritium breeding. An 312 approximation is
recommended in those cases where accurate spatial information is desired.”
The ENDF/B-III cross sections data were used for both calculations. Discrepancies
in the D.0. results were attributed to differences in the angular quadrature
sets used, the negative-flux correction algorithms (for coarse mesh spacing),
the mesh size taken in the vacuum region, the niobium resonance capture

cross sections and the elastic scattering matrices (due to differences

in the flux weighting functions). The M.C. and D.0. results compare
favorably. Careful scrutinization, however, reveals some discrepancies.

The total (T6 + T7) D.0. for P; - Sg does not Tie within 1 s.d. of the

M.C. result, the total T7 D.0. result for P3 - 512 and P3 - 516 within 1 s.d.
of the M.C. result, and the total T7 for Py - Sy within 2 s.d. One also
notices that P3 - 512 and P3 - 516 results are higher than the M.C. results,
and that the P, - S, and P, - Sg are Tower for the total T7 and (T6 + T7).

Our concern is the causes and magnitudes of discrepancies obtainable
in M.C. calculations; a subject which has not yet been reported in the open
Titerature.

In this work, we follow an approach similar to, but in reverse to, the one
adopted by Steiner; in the sense that we choose a D.0. calculation to assess
the effect of using different parameters in a M.C. calculation. Our
primary interest here is the effect of choosing different Russian Roulette
parameters on tritium breeding estimates. Russian Roulétte is here

considered as a (necessary) means for terminating particle histories and not



as an importance sampling device. We are also concerned with small

numbers of generated particles histories as would generally be used in scoping
and optimization studies. We follow an empirical approach, and discover,

in fact, that some minimal trends do occur for different choices of particle
histories termination parameters, when small numbers of histories are used

to obtain estimates. Suggestions for handling the situations encountered

are proposed.

In the next sections, the Russian Roulette technique in Monte Carlo
calculations is briefly discussed, the physical model for our investigation,
via the standard blanket model, and the estimator employed is exposed, the cross
section data are summarized,.and the results of the investigation
are shown, followed by a set of conclusions and recommendations.

2. The Russian Roulette Technique in Monte Carlo Calculations

"Russian Roulette" and "Splitting" as variance-reducing techniques were
developed by von Neumann and Ulam as well as Harris and Herman Kahn around
1948.(8) It is a fractional sampling method which can be applied in the
following manner: when the number of particles gets too large in a simulation,
one of them is picked out and with some probability (p) is discarded from
the sample; otherwise it is allowed to survive but its weight (originally
unity) is multipliedby (1 - p)']. This is repeated until the number of
particles is reduced to manageable size. To increase the sample size, "splitting"
can be used where a particle of weight wo may be replaced by n identical
particles of weights W], W2""’ Wn, where g wi = wo, which then proceed

i=1
independently in the simulation. By such weighting methods, the total number



of tracks and their relative numbers in various regions of space or ranges
of energy can be controlled, thus providing a form of importance sampling.
One then should arrange for the number of paths in any class to be proportional
to the contribution of that class to the final result, and for avoidance of paths
which do not contribute much to the final answer. The formal definition of
the Russian Roulette estimator is treated by Spanier and GeTbard.(g)

In Monte Carlo simulations, even though Russian Roulette may not be
used as an importance sampling method, it is nevertheless always needed for
termination of particle histories when we are not interested in them anymore.(]o)
We are considering Russian Roulette in the present work in that context
and not as an importance sampling method.

(1,2) we are using is as

The way it is applied in the Monte Carlo code
follows: after a particle has suffered a collision, a test is first performed
to determine if the Russian Roulette and splitting option have been specified,
then a comparison of the particle's weight is made with the Russian Roulette
triggering weight W, (specified by the user) to determine if the particle
will experience Russian Roulette. If the particle is killed, its weight is

set equal to zero, and if it survives, it assumes a new weight, wn, which

is also specified by the user. The killing is performed with probability:

W
p:]__
k W,
and the survival probability is:
W
Ps =g »Pst R
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where: W is the current particle weight. Thus two parameters:
1) The Russian Roulette triggering parameter wz
and 2) The survival probability P
may be used to uniquely specify a Russian Roulette scheme. In the M@RSE
sample prob1em,(1) treating a point neutron source in an infinite air medium

-2 and Wn = 10"1 have been used for all groups and regions,

values of W2 =10
corresponding to a survival probability of Pg = 0.10.

If Russian Roulette is used solely for terminating particle histories,
and if a relatively small number of histories is used, as in scoping and
optimization studies for blanket studies, the following questions arise:

Since Russian Roulette will not loose its basic nature as an importance

sampling method, would a bias occur if a small number of histories are used?

What is the magnitude of the bias? How can a bias be avoided or reduced to tolerable
size?
3. Physical Model for the Investigation

To answer the questions raised in the previous section, we choose an
empirical approach to test for the existence of the suspected phenomenon and to see if
its magnitude justifies further theoretical investigations. We adopted as our
physical model for the investigation the "standard blanket model" of
Steiner.(7) This is shown in Figure 1. The geometry is a one-dimensional
cylindrical geometry. The fusion-neutron source was taken as an isotropic
source of 14-Mev neutrons uniformly distributed in the plasma region of the

blanket model. In the Monte Carlo simulation the infinite cylinder was
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represented by a cylinder of 2000 cm length with top and bottom as completely
reflecting boundaries. The first wall consists of three regions, the first
and third being of niobium structure, and the second one consisting of a
mixture of niobium structure and 1ithium coolant. This is followed by a
mixture of Nb and Li representing the blanket region, which in turn is sub-
divided into three subregions. The blanket is followed by a carbon reflector,
then by a scrapeoff region of homogenized Nb structure and Li coolant.

The collision density fluence estimator averaged over geometry regions

is used as:(]’z) N

where pv(Ei): fluence in region v at energy E; per source neutron.

Nvi : number of particles of energy Ei scattering in region v,
W, : weight of the jth particle of energy E. scattering in region v
J , i
per ev,
n : total number of particles,
vy : volume of region v,

ZTV(Ei) : total macroscopic cross section for groups Ei in region V.

The fluence estimate pv(Ei) has units of particles/(ev. cm2 source particles).

Integral parameters, namely reactions rates over volumes are computed as:
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G
z _nz ,
Fy = Qpye@) vy - = vy .igl oy(E{) « aE, - ZEV(Ei) Reactions/sec (2)

where AEi is the i-th group energy width,

z . . . . . .
ZRV(Ei) is the macroscopic reaction cross section for reaction z in

region v
G is the number of groups
@V(Ei) = pV(Ei) * AEi
( , ) denotes an inner product.

Further investigations should consider other estimators such as the
track Tength per unit volume estimator.

4. Cross Section Data

Version 4 of ENDF/B(]4) (ENDF/B-IV)was used as the reference for
cross section data. These were processed into a broad-group energy structure
consisting of 46 groups with the top 5 groups in the GAM-II(]s) energy
group-structure, and one thermal group. The group structure is shown 1in
Table 3.

The reaction rates of interest are the tritium breeding reactions

L?(n,u)T and L?(n,n'a)T, both for the "hot" and "cold" cases and the Nb(n,2n),
7
i
format and the macroscopic cross sections for each are displayed in Tables 3

L?(n,Zn) and L:(n,2n) reactions. These were processed into a 46 group

and 4. The nuclides number densities for the different materials are shown

in Table 5,



Table 3:

GROUP UPPER EDGE
(tv)

1 1.,401FP 407
T T 3L 9RO
3 1.¢216+407

4 1,1052+407
) 1T, Coot+07
4 G . LLEL+0E

7 1572400
TR T T TLLOEC 06
9 6.7032+06
10 6. 6653406
T 5LLERTI0E
1¢ L.G656406
13 4,4L532406
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i 3.0TT9¥0¢
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T AV TED A0
42 £.3153+00
43 2,5279+00
[XA T.E554+CC
45 8.7643-01
X3 4,1399-01
1.0000-04

(Lower edge)

X (T6+T7) Hot

1.3389-0¢
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for Lithium

»(T6+T7) Cold

TYVLECE-TT T

1.5765-0¢
1.6597-0¢

1.3389-02

TULETE-0T

1.57¢5-02
1.6567-02

TeeweT=U7
1.716%-02¢
1.7279-0¢

Y704 =0T

TETL =1
1.7163-02
1.7276-C2
1. 709807

10632%3-0c 1.6223-02
1.4726-02 Teb?ct-C2
T«USTL~Uc ToUS7Te=0

501557-02
¢ 1450-C3

5.1557~03
2.1450-03

ToOLSE=03
7.6162-06
L6 7RL-T4

1URSEENY
7.6162-04
S.6724-04

TERTIVEUG
5. 742004
5607704

TTLSERA-TLTT

ce2965-04
Le7912-04

537 29=T4
5.7420-04
6. 6GT7 =004
7 SSTE-TL
8.2965-04
8.7912~04

Yeh 158=-T4
162679-03
ce8216-03

G LISE=TL
1.26476-03
2.5216-03

SVESSE-T0I
Ge2738-03
CoeBLT76~C3

TELELOE-US

6.2738-03
2e86T7€6-03

e 1327~13
cet206-02
3,3348-02

TITEETEOY
2.4L206-03
3.,3345-03

TYTRETECETT T T TR =03
0e9377-02 6.9377-03
1.0062-Ce¢ 1.0092-02
TLVLEET-TY T LEHT=07
celt20-02 2.1420-02

24114700
PYEEII R
€e5G96-02

ve60S1-0g

3,1147-02
4USIUL=07
6.599€6-02
9.6051-02

1.3979-01 1.3976-01
¢e0743-01 2.0%463-01
ce7602-01 2.5602-01
4 3U7E=0T L 3C7€=TT
Ce2679-01 €.2676-01
¢ 6968400 1.6415+00

yT6 (Hot)

8.,2813-05
9.1765-05
1.0455-04
1.1621-04
ATTGETEUL
1.4662-06
1.6363-04
TORIGLE04
2.0528-04
2e2941~04
ZVSETEEE
2.8667-04
3.2073-04
36091 =0
4.0312-04
44430904
ETNATARIL
5.7420-04
6.6077-04
T7SSS604"
842965-04
8.7912-04
YURTSREDL
1.2479-03
2.8216-03
“8§i8556-03
6.273&-03
2.8476-03
ZTVIZTEOY
2.4206-03
3.3348-03
4L TR0
6.9377-03
1.0092-02
TIHEGT-02
2.1420-02
3.1147-02
4e5366-02
64599602
9.6051-02
TII979E0T
2.0743-01
2.9602-01
%4.3076-C1"
6.2679-01
2.6948+C0

276 (Cold)

¢.2813-05
TeL1765-TS
1.0455-04
1.1621-04
ERVERYEIYS
1-&@62‘94
1.0363-04
L EI0LEDE
2 . (JS 2? "O‘t
eiQ4i~C4
58 T4-04
2566704
3.,.073-04
FLEUTT-04
4. U312-04
Lo4309-04
G,5820-04
S.7420-04
E.c077-04
7.5556-C4
E.2965-04
L.7912-04
GLULTSR-0L
1e2476-02
2.521¢6-03
BL.EO056-T03
Goec738-02
2.6476-03
CVIeTE0YT
2.4206-03
T.3346-02
LW TEEZ=UYT
t.$377-02
1.0092-02
TVEES -0
2.1420-02
2.1147-02
UVITEE0T
6.5896-02
9.46051-02
UTYT9-0T
2.0343-01
2.9602-01
4 3U76-0T
6.c679-01
1.6415+00

Group Structure and Tritium Production Macroscopic Cross Sections

z(17)

1.3306-0¢
TURSTEENY
1.5661-02
1.6681-N2
TTERTT0T
1.6996=02
1.7115-C2
TUETTI =07
1.6117-0¢
Tabbye=-0¢
1.0114-02
besb90-05
1.8242-03
CTELELENG
3,5950-04
1.2475-04
T, 6NRC=NS
0.0000
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Table 4 Macroscopic Cross Sections for Major (n,2n) Reactions

GRCUP

R S

00N O

10
11
12

Nb(n,2n)
Blanket

Se7244-03
3.,03%7-03
503146'03
1.3075-03

L. OUNS9=04

£« 0EBS5-06

~L.0000

Nb(n,2n)
Structure

vel2(l66-02

5.0639-C2

5.8572-02
£01788-02

ENYIrEiEa

v« 00CO

L?(n,Zn)

2elb061-04

TTIUTTE04

1.6871‘04
1.2998‘@4

9.0458-05

5.1036-05
2¢2547-05

4 7799-06

4.9713-08

. 0.0000

L?(n,Zn)

8.9850-04
8.3235-04
7.2381-04
5.4586-C4

20069204

2.5780-05
0.0000
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Table 5 Nuclides Number Densities for the Material

Mixtures of the Benchmark Blanket Model

Medium Region Constituents Number Density

1000 1 Isotropic neutron source -—-

1000 2 Inner Vacuum -

1 3,5 Niobium 0.055560 atoms/b. cm

2 4,6,7,8,10 Niobium 0.003334 atoms/b. cm
Lithium-6 0.003234 atoms/b. cm|
Lithium~7 0.040380 atoms/b. cm

3 9 Carbon 0.080040 atoms/b. cm

0 11 Quter Vacuum -
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5. Results of Calculations

The MORSE code package(]’z) obtainable from the Radiation Shielding
Information Center was used in the Monte Carlo part of the investigation,
while the ANISN(B) code was used in the discrete ordinates part. S4
quadrature was used for the discrete ordinates calculation. Since we are concerned
with survey calculations, 1000 histories per calculation was chosen as a
reasonable number. These are distributed over 20 experiments (batches) in
each case. We assume, for simplicity, that the discrete ordinates result
is the truth and use it as a basis of comparison for the different Monte
Carlo results. A more thorough investigation would also consider the effect

7) | which will

of quadrature order and mesh interval size and other factors(
certainly give different discrete ordinates results.
The results for the six cases treated are displayed below. In cases A, B,

5 and varied

and C we fixed the Russian Roulette triggering weight at 10~
the particle survival probability among three values: 10%, 50%, and 90%.
Figure 2 compares the Monte Carlo and discrete ordinates results for case B
over the blanket regions for the tritium production per source neutron. The
results are remarkably good given that we are using a very small number of
histories (1000) compared to what is normally used by other investigators.

In reference 11, this ranges from 16,000 to 50,000. (Their study included

a shield, however, and not a blanket). The Monte Carlo result is shown

with three standard deviations of the mean. The discrete ordinates results all

1ie within one s.d. except for the result in the first blanket region which lies

within 2 s.d.'s. Figure 3 shows the effect of choice of the survival probability
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on the estimates of tritium production per source neutron, for the hot case. The

?, LZ and the total are shown. Three standard deviations

production from L
from the mean are shown. A1l the results lie within 1 s.d. except for the

total (T6 + T7) and the T7 results for pg = 10% which 1ie within 2 s.d.'s.
Figure 3 reveals a slight trend to overestimate the breeding when the survival
probability is low. This is understandable since in that case the surviving
particles from Russian Roulette are assigned a relatively large weight, and

not enough particle histories have been used to smooth out the result.

However, the overestimate is not severe and the use of a 95.44% confidence
interval (2 s.d.) rather than the customarily used 68.26% confidence interval

(1 s.d.) will provide a meaningful and reliable result when Monte Carlo is

used for this type of scoping study. When using a larger survival
probability, and consequently a Tower excess weight for the surviving

particles, the overestimation phenomenon becomes much less important. Thus

a large survival probability is recommended whenever possible: an ideal

(but impractical) simulation is one that follows a particle until its weight
reaches zero. . Table 14 shows that the computation cost did not

change appreciably by using a large survival probability (90% instead of

10%). An interesting result which deserves further investigation is that the
minimum variance was obtained when the 50% survival probability was used. Would
that mean that there exists an optimal survival probability for a given

problem? We leave the question open for the interested investigator. Tables 6,
7, and 8 compare the results for total tritium production, T6, and T7
respectively by region of the blanket model, for the hot and cold cross section

sets. Most M.C. results contain the D.0. within one or two s.d.'s. Rarely
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Table 6 Comparison of Monte Carlo and Discrete Ordinates Calculations By

Region: The Total Tritium Production Per Source Neutron, For

Different Russian Roulette Survival Probabilities

Case A: Survival Probability = 90%
Case B: Survival Probability = 50% Weight below which Russian Roulette is
Case C: Survival Probability = 10% played = 107°
Number of histories = 1000
Number of batches = 20
Region Case T6 + T7 s.d. T6 + T7 s.d.
(cold) (hot)
4 D.O. 0.1276 0.1276
A 0.119690 + 0.005197 2 0.119690 + 0.005197 2
B 0.124020 + 0.004725 1 0.124020 + 0.004725 1
C 0.124590 + 0.004591 1 0.124590 + 0.004591 1
6 D.0. 0.5795 0.5795
A 0.574780 + 0.013231 1 0.574780 + 0.013231 1
B 0.567520 + 0.011339 2 0.567520 + 0.011339 2
C 0.573630 + 0.011616 1 0.573630 + 0.011616 1
7 D.O. 0.3460 0.3460
A 0.342410 + 0.010656 1 0.342410 + 0.010656 1
B 0.351180 + 0.008175 1 0.351180 + 0.008175 1
C 0.352500 + 0.011816 1 0.352500 + 0.011816 1
8 D.0. 0.3304 0.3522
A 0.339100 + 0.013347 1 0.360240 + 0.014363 1
B 0.334040 + 0.014090 1 0.358210 + 0.015548 1
C 0.348700 + 0.010827 1 0.370000 + 0.011999 2
10 D.O. 0.0613 0.0831
A 0.059450 + 0.008059 1 0.082035 + 0.011702 1
B 0.060222 + 0.005838 1 0.081329 + 0.007983 1
C 0.067729 + 0.006824 1 0.092949 + 0.009784 2
Totals D.O. 1.4448 1.4884
A 1.435430 + 0.024604 1 1.479155 * 0.025668 1
B 1.436982 + 0.021221 1 1.482259 + 0.022873 1
C 1.467149 + 0.021434 2 1.513669 = 0.023137 2
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Table 7 Comparison of Monte Carlo and Discrete Ordinates Calculations By
Region. The 6Li(n,oct) Reaction For Different Russian Roulette Survival

Probabilities

Case A: Survival Probability = 90%

Case B: Survival Probability = 50% Weight below which Russian Roulette is

_ a5
Case C: Survival Probability = 10% played = 10
Number of histories = 1000
Number of batches = 20
Region Case T6 (hot) s.d. T7 (cold) s.d.
4 D.O. 0.0480 0.0480
A 0.048466 + 0.001839 1 0.048466 + 0.001839 1
B 0.044180 + 0.002097 2 0.044180 + 0.002097 2
C 0.047601 + 0.001649 1 0.047601 = 0.001649 1
6 D.0. 0.2921 0.2921
A 0.290440 + 0.007485 1 0.290440 + 0.007485 1
B 0.282350 + 0.006991 2 0.282350 + 0.006991 2
C 0.285480 + 0.006606 2 0.285480 + 0.006606 2
7 D.0. 0.2351 0.2351
A 0.235240 + 0.005730 1 0.235240 + (0.005730 1
B 0.237190 + 0.004625 1 0.237190 * 0.004625 1
C 0.226440 + 0.004889 2 0.226440 + (0.004889 2
8 D.O. 0.3079 0.2861
A 0.304540 + 0.012705 1 0.283400 + 0.011189 1
B 0.313920 + 0.012070 1 0.289740 + 0.010657 1
C 0.319200 + 0.010649 2 0.297900 + 0.008821 2
10 D.0. 0.0823 0. 0605
A 0.081626 + 0.011570 1 0.059041 + 0.007950 1
B 0.081068 + 0.008049 1 0.059960 + 0.005909 1
C 0.092726 + 0.009746 2 0.067506 + 0.006797 2
Totals D.0. 0.9654 0.9218
A 0.956226 + 0.019686 1 0.916587 + 0.016752 1
B 0.958708 + 0.016886 1 (0.913420 = 0.014938 1
C 0.971447 + 0.016693 1 0.924927 + 0.013938 1
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Table 8
Comparison of Monte Carlo and Discrete Ordinates Calculations by Regions:

The 7Li (n,n'at) Reaction for Different Russion Roulette Survival
Probabilities

90%
50% Weight below which Russion Roulette is

Case A: Survival Probability

Case B: Survival Probability

played = 10-5
Case C: Survival Probability = 10%
Number of histories = 1000
Number of batches = 20
Region Case T7 (Cold) s.d.
4 D.0. 0.0796
A 0.071220 + 0.004425 2
B 0.079836 + 0.003854 1
c 0.076988 + 0.004289 1
6 D.0. 0.2874
A 0.284330 + 0.010551 1
B 0.285170 + 0.010343 1
C 0.288140 + 0.012278 1
7 D.0. 0.1109
A 0.107170 + 0.007132 1
B 0.113990 + 0.006280 1
C 0.126060 + 0.101737 2
8 D.0. 0.0443
A 0.055701 + 0.008195 2
B 0.044295 + 0.005637 1
C 0.050797 + 0.005213 2
10 D.0. 0.0008
A 0.000408 + 0.000351 2
B 0.000262 + 0.000188 3
C 0.000223 + 0.000197 3
Totals D.0. 0.5230
A 0.518829 + 0.015781 1
B 0.523553 + 0.013896 1
C 0.542208 + 0.017653 2.
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does it include it within 3 s.d.'s such as the T7 production in the
scrapeoff region. Table 9 displays a comparison of the (n,2n) reaction
estimates by M.C. and D.0. by region. Results also agree satisfactorily,
even when such a small number of used histories.

In cases D, E, and F we kept the survival probability at 50% and varied

4 5 and 1075, Following

Russian Roulette triggering weight between 10 ', 10~
a particle to a small enough weight means following neutrons which reach

the low energy groups and contribute to more higher order components of the
corresponding Neumann series of the solution. That explains the slight

trend of Figure 4 of more tritium production estimates when a lower Russian
Roulette triggering weight is used. One would be tempted to superficially
relate the trend to more production of T6 in the thermal region, but that

will not explain the increase of the T7 estimate too. The trend, however,

is not very serious, since using a 95.44% confidence interval would assure us
of reliable results even with a small number of histories. Tables 11, 12,

and 13 show the results per region for the total (T6 + T7), T6, and T7 for the
hot and cold cases. The only instance, as in cases A, B, and C, where the
result lies within 3 s.d.'s is for the T7 production in the scrapeoff region,
whose result lies within 3 s.d.'s. We experimented with a larger number

of histories, and the result improved. Since the contribution of that

region to the total breeding is very small (.0.05%), this does not affect

the overall conclusions. Table 13 displays a comparison of the (n,2n) result

for different cases. From Table 14, an obvious increase in the computation

cost by going to lower Russian Roulette triggering weights is noticed.
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Table 10 Comparison of Monte Carlo and Discrete Ordinates Calculations By

Region. The Total Tritium Production Per Source Neutron, For Different
Russian Roulette Ttiggering Weights.
Case D: Weight below which Russian Roulette is played = 10:? Survival
Case E: Weight below which Russian Roulette is plaved = 10_4 ngb!ﬁi]it = 50
Case F: Weight below which Russian Roulette is played = 10 g i
Region Case T6 + T7 s.d. Te + T7 s.d.
(cold) (hot)
4 D.0. 0.1276 0.1276
D 0.121490 + 0.004726 2 0.121490 + 0.004726 2
E 0.124020 + 0.004725 1 0.124020 + 0.004725 1
F 0.122070 + 0.004747 2 0.122070 + 0.004747 2
6 D.0. 0.5795 0.5795
D 0.582120 + 0.011328 1 0.582120 £ 0.011328 1
E 0.567520 + 0.011339 2 0.567520 + 0.011339 2
F 0.567090 + 0.012816 1 0.567090 * 0.012816 1
7 D.0. 0.3460 0.3460
D 0.363690 + 0.009190 2 0.363690 + 0.009190 2
E 0.351180 + 0.008175 1 0.351180 + 0.008175 N
F 0.352390 + 0.009328 1 0.352390 + 0.009328 1
8 D.0. 0.3304 0.3522
D 0.351100 + 0.011895 2 0.377430 + 0.014346 2
E 0.334040 + 0.014090 1 0.358210 + 0.015548 1
F 0.310310 + 0.010271 2 0.325930 = 0.011280 3
10 D.O. 0.0613 0.0831
D 0.062749 + 0.004635 1 0.083346 + 0.007036 1
E 0.060222 + 0.005838 1 0.081329 + 0.007983 1
F 0.063825 + 0.005454 1 0.085359 + 0.007791 1
Totals D.0. 1.4448 1.4884
D 1.481149 + 0.019952 2 1.528076 + 0.022146 2
E 1.436982 + 0.021221 1 1.482259 + 0.022873 1
F 1.415685 + 0.020225 2 1.452839 + 0.021488 2
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Table 11 Comparison of Monte Carlo and Discrete Ordinates Calculations By
Region. The 6L1 (n,at) Reaction For Different Russian Roulette
Triggering Weights.

Case D: Weight below which Russian Roulette is played = 10:2 Survival

Case E: Weight below which Russian Roulette is played = 10_4 P:ob;gi]it = 509

Case F: Weight below which Russian Roulette is played = 10 J 3

Number of histories = 1000
Number of batches = 20
Region Case T6 (hot) s.d. T7 (cold) s.d.

4 D.0. 0.0480 0.0480
D 0.047470 = 0.001775 1 0.047470 + 0.001775 1
E 0.044180 + 0.002097 2 0.044180 + 0.002097 2
F 0.045998 + 0.002071 1 0.045998 + 0.002071 1

6 D.0. 0.2921 0.2921
D 0.292970 + 0.006349 1 0.292970 + 0.006349 1
E 0.282350 + 0.006991 2 0.282350 + 0.006991 2
F 0.292460 + 0.005770 1 0.292460 + 0.005770 1

7 D.0. 0.2351 0.2351
D 0.235550 + 0.004614 1 0.235550 + 0.004614 1
E 0.237190 = 0.004625 1 0.237190 + 0.004625 1
F 0.237640 + 0.005601 1 0.237640 + 0.005601 1

8 D.0. 0.3079 0.2861
D 0.324260 + 0.013895 2 0.297930 + 0.010472 2
E 0.313920 + 0.012070 1 0.289740 + 0.010657 1
F 0.282270 + 0.009233 3 0.2666500+ 0.008311 3

10 D.0. 0.0823 0.0605
D 0.082653 + 0.007134 1 .0.062056 + 0.004706 1
E 0.081068 + 0.008049 1 0.059960 + 0.005909 1
F 0.084926 + 0.007778 1 0.063392 + 0.005452 1

Totals D.0. 0.9654 0.9218
D 0.982903 + 0.017570 1 0.935976 + 0.014020 2
E 0.958708 + 0.016886 1 0.913420 + 0.014938 1
F 0.943294 + 0.014653 2 0.906140 + 0.012952 2
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Table 12 Compgrison of Monte Carlo and Discrete Ordinates Calculations by Region
The 7L (n,n'at) Reaction for Different Russian Roulette Triggering
Weights

Case D: Weight below which Russian Roulette is played
Case E: Weight below which Russian Roulette is played

-8
}8—5 Survival

-4 Probability = 50%

oo

Case F: Weight below which Russian Roulette is played = 10
Number of histories = 1000
Number of batches = 20
Region Case T7 (Cold) s.d.
4 D.0. 0.0796
D 0.074024+0.004482 2
E 0.079836+0.003854 1
F 0.076071+0.004727 1
6 D.0. 0.2874
D 0.289150+0.009733 1
E 0.285170+0.010343 1
F 0.274630+0.012765 2
7 D.0. 0.1109
D 0.128140+0.008779 2
E 0.113990+0.006280 1
F 0.114760+0.005476 2
8 D.0. 0.0443
D 0.053164+0.006372 2
E 0.044295+0.005637 1
F 0.043655+0.006148 1
10 D.O. 0.0008
D 0.000693+0.000401 ]
E 0.000262+0.000188 3
F 0.000433+0.000278 2
Totals D.0. 0.5230
D 0.545171+0.015253 2
E 0.523553+0.013896 1
F 0.509549+0.015911 ]
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Table 13 The (n,2n) Reaction in Different Materials and Regions for Different Russian Roulette
: Triggering Weights

Case D: Russian Roulette triggering weight = 10:2
Case E: Russian Roulette triggering weight = 10_4 Survival Probability = 50%
Case F: Russian Roulette triggering weight = 10
Material
Region Case Nb Li'6 Li'7 Total
3 D 0.053721+0.002937 - - 0.053721+0.002937
E 0.054473+0.003419 - - 0.054473%0.003419
F 0.049448+0.003192 - - 0.049448+0.003192
D.0. 0.0557 - - 0.0557 ~
4 D 0.015819+0.000985 0.000999+0.000064 0.003957+0.000255 0.020775+0.001019
E 0.016793+0.000979 0.001070+6.000061 0.004183+0.000242 0.022046+0.007010
F 0.015698+0.000937 0.001006+0.000058 0.003943+0.000235 0.020775+0.000968
D.0. 0.0169 c.o0m 0.0042 0.0222 —
5 D 0.044228+0.003528 - - 0.044228+0.003528
E 0.035266+0.002361 - - 0.035266+0.002361
F 0.043061+0.005123 - - 0.043061+0.005123
D.0. 0.03%6 - - 0.0396
6 D 0.050195+0.001528 0.003326+0.000701 0.013067+0.000402 0.066588+0.001583
E 0.050026+0.001134 0.003322+0.000081 0.012992+0.000309 0.066340+0.001178
F 0.047968+0.001752 0.003167+0.000122 0.012429+0.000484 0.063564+0.001822
D.0. 0.0495 0.0033 0.0129 0.0657
7 D 0.018247+0.001319 0.001265+0.000087 0.004938+0.000346 0.024450+0.001366
E 0.016384+0.001088 0.001135+0.000069 0.004433+0.000275 0.021952+0.001124
F 0.015796+0.000987 0.001113+0.000064 0.004296+0.000261 0.021205+0.001023
D.0. 0.0151 0.0011 0.0041 0.0203
8 D 0.005363+0.000511 0.000402+0.000039 0.007501+0.000141 0.007266+0.000532
E 0.005570+0.000667 0.000400+0.000047 0.001563+0.000184 0.007533+0.000694
F 0.004708 +0.000722 0.000349+0. 000050 0.001334+0.000198 0.006391+0.000750
D.0. 0.0052 0.0004 0.0014 0.0070
10 D 0.000001+0.000001 0.000001+0.000001 0.000001+0.000001 0.000003+0.000002
E 0.000000+0.000000 0.000000%0.000000 0.000000+0.000000 0.000000+0.000000
F 0.000003+0.000003 0.000001+0.000001 0.000003+0.000003 0.000007+0.000004
D.0. 0.000] 0.0000 0.0000 0.0001
Totals D 0.187574+0.005136 0.005993+0.000153 0.023464+0.000605 0.217031+0.005174
E 0.178512%0.004597 0.005927+0.000131 0.023171+0.000513 0.207610+0.004627
F 0.176682+0.006471 0.005636+0.000158 0.022005+0.000630 0.204323+0.006504
D.0. 0.1820 0.0058 0.0227 0.2105
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However, the increase is not very serious; it seems better to try to get
most of the contributions to the Neumann series terms by going to smaller
weights, whenever the increase in computation cost is not serious.

It should be noticed that in some choices, e.g. case B, taking a
68.26% confidence interval may be satisfactory, but requires a preliminary
investigation for the best choice of the Russian Roulette parameters; by
comparison to a discrete ordinates calculation with high order quadrature, or
a Monte Carlo calculation with a large number of histories.

6. Conclusions and Recommendations

Monte Carlo can satisfactorily be used for survey and scoping studies using
a small number of histories. Users must be careful, however, in their choice
of the particle terminatijon (Russian Roulette) parameters. Our study
recommends using the highest possible (e.g. 90%) survival probability and the
lowest possible (e.g. 10'8) Russian Roulette triggering weights. This will
practically prevent a bias while keeping the computation time reasonable. For
small numbers of processed particles, the 95.44% (2 s.d.'s) rather than the
68.26% (1 s. d.) confidence interval® is recommended to display results. The
68.26% may still be used if a large number of processed particles is used, or
if a prior investigation has shown that it can be used safely. The latter
argument may be interpreted as carrying out a comparison between one-dimensional
M.C. calculations and a D.0. (with a high order quadrature) calculation for
choosing the particle termination parameters before proceeding to a three-
dimensional complex geometry calculation, or between M.C. calculations with a
small number of histories and another base M.C. calculation with a large number
of histories.

Further investigations are recommended to consider the track length per
unit volume estimator, the effect of batch (experiment) size and the number
of histories on the M.C. results. The use of small numbers of histories



33

for M.C. calculations is a challenging subject which can be studied within

the framework of the field of Small-Sample Statistical Theory.
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+ We draw attention to the fact that the standard deviations are not errors
bars. They are 68%, 95%, and 99% confidence intervals for normally distributed
samples. Also, the numbers 68.28%, 95.44%, and 99.74% refer to the
probability (frequency) that the given interval contains the true answer,
not to the probability (frequency) that the answer is contained in that interval.
This is to emphasize the fact that it is the p?sigion and size of the
interval that varies, and not the true answer.(16
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