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Abstract

A quantitative theoretical understanding of the void growth phenomenon
is vital to the experimental metal swelling programs. This paper describes
a Time Dependent Rate Theory Model of void growth and it is correlated
to experimental results. It is shown that reasonable agreement between
theoretical and experimental swelling data can be obtained for 316 stainless
steel under steady state electron and ion irradiations. This model is then
applied to pulsed irradiation to study the effects of annealing between
pulses on the reduction of swelling. It is concluded that there exists a
temperature dependent critical time in between pulses, tgrit’ such that if

crit

crit voids shrink and at t < tp

the time between pulses is greater than tp

voids will grow.
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Fully Dynamic Rate Theory (FDRT) Simulation of
Radiation Induced Swelling of Metals

N. M. GHONIEM and G. L. KULCINSKI

I. Introduction

The steady-state rate theory model for void induced swelling was

originally developed by Harkness and Li (1969,1971)(]’2’3)

4)

and by

Wiedersich (1972)( and has been expanded by Brailsford and

Bullough (1972,1973). (5:6)

The object of this work is to extend the
previous work to include dynamic effects. We first describe the time-
dependent rate theory model in its general case, and then develop an
analysis applicable to specific material and irradiation conditions.
The procedure in this paper is to preserve the physical picture, as much
as possible, away from mathematical difficulties which are explained in
more detail e]sewhere.(1])

The idea in a rate theory model is to replace all the discrete sinks
in the solid, including the voids, by equivalent homogeneous distributions
of sinks in a continuum. In this continuum, the various sinks are given different
strengths to insure that the flux of defects will be as close as possible to
the flux at the actual (geometrical) sinks in the real solid. Replacing the
discrete and actual distributions of sinks by an equivalent and idealized
continuous distribution will have the obvious advantage of space independence
of the problems and should be especially applicable to heavily damaged
structures. With such boundary conditions the vacancy and interstitial
concentrations, and the governing equations for these concentrations now
reduce to a simpler pair of time dependent equations.

The simultaneous equations for Ci and Cv, the time dependent inter-
stitial and vacancy concentrations (far from sources and sinks), have

the form:



{production rate}-{sink removal rate}-{recombination rate}={rate of change of
defect concentration}.

Previous treatments of the rate theory applied to metal swelling
under irradiation also assumed either a steady state situation for all
material parameters during irradiation, or a quasi-steady state situation.
Cellular models and early homogeneous rate theories also assumed the existence
of a steady state point defect concentration as well as constant sink strengths.

In this effort, we try to study the time behavior of relevant

materials parameters. Experimental and theoretical investigations have
revealed many facts about the time behavior of different microstructure
parameters, for exampie, it is known that the nucleation of voids and dis-
location loops is much faster than their subsequent growth. If one would
use the expression of a "time constant" to describe the time behavior of a
certain process, then the nucleation time constant (1/time for process to
occur) is much larger than the growth time constant. Also

the interstitial concentration time constant for any process is always
larger than the similar vacancy concentration time constant. Both vacancy
and interstitial time constants are larger than the void or interstitital
dislocation loop nucleation time constants.

During irradiation, there is a time period during which the defect
removal rate to sinks and the recombination rates change rapidly. This happens
at the start of irradiation when the materials parameters are driven by the
rapid changes of Frenkel pair concentrations with time. An important
consequence of this situation is that there will be a different behavior
of all the physical parameters that describe the microstructure of the

material under irradiation. Among these quantities of



interest are the nucleation rates, the size distribution of embryoes and
the forward and backward reactions that lead to microstructure evolution.
Examples of the latter process are the growth kinetics of voids and
disTocation Toops. This paper will only consider the growth of these
defects and subsequent work will treat the nucleation phenomena.

II. Steady-State Theoretical Models of Void Growth

Voids grow ultimately because edge dislocations have a stronger
attraction for interstitials than for vacancies. While it is true that
vacancies are certainly attracted to dislocations, the larger distortion
field associated with an interstitial results in a stronger attraction
(particularly to the dilated region) and thus a preferential drift.

The dislocations thus act as sinks for both vacancies and interstitials but
are more effective for interstitials and the relative strength of this
bias for interstitials can be estimated from our basic knowledge of

point defect-dislocation interactions. Suitable dislocations are always
present during the irradiation, some because they were present before

the irradiation and others as a result of interstitial and vacancy
clustering during the irradiation. Irradiation produces vacancies and
interstitials at an identical rate and since the interstitials are much
more mobile than the vacancies they will very soon begin to form inter-
stitial clusters which quickly transform to interstitial dislocation Toops
which are usually pure edge in character. The growth of these loops will

then be



facilitated by the preferential drift of more interstitials. This slight
preferential Toss of interstitials to the dislocations means that the

net point defect flux into any other neutral sink, such as the small

gas bubble (void embryo), will be vacancy in character and thus void nuclei
will grow. Void growth thus requires at least one other sink type in addition
to the void nuclei and that additional sink must have a preferential bias

for interstitials. The steady state concentrations of vacancies and
interstitials are achieved as a result of loss of such defects at sinks

and by mutual recombination.

In addition to forming voids,some vacancies will form small vacancy
Toops in the center of the displacement spikes.(23) Such Toops will also
preferentially attract interstitials and therefore their growth should
be inhibited. However, the kinetics of void growth may be influenced
by the transient presence of such vacancy Toops because they tie up
vacancies that normally would have contributed to more swelling.

In the last few years,several theories of the void growth process
have been developed with the principle object of correlating and
explaining the available swelling data from reactors, accelerators and
the high voltage electron microscopes. It is hoped that such theories,
when based on sound physical principles and correlated with data, may
be used to confidently predict the swelling behaviour of different
materials subjected to neutron doses greater than those achievable in
the present testing facilities. Such extrapolations will assist designers
in the choice of materials for future reactor components.

As stated previously, all the current theories of void growth are based
on the fundamental hypothesis (which is supported by a wide range of

metallurgical experience) that the interstitials are preferentially attracted



to the existing dislocations compared with the vacancies. Such theories may
be divided into two classes:

II. 1. The Cellular Model

In this model the body containing NV voids per unit volume is

divided into spherical cells, each initial of radius Ro where
-1/3

Ro = 0.68 NV (1)
and each with a spherical void, of radius rV(O) at its center. This
approach has been developed in a series of papers by Bullough and Perrin
(1971, 1972)(7’8) and by Forman (1971)(9). The other sinks in the body,
be they biased (dislocations) or neutral (precipitates), are continuously
distributed throughout the body. The subsequent swelling may then be
studied by following the growth of one such void when diffusion processes
are permitted in the cellular region around it.

The disadvantage with this model is that the governing diffusion
equations for the steady-state interstitial and vacancy concentrations
are second order non-linear simultaneous equations; the non-linearity
arises from the recombination terms which are proportional to the product
of the interstitial and vacancy concentration and also couple the equations.

A more convenient theory is the rate theory approach which is

discussed below.



IT. 2. The Rate Theory Model

The simultaneous equations for C; and Cy» the steady-state inter-

stitial and vacancy concentrations, have the form

- 2 _ = 2
P - D;CkE - aCiC =0 (2)

[ 2 _ -
P DVCVkv a cicv 0 (3)

where Di’ Dv are respectively the interstitial and vacancy diffusion
coefficients, o is the recombination coefficient, P is the point defect
generation rate*and P' is the enhanced defect generation rate for the
vacancies, incorporating their thermal emission from the dislocations

and neutral sinks (voids). The parameters ki and kV have been deduced

by carefully calculating the effective sink strengths in the continuum in

relation to their strengths in the real body. In fact,ki'] ]

and kv
represent the mean free path of an interstitial or vacancy respectively
to a sink.

The sink parameters have the explicit form(5)

2 = . c 4
ki Z].pd + 4n rVNV + Y1 4n rp 0 (4)
ks = vad + 4 rVNV + Y, 4 rpCp (5)

where NV is the concentration of voids of radius r._ and o is the total

v
dislocation density,

pd=p'a+pg- (6)

In this division of g ph is the irradiation produced dislocation
density in the form of interstitial loops and pg is the original

(deformation produced) dislocation network density. The quantities

* generation rates are expressed as fraction per second



Z; and Zv define the percent preference that dislocations are assumed
to have for interstitials. Fina]]y,cp is the concentration of coherent
precipitate sinks of radius rp. As the irradiation proceeds the
quantities pg and ry will increase; the latter neutral sink radius

can represent either a void growing from an embryonic gas bubble or a
void growing on an incoherent precipitate. In either case the transient
variation of ry defines the required swelling kinetics. In contrast. the
radius of any coherent sinks rp will not change since it is assumed that
such coherence precludes accumulation of point defects of either

type. The net result of such sinks is an enhanced recombination rate and
the failure to accumulate defects requires that such sinks automatically
must generate an induced preference for interstitials (to compensate for
the interstitial depletion at the dislocations). To achieve this, their

strength is defined by the Vi Y, parameters in Eqs. (4) and (5).
III. Fully dynamic Rate Theory (FDRT)

Bullough, Eyre and Krishan (BEK hereafter) extended the steady state rate
theory (SSRT)(1O) to include the formation of vacancy loops from displace-
ment cascasdes. A quasi-steady state description of the Frenkel pair
concentrations was used. The effort in this paper is an extension of
the BEK rate theory, including the formation of vacancy loops in
collision cascades, to allow for possible time-dependent applications
of the theory. One of the main difficulties in this extension is the
wide range of the "time constants" of this problem as shown later.

Now Tet rvz(O) be the average radius of the vacancy loops

immediately following their athermal formation. To be consistent with



the content of defects in typical cascades,(23) rVQ(O) will be taken to be
15 Angstroms. We also introduce the parameter e, where, if P is the fractional
Frenkel pair production rate, then eP is the fractional rate at which
vacancies are remoyed from solution to form vacancy loops. To study the
growth of voids, € could be used as an adjustable parameter to account
for the subtle distinction between electron irradiation (where € = 0),
heavy ion irradiation and neutron irradiation.

If b is the magnitude of the Burger's vector, the atomic volume
3 *

is b” and Nye is the fractional concentration of vacancy loops created

per second, then:

The number of vacancies in a vacancy loop = m rvlzb/b3 (7)
2
and : - ePb”
v . 2(0) ) (8)
vl

When a vacancy loop has formed, it will immediately act as an
interstitial sink because of the dislocation character of its perimeter.
It will then instantly be attacked by interstitials and consequently
shrink. At high temperatures the loops will also shrink by thermal
emission and this process will be greatly assisted by the high line tension
of such small loops and by the stacking fault energy if the loops remain
faulted. Thus, each loop will have a finite lifetime t and the number
of vacancy loops per unit volume, sz’ present at any time t is given

by the simple rate equation

dn,,(t) n N, (t) (9)

dt b3 T

* Here fractional concentration refers to number of Toops per atomic lattice site



where the first term on the righthand side is the loop generation rate
and the second term represents the loss term due to shrinkage.

The Tifetime, 7, of an individual loop is a function of time in
the sense that it depends on the state of the overall sink distribution
prevailing at its instant of creation. From a Taylor series expansion

of rvz(t) we have

(10)
ve' ™ e (0)]

To calculate the shrinkage rate of vacancy loops, one has to

explicitly write the rate equation for an individual vacancy Toop

dr . (t) B ¢ (t
it T b GGt zpopc{t) - ZvaCve"P([st * P D

(11)

Here, one defines:

N
1l

dislocation bias for vacancies, normally taken to be unity

N
n

I dislocation bias for interstitials, > 1.0

=)
n

y = vacancy diffusion coefficient, cm2/sec

DI = interstitial diffusion coefficient, cm2/sec

the thermal equilibrium concentration of vacancies (at./at.)

[g]
[l
1l
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Cv(t) = fractional vacancy concentration (at./at.)

k = Boltzmann's constant (ev/oK)
T = temperature (°K)
Y¢¢ = stacking fault energy (ev/cmz)
and
- ub2 r+b
Fe1 = TYan(ropy 0 (7§;> | (12)

is a bounded form (at r = o) for the elastic energy of a dislocation

loop of radius r, and
u = shear modulus (dynes/cmz)
v = Poisson's ratio.

The Toop lifetime will then have the form

2

(t)

ry (O0D/1ZDC () + Z,D,C (¢) exp {[ysf + Fi}(rvz(o))] bz}

-Z,D,Cy ()} (13)

The atomic (at/at) concentration of vacancies in vacancy loops

_ 2
Qye= ™ Ny - (14)
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Hence the rate equation for the fractional rate of change of vacancies

in yacancy loops would then be:

dq , (t)
gt <P -\ aray (N (6)/b 12,01 (2) - 7,0,0,(t)

+ D08 exp ([ygp + Fyplr, )] b2/KT)) (15)

The void radius rate of change is given by »

dr,, (t)
v 1 3
at o C ?V(t{”vcv(t) - D;¢{t) - Dvcs €xp [(ZY . pg) ETJ} . (16)

"

ry = void radius {(cm)

vy = surface energy (eV/sz)

p_ = gas pressure inside the void (eV/cm3)

g
3nng
pg = 3 A (17)
Mﬂrv-3bfb/ )
ng = the number of gas atoms within each void
cm3
b, = Van der Waal's coefficient. (Zrgr)

The percentage swelling is given by

S = %ﬂrng x 100 (18)
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where NV is the number of voids/cm3.
For interstitial loops in the stress free case, the following rate
equation would apply
dr

ig

1 | o
-t " b [ZIDICI(t)- zVDVcV(t)+ Z,D,Cy x

exp {"[st + Fe1(r12,)] bz/kT}] . (19)

Under pulsed irradiation conditions the point defect concentrations
will never be in a steady state so it is now interesting to study the'time
for the point defects to reach a quasi-steady state equilibrium with
the time varying sinks. The relative importance of recombination and
Toss to sinks can be determined by using a Fully Dynamic Rate Theory

(FDRT) formulation. Let us now follow the different rate processes for

point defects.

'The two time-dependent rate equations for point defects are given

by A
_ _ dCI(t)
and
dCV(t)
Plt) + (1 =€) P(t) - ay(t)Cy(t) - alp(t)Cy(t) = —F— . (21)

Now if we define

PR(t)

rate of recombination (at./at./sec.)

P (t)
SI

rate of interstitial leakage to all sinks (at./at./sec.)



P

P
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Psv(t) = rate of yacancy leakage to all sinks (at./at./sec.)
Pe(t) = rate of vacancy emission from all sinks (at./at./sec.) and
can be restated as
Po(t) = PY(t) + Pd(t) + PI%(t) + pV¥(e)
e e e e Pe (22)
where

PZ(t) is the rate of thermal vacancy emission from voids,
Pg(t) is the rate of thermal vacancy emission from edge dislocations,

Pég(t) is the rate of thermal vacancy emission from interstitial loops,

and

Pzz(t) is the rate of thermal vacancy emission from vacancy loops.

The various terms in Equation 22 are:

&P:(t) = 4ﬁrv(t)NV03 exp [(2v/ry(t) - py) b3/kT] (23)
po(t) = 2,030,y o (24)
) = zp03"0,0 (25)
JHE) = zygegtoycy - (26)
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The interstitial Tloop dislocation density is given by

o8] = 2mry, (Ey, e
and
pgg(t) = ZHFVK(t)NVg(t) (28)

is the vacancy Toop dislocation density in cm/cm3.

Now

Po(t) = ol (t)Cy(t) (29)

where o is the recombination coefficient and given as

m
~E /KT

m
o = g(vle + Vv e'Ev/kT) L (30)

v
In Equation 30, g is the combinatory number, 2 is the interstitial

m

frequency, vy is the vacancy frequency, EI is the interstitial migration

energy, and Ev is the vacancy migration energy.

S

Pop(t) = A (£)C; (1) (31)

AI(t) is a time dependent total interstitial leakage time constant

MOEPHOREPLL (32)
and |

x¥(f) = 4wrv(t)NVDI (33)
is the interstitial leakage time constant for voids and (34)

AJ(t) = 2,0,(0g +o (1) + o3t (1)) (35)
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is the interstitial leakage time constant for dislocations. (36)

Also

Poy(t) = 2, (t)c, (t)

lv(t) is a time dependent total vacancy leakage time constant

A (8) = 208 + () (37)
where
(L) = dmry ()N, (38)

is the vacancy leakage time constant for voids and
d - 0 Ve 12
is the vacancy leakage time constant for dislocations.

According to the previous definitions, Equations (20) and (21)

for the time rate of change of Frenkel pairs could be written as:

. dC,(t)
o dbptt)
L = P(t) - Pgy(8) - Pelt) (40)
and ]
dc, (t) ' ‘
_____gt = PE(t) + (1-e)P(t) - Pgy(t) - Pp(t) . (41)

IV. Numerical aspects and Solution of the FDRT:
Equations (11), (15), (16), (19), (20), and (21) represent six

non-linear interdependent first order differential equations. In the
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following we present the highlights of the calculational method used to
solve this system. A computer code "TRANSWELL" has been developed
to simulate TRANSIENT SWELLING irradiations. The details of the
computations and a descriptioh of "TRANSNELLf is given elsewhere. an
One of the difficulties of solving time dependent materials problems
is the "stiffness" of the resulting system of equations describing the
phenomenon. Roughly speaking, an ordinary differential equation (ODE)
system is called stiff if it involves both very rapidly changing terms

and very slowly changing terms, all of a decaying nature. More precisely,

we consider the eigen values Ai of the N x N Jacobian matrix

and suppose that the A, all have negative real parts. The "time
constants" of the problem are then Ty T 1/|Re(Ai)| and the local

t/y,

decaying nature of the solution is given by the exponentials e~
If the N time constants T; are widely spread, and those terms with the

smaller T have already decayed to an insignificant level, while those

with larger T1'S have been hardly effected, then the system is stiff.
Actually, some of the Re(Ai) may be non-negative (meaning that some
solution components are non-decaying), and the system would still be

.) have a relatively

called stiff if some of the remaining negative Re(x1

large magnitude. It should also be recognized that the property of
stiffness is local; that is a problem may be stiff in some regions of
t and not in others. Finally, a relative measure of the stiffness is

the ratio (max Ti/min Ti).
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The difficulty with stiff problems is that most conyentional methods
for solying ODE's require the incremented values of time commensurate
with min Tys while the size lT-tol of the problem range is commensurate
with max Ty As a kesu1t, the problem cannot be run to compietion in a
reasonable number of steps.

The above problem can be addressed by using a numerical method
developed by C. W. Gear.(]z) The package contains both the implicit
Adams methods and the backward differentiation formulas, or the methods
of C. W. Gear, as options. With Gear's methods, the increment h is
restricted to small values, by the requirements of accuracy, only where
the solution is relatively active. By definition, the problem is not
stiff in such regions, and accuracy is achieved at minimum cost by
allowing both h and the order of the method to vary. Then in regions
of stiffness, where the solution is inactive, Gear's methods have the
property of "stiff stability," which assures that h is no longer
restricted by the small time constants, unless or until the corresponding
rapidly decaying terms become active again. This property necessitates,
among other things, that the method be implicit, and therefore that a
system of (generally) non-linear algebraic equations be solved at each
step. Moreover, stiffness dictates that a fairly powerful iteration
method be used to solve this system, and the GEAR package contains
variants of Newton's method (called chord methods) for this purpose.

A detailed explanation of these terms and features are incorporated in

the "TRANSELL" report. (11)
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Consider the components of the vector T(t) defined by

Y(1) = rv(t) = average void radius (cm)

Y(2) = riz(t) = ayerage radius of an interstitial loop (cm)

Y(3) = sz(t) = number of vacancy 1oops/cm3

Y(4) = qu(t) = vacancy concentration in vacancy loops only (at./at.)
Y(5) = Cv(t) = total vacancy concentration (at./at.)

Y(6) = C.(t) = interstitial concentration (at./at.).

1

The governing ODE describing the time rate of change of the

components of the vector Y(t) could be written explicitly as

2 3
YT 2 DyY(5) - DyY(6) - Dyc exp< [y - Pg]b>

kT

Y(1)

i

Y(2)

1 _ 2
b § £0rY(6) - Z,D,Y(5) + ZVDVC3 exp< Hsf“eﬁiy(z))]b >

Yooy p Y(3 0
Y(3) = —&— - ———{—%—- Z,D.Y(6) - Z,D,Y(5) + Z,D,C° ex
2 (0)p  Tyglo)B |“I'1 voy yUyly XP

(43)

(44)

(?st+Fez(rvz(0))]b%>
kT (45)
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Y(4) = &P - JATY(A)Y(3)7b {z,D;Y(6) - Z,D,Y(5) + zvnvcg
2
< S ekT v (46)
2 3
) YTXT - P_|b
Y(5) = 4nY(1)NVDVc3 exp (F 1 o 9] \>4-vagDvC3 + 2mZyY (2N, Dy

2
[y etF_,(Y(2))1b
03 exp < sf esz + 21Z, v Y(3)DVC\7

Vv
<[‘Y5f+Feﬂ,(erL)]b2> 0
exp T + (1-¢)P - (41TY(1)NVDV + ZVpdDV
+2nY(2)Zy N, Dy + 2mr, (¥ (3)Z,D,)Y(5) - oY (6)Y(5) (47)
Y(6) = P - (4nY(1)N,Dy + pgZ;D + 2nY(2)N Z,D; + 2mr, Y(3)ZD;)Y(6)
- aY¥(5)Y(6) (48)
and y = [Y(&)/7 . (49)

Vi
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It is noted that the time constants of the vector components
Y(5) and Y(6) are much larger than the rest of the components. The
main reason to order the system in the previous fashion is compu-
tational flexibility. For quasi-steady state claculations the complete
set of equations are solved simultaneously until the vacancy and
interstitial concentrations reach a quasi-steady state equi]ibrium.f
Such a system, with a weak time dependence on the défect concentration
is shown later in Figure (2). After the quasi-steady state is reached, the
system is then reduced to a set of four equations (43-46) with continuous
updating for Frenkel pair concentrations.

V. FDRT Applied to Time Independent Irradiations

FDRT is particularly sutiable for time dependent irradiation
conditions, but it could be easily applied to time independent
irradiations (such as neutron irradiation in fission reactors or
electron irradiation in a high voltage microscope). We will study
both types of irradiation here starting with the steady state defect
generation case.

V. 1. 1 MeV Electron Irradiations of M316 S.S.

Since collision cascades are not produced in electron irradiated
metals, vacancy loop formation is not then expected and the cascade
efficiency can be set equal to zero. In this case we have only four
components of the vector 7; Y(T1), Y(2), Y(5) and Y(6).

The parameters for M316 steel (solution treated) listed in Table 1

were adopted for these ca]cu]ations:(]o)

*Quasi-steady state point defect equilibrium is reached when the sink structure
has a weak time dependence, and could be considered fixed within a certain time
interval.
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Table 1
Summary of Materials Constants For 316 SS Void Growth Calculations
Surface Energy, vy = 1.25 x 1017 ev cm 2
Vacancy formation Energy, E¥ = 1.6 ev
Vacancy migration Energy, E% = 1.3 ev
Interstitial formation Energy, E? = 4,0 ev
Interstitial migration Energy, E? = 0.2 ev
Vacancy diffusivity, DS = 0.6 cm? g1
recombination coefficient - 108 o2
interstitial diffusion coefficient’ D
stacking fault energy, \ = 9.4 x 1012 ev cm™?
deformation produced dislocation density,pg = 108 cm'2
Burgers vector, b =2 x108 cm
dislocation bias for vacancies, Zv = 1.00
dislocation bias for interstitials, Z; = 1.08
Effective moduTus, u' = u_ =4 x 10" dyne cem?
-V

To represent nucleation conditions, temperature dependent void and interstitial

loop concentrations were used. The temperature dependence of void concentration

(13)

(eq. 50) is based on experimental observation while the interstitial Toop

concentration (eq. 51) is a suitable fit governed by the reasonable agreement between

theory and experiment. (10)
N, = 6.5 x 10° exp(1.0/KT) (50)
N,i = 6.7 x 1075 exp(2.8/KT) | (51)

il
The four equations for Y(2), Y(3), Y(5) and Y(6) are then solved numerically

with the initial conditions

r,(0) = 10 R (52)
rig(0) = Jar 3(0) n /3N, (53)
N, (0) = 0, (54)
a,,(0) = 0, (55)

Pg(0) <2 v/r (0) . (56)
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The Tast condition represents a void slightly larger than an
equilibrium gas bubble and is necessary because a surge of interstitials
will rush to the void shortly after the beginning of irradiation tending
to shrink its size. An equivalent condition to (56) is continuous
re-emission of helium atoms from the void to maintain an equilibrium
gas bubble.

At irradiation times of the order of the first few microseconds,
neither interstitials nor vacancies are mobile enough to migrate to neutral
and biased sinks. Also their concentrations will be so lTow that the mutual
recombination is neglected. Under these conditions the rate of change of
the concentration of vacancies and interstitials is almost equal to the
production rate. In Figure (1) the initial slope of Ci(t) and Cv(t) is
about 5 x 1073 at/at/sec, the actual production rate. The build-up of
the interstitial concentration coupled with their high mobility will
cause the interstitial sink removal rate to be large at about 10'5
seconds. The concurrent build-up of the vacancy concentration also
produces a high recombination rate. Consequently the total interstitial
concentration has to pass through a maximum and decrease in value as
a function of time. As time progresses, the high vacancy concentration

and the mobility of vacancies will produce a vacancy sink removal rate

which increases with time. After a few vacancy mean lifetimes the vacancy
concentration will decrease with time producing the broad maximum as shown in
Figure (1). The recombination rate is a strong function of the concentration

(quadratic) while the sink removal rates are linear. After an accumulated dose of
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0.01 - 0.7 dpa the point defect concentrations will decay siowly with
time which makes the recombination rate also decrease to the point

where the various sink removal rates are the dominant loss mechanism.
The increase of the sink removal rates is due to the growth of voids and
interstitial loops.

IV. 2. 22 MeV ¢ Ion Bombardment of M316 S.S.

The swelling behavior of solution treated M316 stainless steel was
intensively studied because of its commercial importance. Mazey, Nelson

(14) and Wi111ams(]5)

and Hudson irradiated samples of S. T. M316 S.S. with
22 MeV ¢t dons and determined the dislocation densities, average void
diameter and final swelling as a function of temperature. An attempt was
made to duplicate this data using FDRT via the TRANSWELL(l]) code. The
stainless steel materials parameters were taken as described in table 1.

Void and interstitial loop concentrations at the end of the nucleation
phase and the start of the growth phase were taken as

N, = 3.15 x 10'T exp(0.625/kT) (57)

N,. = 1.34 x 10°% exp(2.8/kT) (58)

il
and the fraction of vacancies forming vacancy loops (g) is taken as 0.044.
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Figure (3) shows the swelling predicted by the FDRT theory and that
measured in the experiment. At low temperatures the vacancies are immobile and
high recombination rates are expected so that a smaller fraction of point
defects migrate to biased and neutral sinks. This will tend to suppress
swelling. At intermediate temperatures (around 550-650°C) vacancies are
very mobile and sink removal rates have in increased importance leading to
higher values of swelling. At high temperatures (higher than 650°C) the
irradiation produced vacancy concentration will be comparable to or smaller
than the thermal vacancy concentration. In this temperature regime the
irradiation is unable to cause high swelling values due to high vacancy
emission rates and Tow dislocation loop densities.

The temperature dependence of the average void size at 40 dpa is shown
in Figure (4). There is rather good agreement between experimentally
measured void diameters and those predicted theoretically over a wide range
of temperatures.

The predicted disTocation density is much higher than observed
experimentally as shown in Figure (5). The theory predicts that the bulk
of the dislocation sink density is in the form of small vacancy loops.
However, since vacancy loops are expected to form with very small
dimensions, in the order of tens of angstroms, the experimental observation
of vacancy loops will be difficult. Bearing in mind these experimental
difficulties, it is felt that experimental and theoretical dislocation
densities could show general agreement over a wide range of doses.

The predicted dose dependence of the average void and interstitial
loop radii for 22 MeV ct* irradiated S.S. are shown in Figure (6). The

dose dependence of the void and loop radii is not strong at low
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AVERAGE VOID DIAMETER (d,)

28

Fig. (4) COMPARISON BETWEEN THE FULLY DYNAMIC RATE THEORY
(FDRT) AND EXPERIMENTAL RESULTS FROM TM. WILLIAMS
(AERE HARWELL). THE TEMPERATURE DEPENDENGE OF
VOID DIAMETER AS A FUNCTION OF TEMPERATURE AT 40 dpa

IN SOLUTION TR][._EATED M3IIG SS. IRRII\DIATE_D WIITH 22 MeVC**IONS.

i

==+= EXPERIMENTAL RESULIS FOR EV(WILLIAMS, 1971)
= FDRT RESULTS FOR d,(GHONIEM, 1976)

800} T

700}~ 7

600

3
P

400

300

200

100
50

-/.

I ! ! | 1
400 450 500 550 600 650 700
TEMPERATURE °C

750



29

—+=FDRT VACANCY LOOP DENSITY AT 550°C
—O=-FDRT TOTAL LOOP DENSITY AT 550°C

—VTEXPERIMENTAL LOOP DENSITY AT 525°C OF MAZEY et. al. (i971)¢A.1.S. 1.S.5.)

12
i0 T T T T T T T TTTH T T T T

—e—FDRT INTERSTITIAL LOOP DENSITY AT 550°C
(M316-5.5.)

-

dpa RATE = |0‘3dpa/sec

TOTAL (THEORY)

VACANCY LOOPS

=3

L1 1l 1t

- TOTAL (EXPERIMENT)

DISLOCATION DENSITY (cm/cm3)
5
[e)

INTERSTITIAL LOOPS

|09 1 1 N I A N | L1 1 11} | 1 Lt 1 11l

o)
DOSE (dpa)

Fig. (5) THEORETICAL AND EXPERIMENTAL DOSE DEPENDENCE OF DISLOCATION
DENSITIES DURING 22MeV C**IRRADIATION.
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temperatures because of the high recombination rate. Therefore a smaller
fraction of point defects will migrate to sinks to cause swelling and loop
growth. This region is characterized by Tow nucleation densities and large
growth rates of voids and interstitial loops, hence higher swelling values.
An example of this behavior is illustrated in Figure (6) for the growth of
voids and interstitial loops at 600°C. Shortly after the incubation dose

the average void radius starts to increase rapidly. As irradiation proceeds,
the void (neutral) sink strength increases rendering the dislocation density
somewhat less effective in removing point defects. The impact of the growing
void sink strength is to decrease the average void radius growth rate as a
function of dose. It is also observed that the average interstitial loop
growth follows that of the average void growth. One would expect this
behavior because excess vacancies migrate to voids while excess interstitials
migrate to interstitial dislocation Toops.

Vacancy dislocation loops have a great effect on reducing the swelling
during neutron or heavy ion irradiations. Their effect is to reduce the
total production rate of free vacnacies and to act as an additional biased
sink for interstitials. Initially the number of vacancy loops increases
Tinearly with time (figure 7). The slope is temperature independent since
the fraction of vacancies retained in vacancy loops was assumed to be
temperature independent. However, the vacancy emission rates

are both temperature and time dependent and eventually an approach to an
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equilibrium value is reached. The results shown here in Figure (7) agree

with the theoretical values of Bullough, et a].(]o).

The only discrepancy

is at short periods of times which is probably due to the transient conditions
treated here versus quasi-steady state approximation used in their work.
However, this graph shows the necessity to include recovery of dislocations

as a part of the mathematical simulation because at low temperatures and

high doses the dislocation densities approach an unrealistic level of

1013 em2,

VI. FDRT Applied to Pulsed Irradiations

Thus far we have calibrated the theory against heavy ion irradiation
under time independent conditions. The main purpose of extending the rate
theory, however, is to be able to apply it reliably to time-dependent
situations. To fully assess the effects of pulsed irradiation oh the
behavior and response of metals, a wide range of pulsing schemes have
to be investigated. However, in this paper we will only consider one
example from a laser fusion reactor.

VI. 1. Laser Fusion Pulsed System

The example studied here applies to a preliminary version of the

(24) The materials behavior

Laser Fusion Reactor presented elsewhere.
under the conditions described here are not necessarily typical of pulsed
systems in general. This is because the behavior of a metal subjected

to pulsed irradiation will depend on many factors:
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1) Temperature
2) Dislocation and void densities
3) Impurity content
4) Crystal structure
5) Gaseous content
6) Bombarding particle
7) Cumulative damage in the pulse
8) Pulse width
9) Damage rate during the pulse
10) Time interval between pulses
In this study we consider solution treated stainless steel with
the parameters given in Section IV. 1. A 100 MJ microexplosion in the
center of a 3.5 m radius cavity is analyzed and the integrated fluence
in each microexplosion is found to be 3.55 x 10]9 neutron/pulse.
A graphite Tiner of 1.5 cm thickness is placed 1 cm in front of a stainless
steel wall of 0.1 cm thickness. The neutronic calculations used 25 neutron
energy groups and 21 gamma energy groups and a time dependent version

(25)

of ANISN is used. A cumulative dpa of -~ 1077 per pulse is generated

in stainless steel and an approximate damage pulse is considered to be

dpa rate = 10 dpa/sec 0 < t 5_10'8 sec,

-8 *
0 dpa/sec 10 ©~ < t < = sec.

VI. 2. Analysis and Results

A normal procedure in engineering analysis is to study what is
considered to be the worst case. The conditions studied here correspond
to a complete previous nucleation of voids and interstitial loops as given

by equations (57) and (58).

* In the reactor design of reference 24 the pulse was assumed to be
repeated every 30 milliseconds.
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(o]

A cavity of 40 A radius in the original array is assumed and we allow for
growth of equilibrium bubble embryoes to voids. Theoretical studies (16,17)
on the other hand suggested Tower nucleation rates under pulsed irradiation
compared to steady irradiation conditions, but we will not treat that
question here.

Figure (8) shows the time dependence of the point defect recombina-
tion rate (PR(t)), the interstitial total sink leakage rate (PSI(t)), and
the vacancy total sink leakage rate (Psv)t)) during one pulse and up to
10 seconds after the pulse.

During the irradiation pulse the rapid buildup of point defect
concentrations produce a Targe mutual recombination rate. Consequently,
it is advantageous to design for short pulses of high Qisp1acement
rates because a Targer number of vacancies and interstitials are
removed by recombination and thus swelling could be reduced. Due to
the high mobility of interstitials, the interstitial sink removal
rate (PSI(t)) increases with time during the pulse. At the end of the
irradiation pulse the recombination rate and the interstitial sink
removal rate will drop sharply. Around a vacancy mean lifetime, the
vacancy sink removal rate (Psv(t)) is the only active sink
and hence it reduces the vacancy concentration as shown in Figure (8).

Pulsing the metal changes its microstructure gradually. The
vacancy loop idslocation density increases during the pulse adding to
the total dislocation density, but obviously many pulses would be

needed before significant changes can occur.
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Interstitial Toop dislocation density changes also during and after the
irradiation pulse mainly because of the slight changes that take place to
the average loop radius. The total dislocation density will change accordingly.

The vacancy and interstitial concentrations in a pulsed system are
shown in Figures (9, 10, 11, 12) for various irradiation temperatures.

A common characteristic of the point defect time behavior is an approximately
constant rate of change during the pulse. This rate of change is about the
dpa rate (10 dpa/sec in this case). However, the vacancy concentration
during the pulse is a little less than the interstitial concentration because
of vacancy loop formation during the irradiation pulse. Interstitials,

being very mobile, will have a sharply decreasing concentration right after
the end of the pulse. The vacancy concentration maintains the value acquired
during the pulse (~1O'7 dpa) for a much Tonger time before dropping around
the main vacancy lifetime.

A peculiar behavior of the system is that it almost preserves the
timewise decay behavior of point defects. Increasing the temperature
decreases the dislocation density, but increases the point defect diffusion
coefficients. These two processes are both exponential in nature with
respect to temperature and result in an "almost" temperature invariant
time constant for vacancy and interstitial concentrations.

After the end of the irradiation pulse, the flux of interstitials
to the void is higher than the flux of vacancies and the void radius decreases
rapidly. Around a vacancy mean 1ifetime the vacancy flux to the void gives

rise to an increase in the void size.
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Void Annealing in Metals

At a given temperature T, the vacancy concentration at the void, Cv, is

given by
0 _ oF
C,/C° = exp {(5)/KT} (59)
where %%-is the change in energy of the configuration per vacancy emitted,

and C° the equilibrium concentration of vacancies. For a spherical hole in an
infinite isotropic solid, the emission depends on the surface energy of the void, the
elastic strain energy in the surrounding metal, the applied hydrostatic
stress, and the pressure caused by trapped gas atems inside.

Generalizing the analyses given in ( 5, 18, 19 ); one can write the

following expressions:

= = F @ (60)

where @ is the atomic volume. Here Fm is the mechanical force per unit surface

area acting on a vacancy at the void surface.

2
Fo=p+le Yo —p . (61)
v Zurv 9

Here P is the hydrostatic pressure, vy the surface energy, ry the void
radius, u the shear modulus, and Pg the gas pressure.
The gas pressure is always expressed in terms of the number of gas
atoms and void radius. If the perfect gas law is used, one gets:
P 3n_KT

g——g——3-— X (62)
47y
v



43

While if Van der Waals law is assumed to ho]d,(zo) one gets:

2
kT b

p_= n93 - ng 2 (63)

g (4/3mr, —ang) 16/9m°r,,

This formulation is useful in studying the general situation where gas
atoms are trapped in voids and where stress waves accompany the damage
production.

Although the principal concern in modeling void behavior has been void
growth during irradiation, some consideration has been given to the response

of voids during post irradiation annea]ing.(21’22)

Annealing in the absence
of irradiation is of interest for the practical reason that some CTR first
wall materials will be subject to periods of irradiation and post irradiation
annealing. Furthermore, void annealing experiments present a unique
opportunity to study void kinetic behavior in the absence of self interstitials
and in the presence of a low vacancy supersaturation.

Figures (9,10,11,12) show the essential features of void kinetics due to
an irradiation pulse. At 400°C, after gaining excess vacancies due
to the irradiation pulse, the void begins to slowly anneal out this
excess. For example, it takes the void a relatively Tong time (.25 seconds
in this case) to achieve a zero growth condition. For voids to start
emitting vacancies, the average vacancy concentration at its surface
should be greater than the average vacancy concentration in the matrix.

The void will thermally emit vacancies if the following relationship

is satisfied.
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Growth and No growth regimes for a 40 R
radius void under pulsed irradiation.
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Cy(t) §_C3 exp {(ggd/kT} (64)

This time is shorter for higher temperatures and Tower average concentrations.
The behavior could be followed through Figures (9,10,11,12).

Figure (13) shows the minimum time between the pulses to achieve zero
growth conditions as a function of temperature. The important temperature
regime of operation that emerges from this picture is between 450°C and
550°C. A repetition rate of 5-20 pulses per sec. will produce zero
swelling while higher pulse rates will cause growth and Tower pulse rates
cause Jess.

V. 3. Details of the Rate Processes

It is shown that appropriate irradiation procedures can eliminate
many factors that contribute to metal swelling. It will serve to give
more insight to the relative importance of different rate processes in
the metal under consideration. Details of these processes will be given
here during the pulse and around a vacancy mean 1lifetime.
Exampies of the various defect properties during and after the 10 ns
damage pulse are given in tables (2) and (3). The data in tables (2) and (3)

refers to the following conditions:

Temperature = 500°C
Vacancy Thermal Equilibrium Concentration = 6.075 x 10'1] at./at.
Interstitial Thermal Equilibrium Concentration = 8.316 x 10'2] at./at.

The tables are too detailed for a complete discussion at this time and
the reader is urged to examine them in depth taking particular note of the
vacancy and interstitial concentrations, leakage rates of both defects,
recombination rates, and rate of growth of both vacancy and interstitial

clusters.
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Table (2)

Average concentration of vacancies

Average concentration of interstitials

Leakage constants of Frenkiel Pairs to different sinks (sec'])

Leakage constants of vacancies to sinks

Leakage constant
Leakage constant
Leakage constant
Leakage constant
Leakage constant
Leakage constant
Leakage constant

vacancies to all sinks
vacancies to dislocations
vacancies to voids
interstitials to sinks
interstitials to all sinks
interstitials to dislocations
interstitials to voids

Emission rates of vacancies (at/at/sec)
Emission rate from vacancy loops
Emission rate from interstitial loops
Emission rate from voids

Emission rate from dislocations

Total emission rate of vacancies

Rate of recombination of vacancies and interstitials (at/at/sec)

Leakage rate of vacancies to all sinks (at/at/sec)
Leakage rate of interstitials to all sinks (at/at/sec)
Radii of voids and Toops in angstroms

Void Radius

Interstitial loop radius

Rate of change of void and loops radii in cm/sec
Rate of change of void radius

Rate of change of interstitial loop radius
Number of vacancy loops and fraction of vacancies retained in them
Number of vacancy loops

Fraction of vacancies in loops

Changes of initial radii of void and interstitial loop inang.

Change in loop radius (RIL-RILO)
Change in void radius (RY-RVO)

2x10'9 sec

2x1078 dpa

1.916x10°8
1.997x1078

60.24
23.76
36.48

6
5
5

1.592x10
6.575x10
.345x10

O

41x10714

.955x1010
.857x1072
.168x10712
.659x1072
.041x107%
.196x107°
.295x1072

W — N W N NN

40.

825.5
~2.569x107°
5.55x107°

6.225x10' !
8.8x10"10

6
7

5.357x10°
-2.48x10°
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Table (3)

While at longer times the following values are obtained

Time

Total Dose

(1)

(2-8)

(4)
(5)
(6)
(7)

Average
Average
Average
Leakage
Leakage
Leakage
Leakage
Leakage
Leakage
Leakage
Leakage
Leakage
Emission
Emission
Emission
Emission
Emission

concentrations of point defects (at/at)

concentration of vacancies

concentration of interstitials
Frenkiel Pairs to different sinks (at/at/sec)

constant
constant
constant
constant
constant
constant
constant
constant
constant

of
of
of
of
of
of
of
of
of

vacancies
vacancies
vacancies
vacancies

to sinks

to all sinks

to dislocations
to voids

interstitials to sinks
interstitials to all sinks

interstitials to dislocations
interstitials to voids
rates of vacancies (at/at/sec)

rate from vacancy loops

rate from interstitial loops

rate from voids

rate from dislocations

Total emission rate of vacancies

Rate of recombination of vacancies and interstitials
Leakage rate of vacancies to all sinks (at/at/sec)
Leakage rate of interstitials to all sinks (at/at/sec)
Radii of voids and loops in angstroms

Void rad

Interstitial loop
Rate of change of
Rate of change of
Rate of change of
Number of vacancy
Number of vacancy
Fraction of vacancies in loops

jus

radius
void and loops radii in cm/sec
void radius
interstitial loop radius

10. sec
1077 dpa

=11
27

6.075x10
8.316x10°

= 60.24
= 23.77
= 36.48

.592x10°
= 6.576x10°
.345%10°

1}
O

.056x10713

16810712
.857x1072
.66x107°
.509x10725
.66x107°

.324x10720

1]
— D N W NN NN B

= 40.
= 825.5

-14
12

= -8.511x10
= -2.616x10"

loops and fraction of vacancies retained in them

loops

3.112x1012
4.399x1072
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(10) Changes in initial radii of void and interstitial Toop in ang.
Change in loop radius (RIL-RILO)
Change in void radius (RV-RVO)

-1.156x1073
29.747x10™°
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V. Concluding Remarks

It has been shown that the steady state theory (SSRT) can be
successfully modified to include time dependent effects on a time
scale of interest to inertially confined fusion reactaors (over at least
10 orders of magnitude in time). The Fully Dynamic Rate Theory (FDRT)
formulation can accurately predict steady state electron and heavy ion
experimental results on 316 stainless steel and therefore should be
invaluable in understanding what effect changes in temperature, dis-
placement rate, dislocation density, effective defect migration energy,
etc., have on the ultimate swelling of that alloy. Such parametric
studies have now begun and will be the subject of future papers.

Unfortunately, it is not possible to determine how accurately the
FDRT predicts swelling in pulsed systems because there is no experimental
data to compare with. One might turn this around and look at the
optimistic side by observing that the FDRT can now be used to identify
interesting regimes for experiments while at the same time determining
conditions for which pulsing should have no effects. Future work in
this area is absolutely necessary before any large scale reactor
systems can be built.

Finally, the reader is again reminded of the fact that the entire
approach in this paper is only operative in the regime where nucleation
has ceased and where transmutation products such as helium have no
further effect on the microstructure. A complete treatment of the
problem must include these effects but such an endeavor is by no means

trivial.
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