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ABSTRACT

Geometric optics is used to study classical absorption of laser light
by inverse bremsstrahlung in plane and spherical isothermal plasmas. The
absorption integral (optical thickness) and minimum point of the ray path
are given in closed form for slab geometry, and as asymptotic series in
the spherical case. The absorption is integrated over a spatial beam
profile based on optimal illumination studies and used to define an
effective angle of incidence. An expanding critical radius (the usual

case) is found to significantly reduce the average angle of incidence.

Implications for resonance absorption in reactor-size pellets are presented.
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FIGURE CAPTIONS

Ray path through a spherical plasma.

Ray p?th through a planar plasma and corresponding exponential density
profile.

Displacement of ray at minimum point in slab geometry.

Normalized absorption integral versus projected angle of incidence in
spherical geometry for an exponential density profile, various scale
heights.

Target illumination for an ideal lens.

Cubic exponential beam profile. A width parameter of about a = 0.7
produces uniform illumination for 12 or 20 beams.

Integrated absorption for an ideal f/1.5 lens. The dashed curves
correspond to a 50% expansion in critical radius.

Effective angle of incidence for an ideal f/1.5 lens.

Reduction of projected angle of incidence for an expanding critical
radius.

Integrated absorption for an ideal f/1.5 leans, with a 100% increase
in critical radius.

Effective angle of incidence for an ideal f/1.5 lens with a 50%
increase in critical radius.

Effective angle of incidence for an ideal f/1.5 lens with a 100%
increase in critical radius.

Integrated absorption for an ideal f/3.5 lens. The dashed curves
correspond to a 50% increase in critical radius.

Effective angle of incidence for an ideal f/3.5 lens.

Effective angle of incidence for an ideal f/3.5 lens, with a 50%
increase in critical radius.

Effective angle of incidence for an ideal f/3.5 lens, with a 100%
increase in critical radius.

Curves of scale height versus angle of incidence for maximal resonance
absorption.



1. Introduction

Economic operation of a laser fusion reactor depends critically on
the amount of laser energy absorbed by the target material. It is well
known that collisional absorption decreases rapidly with increasing
electron temperature and therefore some additional process, probably
resonance absorption], is needed to account for the amount of absorption

observed experimenta]]y2’3.

Nevertheless, in many cases a substantial
fraction of the total absorption may still be attributed to inverse
bremsstrahlung and must be included in numerical simulations of resonance
absorption4.

In this paper we shall study linear collisional absorption by means
of geometrical optics, which applies whenever the refractive index of the
plasma does not change appreciably in a distance of one wavelength. Even
at normal incidence, when the ray penetrates to the critical surface, it
can be shown that geometric optics gives the correct absorption to within
a few percent, except for long Taser wavelengths and high-Z materia]s.5
For spherically symmetric isothermal plasmas the absorption integral along
a ray path can be reduced to a simple radial integral depending only on the
density scale height and angle of incidence. This integral is performed
in closed form in slab geometry, and asymptotically for small scale heights
and angles of incidence in the spherical case.

Besides reducing the total absorption, refraction at oblique incidence
also affects the distribution of energy within the corona6. Thus, an
optical system designed to give uniform illumination at the critical radius
(where the bulk of absorption occurs) may have to take into consideration

the varying refraction of individual rays. In section 3 handy formulas

are derived for ray displacements in terms of the density scale height



and angle of incidence in plane geometry, which approximates the

sensitive initial phase in illuminating spherical targets. The reason

for this sensitivity is the Rayleigh-Taylor instabi]ity7.
Both theoretical studies8 and numericalsimu]ations9 indicate that

if catastrophic growth of the Rayleigh-Taylor instability is to be avoided,

about 90% optical uniformity must be maintained at early times. Optimal

illumination studies]0

show that better uniformity usually means larger
angles of incidence as beams are overlapped. Thus, a certain amount of
uniformity must be sacrificed 1p favor of smaller angles of incidence,
to avoid excessive refractive loss of energy. In order to quantify this
trade-off we have calculated the net absorption for an ideal illumination
system, integrated over a spatial beam profile based on the aforementioned
optimal illumination studies. The results of section 4 show an encouraging
insensitivity to the maximum angle of incidence, due to the concentration
of energy near the beam axis. However, the effective (weighted average)
angle of incidence turns out to exceed the range where resonance absorption
is expected to be strongest.

A possible mechanism for reducing the effective angle of incidence
is the expansion of the critical surface as laser energy is absorbed.
Numerical simulations of pellet implosions over a wide variety of pulse

shapes and pellet sizes]]

predict an increase of 50-100% in critical radius
by the time the maximum laser power arrives. In section 5 we model this
expansion and calculate effective angles of incidence for a realistic

beam profile. The results are encouraging for small or moderate size
pellets. Unfortunately, as we show in section 6, it appears to be difficult

to achieve the requisite conditions for resonance absorption in reactor-

size pellets, even allowing for the expansion of the critical radius.



It should be noted that most of today's theory is motivated by the
need to interpret current experiments using small targets. 'Reéctor—grade
pellets are much more massive, with the consequence that corona temperatures
will be highly non-isothermal. Most present-day analyses of parametric
instabilities ignore temperature gradients. For example, back-reflection

12

due to stimulated Brillouin scattering, = a small effect in current experiments,

may well be more pronounced in more massive targets.



2. Classical Absorption

In the classical picture, individual electrons gain energy by absorbing
photons in the coulomb field on a nearby ion. For this reason, inverse
bremsstrahlung is often referred to as "collisional", or "free-free"
absorption. At low intensities, the classical and quantum-mechanical results
are comparable, in which case the latter treatment might be termed "semiclassical".
Both, however, are linear. The important nonlinear effects that come into

13 2

pilay at intensities greater than about 10 ~ W/cm™ will be discussed later.

Consider laser radiation obliquely incident on a spherically symmetric

plasma, as illustrated in Fig. 1. The intensity along a ray path is given

by

£ 2
exp (-fr(2)de) Wem", (1)
0

2= 0y

where ©IN is the flux incident on the pellet and % is distance measured

along a ray. The quantum mechanical free-free absorption coefficient,

corrected for spontaneous emission, can be wm‘tten]3
2
1/2 6 Z n
_4 .2 e \,2 "eff e -1
k== (5) (=) 575 T(x) cm (2)
mc NG
e
where, for a multi-species plasma,
2
_ <I™>
Lot = <7 > (3)

ee = k Te’ AL is the vacuum laser wavelength, N is the refractive index, and

f(x) = SI0X ¢ (x), (4)



FIGURE 1




where Ko(x) is the modified Bessel function of the second kind, and

b=

N

v - .
. 5
i (5)

Typically A =1 umand 6, = 1 keV, so that we may take x << 1 in Eq. (4)

and write

Lim f(x) = 2n
X >0

>[N

- 5772 = an (2.25 6, /hv). (6)

In a purely classical treatment of collisional absorption, f(x) is replaced
by #nA. The present discussion would more appropriately be labelled "linear"
absorption.

When the electron-ion co]]ision frequency Voi << 0, the refractive index

of the underdense plasma is simply

LT S
N = /4 wp/w = Vﬁ ne/nc, Wy <w (7)

Thus, inverse bremsstrahlung absorption is most effective for high Z materials
at relatively low electron temperatures. Restricting our attention to an

isothermal plasma, let us write

(8)
The total absorption suffered by a ray as it passes in and out of the corona

is then given by

_ -k A -
¢ABS = ¢IN (1 - e "a"). (9)

The quantity p = k A/2 is the optical-thickness. ‘r



We shall refer to
ng
—N-dz (10)

as the absorption integral.

The phase and group velocities are given by

c _
V = ——— (11)
p —w2 (1)2
p
Vg = c2/vp =ch - wg/w2 R (12)

showing clearly that the laser energy spends most of its time near the
critical surface where the bulk of the absorption takes place. A relevant

quantity of interest is the energy transit time (in and out):

t=2f8-2y & (13)

Ve -2l
p

Iﬁ.order for ray tracing studies to make sense, tT must be much less than
the laser pulse length. Even more restrictedly, there must not be significant
changes in the intensity in a time tT. To evaluate the transit time integral

(13), let us assume an exponential density profile

_ . =x/L |
e = N.e . - (14)

where x is distance measured from the critical surface and L is the scale
height. This profile is fairly accurate for isothermal atmospheres at

relatively low laser 1’ntens1’t1’es.]4 Then, at normal incidence,



2 X ux |
e ——— (15)
0 ¢4F:~;:§7f

where X is chosen where the plasma density becomes negligibly tenuous.

Carrying out the integral, we find

t. = 2K, & o (1 - e X0, (16)

T ¢

X/L

Let us choose X large enough that e~ << 1. Then

. A L
tp 2+ (44n2) - (17)

T

Since 2X/c is just the vacuum travel time, we see that the energy lag time is

simply
At = 42n2-%==2h773 % . (18)

For small pellets, L ~ 100 ym, so that AtT 2 0.9 psec. If X = 300 um,
the total transit time through the plasma is about 3.0 psec, still a very
short time, even for 40 psec pulses. For very steeply rising pulses there
is the possibility of some pulse shape distortion by the time the laser energy
reaches the critical surface, due to the time dependence of L.

Another approximation made in deriving the linear absorption coefficient

is the transparency condition,

vSu << 1, (19)
where V. is the electron-ion collision frequency. The full classical ab-
sorption coefficient may be written

20, s 1/2
e [ 2 2/ (1 - p)? (vc/wL)Z] , (20)




where
w2
B = 1 - —2—2——?— (2])
w +v
L C
When (19) is satisfied this simplifies to
w_ 2 v
<) - () (9 (22)
L G

As a sufficient condition for transparency let us evaluate (22) at the critical

surface where the absorption is strongest:
(o) _ '
Ve <<y . (23)

Kidder shows5 that, for AL = 1.06 um,

3 2nA c¢Z

(o) _ eff -1

Veke | = —~—;—§7§~——-cm . (24)

e
with 6, in KeV. Using (24) in (23) then gives the result,
Z 2nA .
—-“-‘;—%7—2-— <« 2 x 10t (25)
e

Since 2nA lies in the range 5-10 for kilovolt temperatures, we see that the
transparéncy condition is well met for DT or glass, but might be violated for
higher Z materials. |

The classical absorption coefficient (2) is subject to several restrictions.
First of all, at normal incidence, when the ray penetrates to the critical
surface, the geometrical optics approximation breaks down. Dawson, Kaw
and (:‘n"een]5 show that consideration of the full wave equation gives an jincrease

in absorption over that predicted by (2).
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A veritable host of pronounced nonlinear effects come into play at
higher laser intensities, perhaps the most important being density profile

modification due to ponderamotive forces,]6 and resonance absorption]. Other

16 stimulated Brillouin

16

effects include self-focusing in the plasma itself,

and Raman scattem’ng,]2

and parametric instabilities. For reactors, one might
consider 1 MJ of 5000 A laser radiation with a peak power of 1000 TW
incident on pure DT shells of radius 1 mm. These parameters imply intensities

2
16 W/cm™ and electron temperatures in the 10 KeV range. Thus,

of about 10
relativelysmall collisional absorption in highly non-isothermal
atmospheres, strong density steepening, and (hopefully) enhanced resonance
absorption can be expected.

With these caveats, let us as a first step evaluate the absorption

integral (10) under the very simplified conditions of an isothermal

exponential density profile.



3. Absorption at Oblique Incidence

In a previous report"0 we found that at least 12 and probably 20 beams
would be required to yield acceptably uniform irradiance over the pellet
surface. However, a price must be paid for such high uniformity in the
form of non-normal incidence and consequent refractive losses. The primary
aim of this section is to estimate the magnitude of these losses in a conceptual
laser fusion reactor.

Generally we find that for physically realistic spatial beam profiles,
the integrated absorption does not depend strongly on the maximum angle of
incidence, due to the concentration of beam power near the optical axis.
However, the weighted average ("effective") angle of incidence usually turns
out to exceed the range where resonance absorption is expected to be strongest.
It should be emphasized that the present work takes no account of such non-

linear effects as se]f—steepening]6

of the density profile, due to the
substantial ponderamotive forces generated at high laser intensities.

3.1 Slab Geometry

Consider a ray incident at angle ¥ on an infinite isothermal slab of

plasma, as illustrated in Figure 2. Assuming the density profile]7

-x/L
ng = nce X < X (26)

0 X > X
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o,

we can find the ray pathin the x-y plane as follows. From the invariant

' N(x) sine = siny , (27)
where ¢ is the angle between the noymal and the local tangent, we find
N(xmin) = siny ' | (28)
} dx
Yoo =sin¥ [ ———xu | (29)
min
Xn /ﬁz - sinzw
| Since »
Ne A - e (30)
we haye
. = 2L n secy (31)
Xnin
and
= X tan¥ + 2L tan¥ %n (cosy + Jéoszw _eML ) . (32)

Ymin
A quantity useful for computing the uniformity of energy deposited near the

critical surface is the net displacement

Ay = ¥ .. - Xtany (33)

or

Ay = 2L tan¥ &n (cosY + véoszw - e_x/L.) ) (34)
When ¥ is small, this reduces to

ays 2L v 1+ A -e Xy, - (35)

and when X >> L, Eq. (34) becomes

Ay = 2L tan? an (2 cosy) . ' (36)
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RAY DISPLACEMENT vs. ANGLE OF INCIDENCE
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FIGURE 3
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Note that Ay reaches a maximum for some value of ¥, as Fig. 3 shows for the
case X >> L.

The absorption integral (10) becomes

n2 dx

X
Lax=2f e , (37)

o A e coss

For the exponential profile (26), this may be written °

Sy ¢

A=2

¢
:zh&%v

2
= 4L f N (1 - N%) dN ’ (38)
sinY A2 _ <inly
where N? =1 - M, Thus,
8L véos v-e X/L (cos ¥ o+ %- X/L) . (39)
When X >> L,
A= %L-cos3w . ' (40)

This formula is widely used in estimating the effect of oblique incidence on
absorption. In the next section, we shall derive the analogue in spherical

~geometry as an asymptdtic series in L. A case of interest is ¥ << 1, but
-X/L

e not small. We find
3(2-7v) 2
= ___ + 'l
S U (-1 @) 7] (1)
' _ =X/L . . .
where y = e Equations (36) and (40) have been previously derived by
Bruecknf-_ur'.]8 Shearer]9 obtains a cossv law for linear density profiles.

- 3.2 Spherical Geometry

Figure T shows a ray impingingon a spherically symmetric isothermal

plasma. Note that in this case the projected angle of incidence at
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Terit? Y, differs from the exterior angle Wo. When N = N(r), an invariant

20
exists, known as Bouger's Law,
" rN(r) sing =‘rc siny =T N(rm) = R siny,. (42)

For small ¥, (42) yields

n
(I
r. =r. + s1n2W . (43)
| min c ln;I
For larger ¥, this is a good starting point for an iterative solution of
(42). For an exponential density profile,
r xr. +1L sinzw (44)
m c . .

While the angular displacement 6 is readily calculated, we shall omit

min
it here, since for multibeam systems, uniformity is of interest only at early
times, when the scale height.is short enough for the slab result (34) to

apply. The absorption is

d2 '
ar dr , (45)

>
]
%)
31‘~s8
:zh&%v

where we have taken r - « for simplicity. From Fig. 1
d2 = dr secs . : (46)
Thus,

rngdr
(47)

A(y,L)=2]
nn J§2N2 - sinzg



where ro has been scaled out. Note that A depends on ¥ and L through the
lower 1imit of integration as well as the integrand itself. Numerical
evaluation of (47) is complicated by the singularity at r,» even though

N(r) doesn't vanish for ¥ # 0. At normal incidence, (47) reduces to

2
oo n_ dr
A, =2f) & (48)
re YT =0 /n

On this case the integrand is singular at re because N = 0. For the

exponential density profile we again obtain

Ay =5, (49)
At oblique incidence, closed form expressions for A do not seem to exist.
However, two 1imiting cases may be treated ana1ytica1]y; (a) small incident
angles, for arbitrary L; and (b) small L, for which the slab geometry results
apply. |
Before proceeding to these special cases, let us ask whether-- L can be

predicted a priori. In slab geometry, the "isothermal blowoff model" gives‘]7

L= vst (50)

where

n 6

S — —
m,
4 ]

is the isothermal sound speed.
In spherical geometry, numerical studies and experiments suggest that

a better model may be

Ne = nC (r;:()z e—(r ) r‘c)/l‘ ' (52)
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The effective scale height at re is therefore

n
= . .S . L
“true T AT TR AN, - (53)

At early times the slab result is recovered, but at later times,

A3

Ltrue > Te/? - - (54)

"In most cases of interest we may let R + » in the absorptibn integrals,
the expansion front typically extending to about three scale heights or so.
Figure 4 -shows the normalized absorption integral A/Al_as a function of ¥
for Various scale heights for the exponential density profile (26). As one
would expect, the slab result,

3 .
A/A, = cos”Y (55)

is récovered as L - 0. In féci; because the curves cross near
y = 30°, eq. (55) fits to within 5% for L < 1, v 5_300. Thus, curvature
decreases absorption slightly at small angles of incidence, but substantially
increases absorption at larger ¥ due to the increased path length in the
plasma. ‘
An asymptotié expansion of A (¥,L) for ¥ << 1 may be carried out as

follows. Taking _

2 .2 sinly (56)

z2- =N - > .

< . r

eq. (47) may be manipulated into the (exact) form

.2 -
A/AJ_z 1 - %‘(1] + 12) sin"y, (57)

where

.
1, =] % (58)
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oo éX/L .
=] =5—dr, | (59)
r‘m rz )

where x = r-1, all distances being measured in units of ree For

small v,
L= I + I sinly ‘
] 1 1 - . (60)
L,=1,+1, SinZW
2=t I ; o (s1)
where -
Lo=2f A -8 dx.1- 12070 + 6.50202 ... (62)
PR
I,=6tf A - & ax ~au- 3.681L2 + 13,003 ... (63)
and
T d

L.
I]"’"

. |
o (1+x)° [T . (64)

1.'= - 51 dx

2 £ (v +x)° oL (65)

This gives the desired expansion

3,5 L% '
AR ~ 1 =5 (I + T) sin?y + > (1, + 1,') sin'y | (66)
from which |
LimaA/A, =1 -3 (1 +1,)42 . (67)
i )

This formula is very accurate for L <1and ¥ <10°% From

the asymptotic expansions (62) and (63) we see



Lim A/A = 1 - 3% (1+0.773 1)
Y0 (68)
L~+0

in agreement with the slab result as L -~ 0 and accurate to 0.1% for L < .2,
¥ < 10°,

In general, our attempts to improve on the cos3? approximation to A/AL
were disappointing, only modest improvements resulting for L < 0.2, ¥ < 40°
or for L < 1.0, ¥ < 10°.

4. Total Power Absorbed at Ob]ique_Incidehce

In estimating the total laser power absorbed by a pellet we must take
into account the distribution of angles of incident due to

(1) The specific optical element (lens or mirror) employed

(2) The spatial beam profile incident on that element

Consider then an annular flux tube incident on a spheriéa] target whose
center is located a distance Ax inside the focus f, as depicted in Fig. 5.
(assuming lenses for concretenéss). The plasma corona is assumed to extend
to an oﬁter radius R, outside of which negligible absorption and refraction

occur. The projected angle of incidence ¥ and lens angle £ are related by

siny = 2% sing | (69)
r _
where
L
tang = 4= (70)
Recall that the f/no. is
F=f/2R . (71)

In eq. (69) we assume that the critical radius remains near the original pellet
radius, so that ¥ is a known function of the lens radius r - In reality re

usually expands by about 50%, which enhances absorption, as will be seen in

the next section.
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23 .
The flux ¢in (w/cmz) incident on the pellet at r = R is related to the

flux on the lens ¢L{fL) by

¢ dA, = ¢. dA. ,

(72)

LL in “in
which yields an expression for the target irradiance
. 2' X
- f\2 1 + R cosB :
¢, =¢ (r) (3) : (73)
in | LY L7 R (cosg + %5 3 |

To calculate the total absorption, we first observe that in the presence of

focusing, the exponential Taw, eq. (1) must be replaced by

._a.q1=—l<_¢>+(

1)
oL 37

8%’ foc (74)

An infinitesimal flux tube of cross sectional area &a encloses a power

5P = osa. ‘ (75)
Along this flux tube
> 3%y  _ & 3
L5E)foc = - % g Se (76)

Using this expression in eq. (74) and integrating then yields

&P . = 6P.né° i (77)

Thus, it is power, not flux, that obeys an exponential absorption law.
To apply eq. (77) to the problem at hand, let us integrate over all flux

tubes incident on the pellet

- JKds - fkd2
Pout = [ e . = e dP, . | (78)
The total power incident on the lens is
Pin = PL = f @L(rL)dAL. | (79)
The fractional absorption is therefore
3y
]RL ; ; KOALcos ki
he Pout= i L rLer
AB PL RL s (80)
f o rpdr,
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where ¥(r) is given by (69) and (70). Finally we may define an “"effective

angle of incidence" by
3

-k A cos Y
P =P et eff | | (81).
As a specific example let us take
3
-(r; /a)
= L 82
olr)=oge = . - (82)

with a = 0.70. This beam profile, depicted in Fig. 6, gives good uni-
formity]o for 20 f/1.5 Tenses and a beam overlap 6y, > 50°. To com-

plete the necessary algebra we have, from Fig. 5,

§ = Ax/rc = 2F sinemax - cosB .. . (83)
. ‘ 2 2
: 1 + 4F

The integrated absorption and Yopp are shown in Figures 7 and 8 for
several values of « L, with L in cm and, for AL = 1.06 um,

) 3 &nA Zogs ]
3/2

%

' Thus, if ee = 1 keV and Zeff =1, L= 10_2 cm, KOL'= .25 and

%o

Np ~ 45%. b reaches a max imum and ?eff vanishes at emax =g
= 18.40, as they should. Due to the concentration of energy near the
~ beam axis, the refractive loss at oblique incidence is quite moderate,
amounting to only a few percent at 6 __ = 509,
max
For reference, Fig. 8 also shows the maximum angle of incidence,

assuming f/1.5 lenses. Thus, at emax = 50° most of the beam energy is
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. . ~ 0 . - o) .
incident near ?eff ~ 207, considerably Tess than wmax 31.57, but still
above the range for effective resonant absorption.

5. Effect of Expanding Critical Radius

When r_ increases in time, the projected angle of incidence ¥
decreases, enhancing absorption. Suppose that re has moved out to a

pqsition r_'; then, as Fig. 9 shows, the anale of incidence is reduced to

c
e
siny' = -5+ siny . , (85)
e
Thus re
rL rc' )
sin?'(rL) = == (86)
%rf + 4F2

Using (86) in (80) and (81) we readily define a new absorption ”éb
and effective angle of iqcidence Wéff.

Since 8' < 9, the effective spot size is also reduced as re increases.
The resulting degraded uniformity of illumination is of no consequence at
later times, where a substantial hot corona has been established. While
| it is 'straightforward_ to calculate e'max’ we shall pTot néb and ?éff Vs.
emax’as this is our reference value. The integrated absorption is shown
as the dashed curves in Fig. 7 for rc' = 1.5 re and in Fig. 10 for
rc.' =2.0r.. Clearly, the effect of these (quite typical) expansions is
to reduce refractive losses due to nonnormal illumination to entirely
negligible levels. The burden then falls on resonant absorption to

absorb the remaining energy. As Figs. 11 and 12 show, the expansion
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- . B = (o]
of r. can dramatically reduce Weff' For example, if emax 507,

¥opp = 14° for r ' = 1.6 r, and Yo 10% for r ' = 2.0 1.

ﬂe have also calculated nyp and Yorg for £/3.5 lenses. An
illumination system composed of 20 f/3.5 lenses takes up only 10% of the
target solid angle as opposed to 50% for 20 f/1.5 lenses. As Figure 13
indicates, the absorption again does not depart significantly from
that at normal incidence, the net absorption at emax = 50° being only
slightly inferior to that using f/1.5 lenses. On the other hand, the
effective angles of incidence are significantly larger using f/3.5
Tenses, as shown in Figs. 14-16. This time the values at re =1, 1.5 and
2.0 are about 25°, 17.5% and 12.5°, resp., all at 8oy = 50°. Since
resonant absorption is expected to be strongest for ¥ = 7~]O°, it is
éﬁparent that f/3.5 optics exceed this range, even for large expansions

of Fes while f/1.5 optics are marginal, and then only if re doubles by the

time the bulk of the laser pulse arrives.
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6. Resonance Absorption and Density Profile Steepening

It is generally acknowledged that nonclassical processes must be invoked
to explain the amount of absorption experimentally observed, and required
for projected reactor-grade implosions. The prevailing view is that
resonance absorption] plays a dominant role, the p-polarized component
of E driving plasma oscillations at the critical surface. A total absorption
of over 50% may be obtained in this way.

Resonance absorption is maximized when

3

Lsin 6, = A/10.6, (87)

where %, is the angle of incidence (our ¥) and L is the scale height at
the critical surface. In the absence of any density profile steepening,
strong absorption is confined to a rather narrow range of 60. Typical values
are 30-50% absorption. Figure 17 shows L as a function of 8, for A = 0.53um,
1.06um‘and 10.6pm.  For current experiments on small targets (L = 50-100um)
with A = 1.06um, the optimal angle of incidence is seen to be 6-7°, but
reactor-grade pellets (L = 1000um) would require 6, = 3°. It is difficult
to see how such small angles of incidence could be produced under conditions
of uniform illumination.

Fortunately, density profile steepening due to radiation pressure, as

16 broadens the effective

well as by the resonance absorption process itself,
range of incident angles. Extensive numerical studies have been carried out
for small pellets, for which scale heights as small as Tum have been

measured.Z]

Further numerical simulation is needed to estimate the degree of
self-steepening and resonance absorption in the larger pellets envisioned for

use in a laser fusion reactor.
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