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Uniformity of I1lumination of
Spherical Laser Fusion Targets

James E. Howard
University of Wisconsin, Nuclear Engineering Department, Madison, Wis. 53706

Uniformity of illumination of spherical laser fusion targets
is calculated for 8, 12 and 20 beams arranged according to the
symmetry of the Platonic solids. Uniformity was optimized by
varying the f/no. of ideal aberration-free lenses, amount of
beam overlap, and the shape of the spatial beam profile. The
numerical results show 20 beam illumination to be slightly
better than 12 beam illumination, with 8 beams running a poor
third. Refractive energy losses due to nonorthogonal illumina-
tion and the implications for the design of a practical laser

fusion reactor are discussed.



1. Introduction

In the laser fusion process, a small sphere of deuterium-tritium
fuel is heated and compressed to thermonuclear burn conditions by -
intense laser beams.] The thermonuclear yield (and therefore the
plant efficiency) depends sensitively on the implasion symmetry, which,
at least in its early phase, demands very uniform irradiance over
the pellet surface.2 Many schemes have been proposed for i1luminating
fusion targets, ranging from one3 to severa1-hundred-beamsg in various
combinations of 1ense55 and mirrors.6 In this paper we describe the
calculation of irradiance on a spherical surface due to N overlapping
beams, with N = 4,'6, 8, 12 or 20, corresponding to the symmetry of
the five Platonic solids. Provision is currently made for the following
spatial beam profiles; flat, Gaussian, and f§upergaussian.? Ideal
lenses were employed as focusing elements, although aplanatic lenses
could equally well have been used.

Basically, our task is to provide a specified uniformity of
i11umination over the entire pellet surface, keeping the rays as
normal to the surface as possible. The required degree of uniformity
is determined chief]y'by its effect on growth of the Rayleigh-Taylor
instabih’ty,2 while the angles of incidence must be held down in order
to maximize inverse bremsstrahlung absorption, and minimize refraction

in the blowoff 1ayer.7



To control pellet irradiance, we have at 5ur disposal four
independent quantities; N, the number of beams, &, the shift of the
beam focus relative to the pellet center, F, the f/no. of the
focused beam, and the beam profile Io(r), where r is the beam radius
on the last op;ica] element (lens or mirror). The beam profile may
depend on 2-3 parameters, sO it would seem we have a formidable
parameter space to deal with. In practice, however, only a few
values of N are considered, F then being determined by the maximum
solid angle allotted to optics. Of course, the optics must be
sufficiently distant from the target so that the beam aperture is
adequate to handle the energy and power per beam as well as the
radiation and debris from the target. The total aperture area 1is
determined in practice by material damage constraints on the beam
energy, rather than self-focusing constraints on the beam power.8

A more complete treatment of the uniformity problem would entail
following the energy deposition in the early phases of the corona
expansion, taking into account refraction and lessened energy ab-
sorption near the beam edges where the angles of incidence are
largest.

2. The Platonic Solids

A sphere may be partitioned into N equal-solid-angle wedges
by means of the five Platonic solids, illustrated in Fig. 1. A

sphere may also be divided into two equal solid angle portions by



means of a plane cut through its center.* Other partitions are
possible. For example, beams placed at each of the 12 vertices of
an icosahedron allows symmetric placement of 32 beams. The Q-10
facility at Rochesterg is designed for 24 beams.

Each Platonic solid being made up of N regular polygonal faces,
it is customary to classify them according to the number of sides
(p) of the polygons and the number of adjacent faces (q) at a vertex.
Given the number of faces NS’ it is easy to show that the number of

edges and vertices are given by

Ng = 1/2 p Ng (1)
Ny = %NS i (2)
10

These numbers are related by Euler's formula,

We shall also need the dihedral angle o and the wedge angle B, as

depicted in Fig. 2.

* 1 have recently learned of the existence of a sixth degenerate
Platonic solid, the ndihedron," a double plane polygon enclosing

no vo]ume.]]



o _ g _ cos(m/q)
sin 2 cos 2 ETYT(TVET (4)

B

" -0 .

Table 1 lists these parameters for all of the Platonic solids.

Since laser beams are circular rather than prismatic, it is necessary
to overlap them in order to cover the entire pellet surface. Uniform
§1lumination may be obtained by simultaneously varying the degree

of overlap and contouring the beam'profile. In Section 4 we shall
use Table 1 to determine the coordinates of all beams relative to

a common origin and combine intensities in the overlap regions.

3. Intensity Profiles

Assuming ideal lenses, each beam contributes an irradiance6

2
f 1 + &cosd 2
1 =1 LYy ——— ¥ R 5
(@) = L, (RT) (cose + 5)° fem )

where Io(r) is the flux incident on the lens, r is the beam radius,

RT the target radius, f is the focal length, and
§ = Ax/RT (6)

measures the focal shift relative to the target center (Fig. 3).

The angle of incidence ¥ is given in terms of the beam half-angle

£ and § by
siny = &sing . (7)
The beam half angle is related to the f/no. by

cotg = 2F . (8)



Thus, the maximum angle of incidence is given by

. - §
siny_ = — (9)
+4F
It is essential that Y oax be made as small as possible in order to
7

_minimize laser energy lost through refraction in the pellet corona.
Now when we come to optimize pellet illumination uniformity,
the outcome will be a certain spot size as measured by the pellet

central angle emax' From Fig. 3, the corresponding focal shift is

given by
§ = 2F sing .. - €OSO .. . (10)

So the price we pay for uniformity is given by combining eqs. (9)
and (10):

2F sing - c0s6
. _ max max
S1"?max = s (11)
+4F

which is just another way of writing

¥ =9 -£ . (12)

Equation (12) shows that if 8a is large, then £ must also be large

X
in order to keep ¥ . small. From eq. (8), we see that large £

naturally translates into small f/no.

5

Unlike a research facility such as SHIVA,” the beam transport system

in a laser fusion reactor (LFR) can only take up a small fraction of the



solid angle subtended to the target. Whereas SHIVA has about 50%
of its solid angle devoted to beams, an LFR is limited to about 10%

for economic reasons. Each beam occupies a solid angle
AQ = 2n(1 - cosg) , (13)

so that the total fractional solid angle taken up by N beams is

y=Ma.tn-2. (14)
, +4F
Solving for F, we find, for y << 1,
1 2
= (1 - £0)
F.o=4 0 r /A (15)

min /{,- (1 i %l)z

This is the minimum f/no. required to occupy less than a specified
solid angle fraction. Table 2 lists Fmin for v = 0.1 and 0.2. For

y << 1, the maximum angle of jncidence is

¥ 0 -2/%. (16)

max max

The small-angle results, egs. (15) and (16) are not substantially

changed by the use of aplanatic Tenses, for which
cscE = 2F (17)

replaces eq. (8). In general, the angles of incidence decrease as
more beams are added, assuming equal target coverage and fixed v.
However, it will be seen that in the 1mportaht cases N = 12 and 20,
the optimal values of emax are nearly equal, independent of v,

so that the ang1és of incidence are actually somewhat larger for

1

20 beams.



We are now in a position to design a pellet illumination
scheme, proceeding as follows:

1. Choose a definite fractional solid angle v, say 10%.
Choose the number of beams, say N = 12 or 20.
This fixes the minimum f/no. by eq. (15).

Next choose a beam profile, say Gaussian.

oS W N

Vary & until the uniformity exceeds the desired value,
say 90%. This number direct]y.affects the Rayleigh-
Taylor growth rate.2

6. The optimum & and F determines 6 . from eq. (10):

_ 2F8 + A+ 4F% - 8 (18)

x 1+ 4F°

sin .

7. Eq. (11) or (1§) determines ¥ .. .

8. wmax determines the amount of laser energy lost due
to refraction.

9. If ¥oax is too large, one has two main options:
(a) relax the uniformity requirement (5)
(b) relax the solid angle requirement (1).

4. Calculating Beam Overlap

Before carrying out the above 0p£1mization procedure, we
have to learn how to calculate the intensity due to a number of
overlapping spots. We shall examine here only the cases
N = 8, 12, and 20; octahedral, dodecahedral and icosahedral.
High uniformity is not possible using 4 or 6 beams, so these

configurations will not be considered further in this paper.



First of all, by symmetry we need only look at a single
pie slice-shaped region, as depicted in Fig. 4 for the
jcosahedron (only 3 nearest neighbor spots are shown). In
this case, only spots O and A need be included. In general,
however, sevéra] spots (located at points Qk) may contribute
to the intensity at point P according to eq. (5) with ePQk

given by

cosePQk = cosB cosg * sing sind, cos(o - ¢k) .(19)

as shown in Fig. 4.

The coordinates of the neighboring beams are conveniently
found by means of the Schlegel diagr‘am.]0 This is simply a
two-dimensional projection of the polyhedron gotten by bringing
one face up to the eye.

4.1 Octahedron

We wish to locate points Qk’ k=1,6w. r.t.point 0,
using the Schlegel diagram depicted in Fig. 5. The 8th
(opposite) point will be ignored. The fundamental pie slice
has its 60° wedge at point O, with one side along the arc OQk.
From Table 1, the angular side B = 70.53°. We want to solve

the spherical triangle OQ]Q4 for the angular side 8,. By the

cosine law, cose4 = - 1/3 so that 64 = m-R. Thus,
_ o o
212 ; ?200 g]z ; g = 70.53
¢3=24o°‘ 85 =8
¢y = 60° 6, = 180° - 8 = 109.47°



180° 0

¢ )
5 - 300° o

0
b 4

04

4.2 Dodecahedron

Figure 6 shows the Schlegel diagram; again the opposite 12th face
is ignored. 1In this case, the fundamental pie slice subtends a
36° angle. From Table 1, B = 63.43°. Solving the spherical triangle

OQ]Q6 we find 86 = 1-B. Thus,

4 =0 oy = & = 63.43°
4, =72° 8 =8
65 = 1480 03= 8
by = 216° 6y = B
b5 = 288° 0g = B _
b = 36° gg =T - B = 116.57°
by = 1082 8; = 05
bg = 180 0g = O
dg = 252°O 6 = 9
$yo = 324 810 = %

4.3 Icosahedron

Figure 7 depicts the Schiegel diagram; only the inner hexagonal
portion is needed for O ., 5_720. Solving the spherical triangle
00104 gives

_ "3 il
cose4 =1 - 5 sin” B ,

where B = 41.820. Thus, 64 = 70.530, which is just the octahedron
wedge angle: In this case, we must also calculate the angle ¢4- By

the sine law,

. . 0]
sing, - St L 2
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so that ¢4 = 37.76°. The coordinates of points 10-18 may be found

by solving spherical triangles 0-4-11 and 0-1-18. The results are

©
-
1]

%0 =
o =
%2

%3 ©
b4
%5
%6
%7 =
¥

0
120°
240°
37.76°
120° - ¢,
120° + ¢,
240° - ¢,
240° + ¢,
360° - ¢,
60° - ¢,
60°

= 60° + ¢,
180° - ¢,

= 180°
180° + ¢,
300° - ¢,
300°
300° + ¢,

[e>]
]

%10
51
%12
913
%14
%15
®16
®17
%18

4.4 Minimum Value of 8may for Total Coverage

|1 7] i il [i} i [}

g = 41.82°
B

B

70.53°

84

%4

%

7

94 .
180° - 6,
180° - 8
180° - 8,
180° - 8,
180° - B
180° - 8,
180° - 0,
180° - 8

= 180° - 6,

Having located the positions of all beams, we can now calculate

the irradiance on a sphere with an arbitrary amount of overlap. From

Fig. 4, we see that the condition for the spots to just touch is

®m

¢

ax = B/2 .

(20)
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Thus, a focal shift of at least
Spin = 2F sing/2 - cosB/2 | (21)

is needed in order to achieve uniform irradiance. When the
beams overlap sufficiently, there will be no unilluminated
areas on the pellet. To calculate em;x for 100% coverage,
we must Took at each case individually.

Octahedron

Figure 8 dgpigts the four nearest neighbor beams. In
order to cover the small rectangular area in the center, we

solve the triangle O1P. The law of sines gives -
sing* = sin60°sing = G Gvn=-vE . (@)
or |
o = tan” /2 = 54.74° .

Dodecahedron

Figure 9 shows the three nearest neighbor spots. To
wipe out the triangular hole in the center, we solve the

spherical triangle OP2 and find

. 0
R _ sin36 . -
s1ne$ = g;ﬁgﬁg-s1n8 = 0.607 , (23)

so that

= 0
6; = 37.38" .
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Icosahedron

Figure 10 shows the five nearest spots. Solving the

spherical triangle OP2 gives

_ sin60%ing  _
sinel; = =i’ 0.607 . (24)
Thus, 6*_ = 37.38°, the same value as for the 12 beam case!

max
5. Numerical Results.

A computer program, PLATO, has been written to calculate
jrradiance profiles over the fundamental region for each of the
configurations described in Section 4. We first examine SHIVA-
type designs,5 using 8, 12 and 20 /1.5 lenses. Next, reactor-
type configurations are considered, with optics limited to
10 or 20% of the total solid angle seen by the target. (Of course,
SHIVA was never intended to resemble a reactor; its 20 beams take
up 51% of the total solid angle.) In all cases, greater than 90%
uniformity is realizable using 12 or 20 beams, with 8 beams running
a poor third. However, good uniformity for the high f/nos.
typical of reactor configurations can only be achieved at the
expense of large angles of incidence and consequent loss of laser
7

energy by refraction in the plasma corona.

5.1 Optimization

In following the optimization procedure outlined in Section 3,
we first fix F = 1.5 and treat the cases N = 8, 12 and 20
separately. Spatial beam profiles were chosen from the two-

1
parameter family of "supergaussian" forms,
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1(r) = &2, (25)

with p = 2, 3, 4 and 5. The parameter a is related to the half

width at half-maximum by

X1/2 * a(zn2)1/p . | (26)

The irradiance, including overlap from all beams, is then com-
puted on a mesh (6,0) over the fundamental region, for a number
of values of emax' Extracting the maximum and minimum, we

calculate the uniformity

n=1- (Imax - Imin)/“max * Imin) : (27)

To interpret this criterion, consider a sinusoidal ripple of
amplitude A superimposed on a DC signal of magnitude B. It is
natural to express the deviation from constancy or A/B and the
uniformity as 1-A/B. In contrast, the Livermore studies5 use
= Imin/lmax < n. Note that both n and . vary between 0 and 1.

Figures 11-13 show n as a function of 8 . for Gaussian

L

profiles (p = 2), having width parameters a = 0.5, 1.0 and 0.70
(Fig. 14). C]ear]},:best uniformity is obtained for a = 0.7, the
optimal value for this profile. Notice the great improvement in
going from 8 to 12 beams, and the smaller but non-negligible

improvement in going from 12 to 20 beams. Although the curves
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sometimes cross, the 12 and 20 beam cases always seem to
improve (or worsen) together. Also note that n = 0 at

8ay = 54-7° for 8 beams and at 6 = 37.4° for 12 or 20
beams, as predicted in section 4. As we shall see, a
practical illumination system requires 8 ax < 50°.in order to
keep the angles of incidence reasonably small.

Figure 15 shows optimum uniformity curves for the cubic
exponential profile (p = 3, Fig. 16). Again all three con-
figurations are optimized together with a = 0.70. In this case
better than 95% uniformity is obtained for 20 beams and over
93% using 12 beams, considerably better than thét found using
the Gaussian profile. Only slight improvement was realized by
varying p near p = 3, while the results for p = 4 and 5 were
much worse. '

The remarkable closeness of the uniformity curves for 12
and 20 beams up to emax ~ 50° suggests little advantage in
choosing 20 beams rather than 12. However, the 12 beam curve
is rather sharply peaked and might therefore be vulnerable to
positioning errors. To investigate this question, let us
calculate the change in the focal shift corresponding to a

variation in emax of 2.5, roughly the half-width of the peak

in the 12 beam curve in Fig. 15. From eq. (10) we have
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&(ax) = (2Fcosg .. * sinemax) Ry 66 . > (28)

. . e
which gives, for F = 1.5 and emax = 507,

§(ax) = 0.047 Ry 86, .. - (29)

Setting 60 ., = 2.5%, we get G(Ag) 212 um for Ry = 100 pm and
8(ax) = 120 ym for Ry = 1000 um.

Wwhile laser beams are routinely focused on target to
within 5 um in current laser fusion experiments,5 maintaining
optical alignment of many beams in a reactor environment at a
repetition rate of 10-20 Hz is quite another matter. By the
time each beam makes several reflections as it wends its way
from laser to target, the accumulated jitter could be expected
to exceed tens of microns. Thus, it seems reasonable to expect
positioning to within 100 ym and thereby to control 8 max to within
2 .59 on reactor-size pellets. Smaller pellets can be uniformly
i1luminated with 12 beams only if sufficient time is available
between shots to maintain alignment.

As we have seen, good uniformity also depends critically on
fhe choice of spatial beam profile. Beam tailoring may be
effected by soft apertures and Pockels ce11s.13 While spatial
filters14 effectively eliminate fine structure, they are unable

to remove gross beam inhomogeneities. It is therefore futile to

<
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attempt fine beam tailoring unless the laser train produces

a reasonably smooth beam to begin with. The sharp edge on the
jdeal optimal profile depicted in Fig. 16 may also produce un-
desirable distortions of the focal region through self-
focusing.15 For this reasoh (among others) mirrors, rather than
lenses, should be used as focusing elements.

A quantity relevant to system efficiency is the fill factor

R

L

ff = L [ 1,(r) 2mrdr (30)
ﬂRL 0

which measures how well the beam fills the aperture. Table 3
lists fill factors for a number of supergaussian profiles. Note

that for a Gaussian,
2 (o _ z1/a° -
ff=ac (1 -e'%). (31)

Now we see that there is something special about the optimal

case a = 0.70; it is practically a stationary point for the

variation of ff with index p. There is less than a 2% change

in ff as p varies from 2 to 5. Table 3 also j1lustrates the fact

that considerable laser energy can be wasted in beam~tailoring.
The 90% uniformity level required to prevent rapid growth

of the Rayleigh-Taylor instability is based on analytic

5 No direct physical measure-

7

studies2 and numerical simulation.

ment has yet been made of this effect. However, recent studies
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show that the growth rate may be greatly reduced by controlling
the radial density profile in the pellet. Thus, the 90% figure
cited should be regarded as tentative, awaiting experimental
confirmation.

A11 of the uniformity curves in Figs. 13 and 54 exceed 95% as e
emax approaches 90°. The catch is that the angles of incidence increase
with emax to the point where refractive loss of la;er energy be-
comes prohibitively large. This is illustrated in Fig. 17,
which shows Wmax as a function of 8 hax for various f/nos. For
example, using /1.5 lenses, the smallest possible value of Wmax
fs 18° for 12 or 20 beams. Based on the presenf‘studies and those
at Livermore, 90% uniformity may be obtained around emax = 50° at the
least, for which Fig. 17 gives wmax = 329, The reflectivity of the
pé]]et corona is approximately exp (—2pcos3W), where p is the
optical thickness, indicating large refractive losses as ¥ - 90°.
However, a detailed ca]cu]ation,7 averaging over the optimal beam
profile shows only a few percent net energy 1oss due to oblique
incidence when 6_. = 50°. Thus, uniform illumination of over
90% ﬁan be realized without excessive refractive energy loss.

Another reason for preferring smaller angles of incidence is

16 In this process, the p-polarized

to maximize resonance absorption.
component of the electric field is strongly absorbed in a range

of incident angles depehding on the density scale height in the
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pellet corona. While the optimal angle of incidence varies from
case to case, it is always less than 10°, so that the average
angles of incidence (v = %'wmax) cited above are too large

for effective resonance absorption. Howaver, other effects,
such as expansion of the critical surface7 and self-steepening]7
of the plasma density profile, can improve the match of incident
angle to resonance angle. Detailed discussion of these effects
is beyond the scope of this paper.

5.2 Solid Angle-Limited Designs

Next we turn to the reactor-type cases where the f/nos. are
limited by the fractional solid angle allotted to optics, as
listed in Table 2. As before, we consider 8, 12 and 20 beams, but
use only the optimal cubic exponential beam profile, with a = 0.70.
Figures 18 and 19 show the resulting uniformities for y = AR/ BT =
0.1 and 0.2. Again the 8 beam configuration runs a poor third.
What is perhaps surprising is that the curves are almost identical
for N = 20, with only a few percent difference in the N = 12 curves.
However, due to the larger f/nos., the angles of incidence are
somewhat larger in the y = 0.1 cases (Fig. 17). For example, for
20 beams at 0 .. = 50%, V.. = 38.5% and 42°, for y = 0.2 and 0.1,
resp. For N = 12, ¥oax = 36° and 39.5%. That is, decreasing

vy by a factor of two only increases Wmax by 10%, a very favorable

trade-off indeed! .
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6. Discussion
We have described the calculation of illumination uniformity

on spherical targets for 8, 12 and 20 overlapping beams arranged
according to the symmetry of the Platonic solids, psing ideal -
thin lenses as the final optical elements. Due to the extreme
symmetry of these configurations, only a small triangular region
had to be examined.. Other, less symmetrical, i1lumination schemes
would require looking at 2 larger portion of the sphere and
therefore entail more programming. On fhe other hand, it would
be easy to modify PLATO to employ aplanatic lenses, or parabolic
mirrors. Further, spatial beam profiles of arbitrary complexity
may be used in place of the present family of supergaussian.

A Optimization studies were made using £/1.5 lenses in each
of the 8, 12 and 20 beam configurations. Generally, the best
uniformity was obtained for a cubic exponential having a
width parameter a = 0.70. While the maximum uniformity was found to
be comparable for 12 or 20 beams, the 12 beam case seemed vul-
nerab]e to misalignment. Eight beam i1lumination was always
found to run a poor third. Typical angles of incidence were

~

¥oax ~ 320, indicating considerable loss of energy through
refraction. However, by averaging over the angles of incidence
and the spatial beam profile, the net refractive loss due to
oblique incidence was found to be negligible. In an attempt to

reduce this loss, we have also computed 12 beam illumination with
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£/1.14 lenses, which take up the same total solid angle as 20
£/1.5 lenses. The result is shown as the plotted circles in
Fig. 15. Best uniformity is obtained near 8 .. = 50°, where

¥ oax = 250,'reducing refraction losses somewhat. Optimization
studies using aplanatic 1enses]2'show negligible differences
from the above results.

The equality of the coverage angles, e; , for the dodecahedron
and icosahedron 1is probably due to their close geometrical
relationship. (Mathematica]ly they are recigroca1s]0 and share
the same group properties). Similarly, it may be shown that the

coverage angle for the cube is identical to that of jts reciprocal,

the octahedron. The tetrahedron, on the other hand, is self-reciprocal

*
and has a coveragée angle 6 = 70.530. Thus, we would anticipate
*
much better uniformity for 6 beams (em = 54.7°) than for 4 beams,

but only slight improvement in going from 6 to 8 beams.
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Figure Captions
The Platonic solids.
Definition of the dihedral angle a and wedge angle B.

Targeg illumination geometry for an ideal Tens (not to
scale).

Beam overlap geometry for icosahedron, showing the
fundamental region OAA'. Spherical polar coordinates
are chosen .with axis coincident with the optical axis
of beam 0. Note that with arcs OA and OA' equal,

the arc AA' is not part of a great circle. The true
minimal region is somewhat smaller, with AA' replaced
by a portion of a great circle.

Schlegel diagram for octahedron.
Schlegel diagram for dodecahedron.

Schlegel diagram for icosahedron. Only the inner 9
beams contribute for 0 ax < 700,

A

Coverage geometry for octahedron.
Coverage geometry for dadecahedron.
Coverage geometry for icosahedron.

Uniformity versus beam overiap angle using Gaussian
beams on f/1.5 lenses, width parameter a = 0.50.

Uniformity versus beam overlap angle using Gaussian
beams on f/1.5 lenses, width parameter a = 1.0.

Unifermity versus beam overlap angle using Gaussian
beams on f/1.5 lenses, optimal width parameter a =
0.70.

Optimized uniformity, using cubic exponential beams
on f/1.5 lenses, a = 0.70. Circles are for 12 f/1.14
Tenses with a = 0.65, taking up the same total solid
angle as 20 f/1.5 lenses. This gives comparable
uniformity with smaller angles of incidence.
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Fig.
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17.

18.

19.

24 -

Gaussian beam profiles. The case a = 0.70 yields
best uniformity.

Cubic exponential beam profiles. The case a = 0.70,
p = 3 yields best uniformity among all supergaussian
profiles.

Maximum angle of incidence versus beam overlap.
Smaller angles of incidence give stronger laser
absorption.

Optimized uniformity with total solid angle fraction
limited to 10%, suitable for a laser fusion reactor.
Again p = 3 and a = 0.70.

Optimized uniformity with total solid angle fraction
limited to 20%. Again p =3 and a = 0.70.
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Figure 7
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E v p q o B
Tetrahedron 4 6 4 3 3 70.53 109.47°
Hexahedron 6 12 8 4 3 90° 90°
Octahedron 8 12 6 | 3 4 | 109.47° | 70.53°
Dodecahedron | 12 30 20 | § 3 | 116.57° | 63.43°
Icosahedron | 20 30 12 3 5 138.18° | 41.82°

Table 1.

Properties of the Platonic Solids
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N y = 0.1 y = 0.2
4 1.58 1.12
8 2.24 1.58
12 2.74 1.94
20 3.54 2.50

Table 2.

Minimum f/nos. for Specified Maximum

Solid Angle Taken up by Beams
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> a .5 .70 .75 1.0 |
2 .2454 .4263 .4674 .6321
3 .2257 .4310 .4841 .6998
4 .2216 .4326 4926 | 7468
| 5 .2218 .4346 .4978 !.7813

Table 3. Fill Factors for Supergaussian Beam Profiles





